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ON EVOLUTION UNDER SEXUAL AND VIABILITY SELECTION:
A TWO-LOCUS DIPLOID MODEL

SARAH PERIN OTTO
Department of Biological Sciences, Stanford University, Stanford, CA 94305 USA

Abstract. — A two-locus diploid model of sexual selection is presented in which the two loci govern,
respectively, a trait limited in expression in one sex (generally male) and the mating preferences
of the other sex (generally female). The viability of a male depends on its genotype at the trait
locus. In contrast, all females are equally viable and all individuals are equally fertile with respect
to the two loci. Near fixation at both loci, evolution at the mating locus is neutral and hence a
new mating preference allele will increase only through random genetic drift or through a correlated
response to the increase of a new advantageous trait allele. If, however, a polymorphism is already
maintained at the trait locus through overdominance in fitness then the increase of a rare preference
allele depends only on the recombination rate between the loci and not on the new preference

scheme.
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The importance of sexual selection as an
evolutionary force is suggested by the ubiqg-
uity of secondary sexual characteristics and
the remarkable nature of some of these traits
such as the majestic feathers of the peacock
or the ruby-red throat of the frigate. Starting
with Darwin, many people have considered
the evolutionary role of sexual selection
whereby an advantage is conferred upon a
phenotype not because it is more commonly
chosen by “natural selection’ but because
it is more commonly chosen by potential
mates [see, for example, Fisher (1958),
O’Donald (1980), Lande (1981), Kirkpat-
rick (1982)]. Technically, sexual selection is
not a counter-example to “‘survival of the
fittest” because fitness measures reproduc-
tive output as well as viability, the former
being a function of fertility, inclination to
mate, and preferability.

Relationship between Different Selective
Forces.—Were sexual selection to occur
without affecting fecundity and on traits that
do not appreciably contribute to viability,
then different mating preferences would be
neutral with respect to one another and the
evolution of preferences would occur
through the random action of genetic drift.
However, in species with few potential
mates, choosiness would almost inevitably
lead to reduced fecundity. Furthermore, the
very traits that are preferred often confer no
viability advantage or may even be disad-
vantageous. For instance, individuals who
produce pheromones can attract predators

and parasites as well as prospective mates
[e.g., Harris and Todd (1980)]. Hence, the
fitness of an individual is often a function
of fecundity and viability differences as well
as the mating preferences within the pop-
ulation. Finally, as these mating preferences
change from one generation to the next, so
will the relative fitnesses of the individuals
within a population. The question, then, is
in what ways do these different selective
forces interact to affect evolution. Mathe-
matical models can help clarify the answer
to this question.

Previous Models. —To study the simul-
taneous evolution of mating preferences and
those traits under selection, models have
been developed assuming either polygenic
inheritance or inheritance based on rela-
tively few loci. Quantitative genetic models
in which both the preferences and the traits
are polygenic have shown that sexual selec-
tion may be maladaptive, even to the point
of the extinction of a species (Lande, 1980).
When there is no direct viability or fertility
selection on the preference locus, Lande
(1981) noted that changes at the preference
locus occur only as a ““correlated response
to selection on males’ through associations
between the loci (disequilibria). If an equi-
librium is attained, it is on a line of neutral
equilibria on which the forces of natural and
sexual selection balance. The stability of this
line depends only on the “mutability” of
the genes and not on the linkage relation-
ships between them (Lande, 1981). Finally,
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in this theoretical framework, it is estab-
lished that mating preferences need not be
“adaptive’ to evolve, that there is not a
genetic “basis for expecting that females
should generally be attracted to the most
vigorous males in a population” (Heisler,
1985).

Assuming that sexual selection is based
on the action of few loci, Kirkpatrick (1982)
developed a haploid model to track the
change in genotype frequencies at two loci,
where one locus controls female mating
preferences and the other locus controls a
trait limited in expression to males. As in
Lande’s models, there is no direct viability
or fertility selection on the preference locus
and hence the preference locus evolves only
through associations with the trait locus.
Again as before, the equilibria of this system
form a neutral curve, such that the final
composition of a population is sensitive to
both initial genotype frequencies and to per-
turbations in these frequencies. Finally, the
rate of recombination did not alter the equi-
librium curve nor its stability. Heisler and
Curtsinger (1990) extended this model to
the diploid case under the restrictions of free
recombination (» = 0.5), an additive pref-
erence scheme, and directional viability se-
lection (heterozygotes have intermediate vi-
ability). They also examined the important
case of direct selection on the preference
locus through the action of fertility selec-
tion, although I shall focus on their results
for preferences that are selectively neutral.
From simulations, they concluded that the
diploid model differs from the haploid and
polygenic models in that neutral curves of
equilibria do not exist except in the case of
complete dominance at the trait locus. Poly-
morphisms were rare, occurring in only 32
out of 9,920 simulations. Instead, evolu-
tionary trajectories generally led to fixation
at either the trait or preference loci. Move-
ment along these trajectories, however, of-
ten occurred at very slow rates— ““sufficient-
ly slow that random genetic drift could easily
overwhelm deterministic evolution in all but
very large populations.” Finally they noted
that trajectories that led to the greatest
change in the frequency of a preference al-
lele occurred when heterozygotes were the
most fit.

Recently, Gomulkiewicz and Hastings
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(1990) analyzed the stability properties of
fixation on a trait allele to the introduction
of a new trait allele when there was a poly-
morphism at the preference locus. They
found that if the new trait allele had a higher
fitness (calculated as the product of its vi-
ability and the harmonic mean of its mating
advantage) then it would invade. This result
along with the results presented within this
paper give a complete picture of the stability
properties of the two-locus two-allele model
when at least one locus is initially fixed.

Present Investigation.—Herein I present
results from a two-locus diploid model of
sexual selection. I assume that there are vi-
ability differences between members of one
sex and, for simplicity, no fertility differ-
ences between individuals. This model ap-
plies best to a lekking species, in which there
are several potential mates, with a simple
secondary sexual trait, such as a phero-
mone, produced by one sex and perceived
by the other sex through simple means such
as by a pheromone receptor [see, for ex-
ample, Lofstedt et al. (1989)]. More gener-
ally, the model applies whenever one locus
determines a trait for which viability selec-
tion is sex limited (we will assume this sex
to be the male) and the other locus deter-
mines female preference. This study con-
tributes to our knowledge of such models
by examining the effects of genetic linkage
between the two loci. It also looks at the
introduction of a new preference scheme in
a population polymorphic at the trait locus
with interesting results. Both analytical and
numerical results are presented.

THE METHOD

The Model and its Assumptions. —The or-
ganism in question is a diploid in a popu-
lation large enough to ignore sampling error
(genetic drift). The viability scheme is de-
termined by the trait locus (77/¢) such that
all females have the same relative viability
and all males of the same genotype (77T, Tt,
or tt) have the same viability (V; 1, V7, or
V,). Females choose mates according to
“fixed-relative preferences’® [O’Donald
(1980)]. The relative bias which a particular
female has towards the different male ge-
notypes depends on the second locus (P/p)
as below:
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Male genotype

T Tt tt
PP a o o
Pp Bo B, B,
bp Yo Y1 Y2

Female
genotype

[Given equal numbers of 77T, Tt and ¢
males, the probability that a PP female will
mate with a 77 male is ap/(ag + a; + ay),
etc.] It is assumed that the female does not
accrue a selective disadvantage by exercis-
ing a mating preference and that the P/p
locus does not affect viability or male be-
havior. Hence each female has the same rel-
ative fitness and each male has a fitness that
is a function of V, a4, B\, and v,. Note that
the fitness of a particular male type changes
over time as the genotypic frequencies
evolve at the preference locus. Between the
trait and preference loci, recombination oc-
curs with a rate, r.

We record the genotypic frequencies fol-
lowing the birth of the offspring. The life
cycle then proceeds through viability selec-
tion, mate choice, recombination, and new
offspring production in that order. There are
four possible haplotypes: TP (1), Tp (2), tP
(3), and tp (4), but we must keep track of
the diploid genotypes since mating is non-
random. Denote the genotype frequencies
by x; where i and j refer to the haplotypes
inherited from each parent. Note that ma-
ternal and paternal haplotypes are not dis-
tinguished so that x; = x;, resulting in a
total of 10 distinct genotypes.

As an example of how the recursions are
developed, a female of genotype PP will mate
with a male of a given trait genotype with
the following probability:

Geno-
type Probability of mating
TT [Vrroglx, + x5 + X2)/u

Tt Vi (X3 + X4 + Xp3 + X20)/u
tt [Viaxxss + X34 + X4a)/u

where u is a normalizing factor (the sum of
the numerators), which ensures that the fer-
tility of a female does not depend on her
mating choice. These probabilities reflect
viability and mating selection. The full re-
cursions may be obtained from the author.
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RESULTS

Stability Analysis: Fixation on TP

Consider first a population near fixation
on the alleles 7 and P. This analysis will
allow us to understand the conditions under
which a new system of mating preferences
and/or a preferred trait allele can increase
when both are initially rare. Whether one
or both of the rare mutant alleles will in-
crease in a population can be determined
by performing a local linear analysis on the
recursions that track the change in genotyp-
ic frequencies given that 7P/TP is the only
common genotype. If the largest eigenvalue
of this system is greater than one, invasion
will occur. For the model at hand, there is
always an eigenvalue equal to one and it is
the largest eigenvalue unless:

aoVrr < aVp, [1]
in which case the largest eigenvalue exceeds
unity. Thus a new trait allele will invade
when the heterozygote (7¢) has a viability
advantage and a relative mating advantage
among the resident females (PP) or has an
advantage that outweighs its disadvantage.
Note also that [1] is simply the condition
for initial increase of ¢t when P is fixed and
p is not introduced. If [1] fails to hold, the
largest eigenvalue is always unity and the
system is neutral with respect to the intro-
duction of ¢ and p, essentially because it is
neutral to the introduction of p. Since both
the new preference and the new trait allele
are rare, associations cannot build up be-
tween the two loci which could aid in the
initial increase of a disadvantageous trait
allele. We conclude from this analysis that
the fixation of any preference allele, includ-
ing the one associated with random mating,
is at best neutrally stable to the introduction
of any other preference allele when the trait
locus is also near fixation on one allele.

In a population fixed at both loci and un-
dergoing random mating, a new allele that
introduces preferential mating will increase
only when rare through genetic drift or pos-
sibly in conjunction with the increase of a
new advantageous trait allele (if the trait
allele invades, associations may build up
that increase the frequency of the preference
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allele). Similarly, in a population in which
the common male genotype is also the pre-
ferred type, a new more viable—but unat-
tractive—male type can have a lower rela-
tive fitness and be lost from the population,
a point made by Kirkpatrick (1982).

The results within this section are a spe-
cial case of the results of Gomulkiewicz and
Hastings (1990). They examined the case in
which the P allele was not fixed but was
instead at an intermediate frequency, as
would be the case if genetic drift had swept
the initially rare p allele into the population.
They find a condition similar to [1], which
states that invasion will occur if males of
the new trait genotype (7¢) have a higher
fitness than the common males (77) among
the current population of females.

Stability of an Overdominant
Polymorphism in T/t with
Fixation on P

Quite different results are obtained if one
considers the initial increase of a new pref-
erence allele within a population that is al-
ready polymorphic for 7/t and fixed at the
preference locus. Since all females are ini-
tially PP, the fitness of a male in this pop-
ulation is simply the product of a female’s
preference for him and his viability:

Males
Geno- T Tt tt
type
Fitness ooV rr oV, aV,

= Wr(PP) = Wr(PP) = W,(PP)

To maintain a polymorphism we assume
that the heterozygotes have the highest fit-
ness:

W {PP) < Wr(PP) > W,(PP) [2].

In this case, the following overdominant
equilibrium is stable in a population of PP
individuals:

X1, = frequency(TP TP)
= [Wn(PP) — W.PP))
+ 2W(PP) — W (PP)
— WPP))
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X3 = frequency(7P tP)
= 2[W(PP) — W ,(PP)]
X [W{PP) — Wr{PP)]
+ 2W(PP) — W (PP)
- W (PP)]?
X33 = frequency(¢P tP)
= [W(PP) — W(PP)]?
+ [2W(PP) — W (PP)

- WPP)}? [3].

Note that heterozygote advantage may re-
sult from overdominance in the viability or
mating schemes or through the opposing ac-
tion of viability and mating selection. For
example, Semler (1971) studied threespine
sticklebacks (Gasterosteus aculeatus L.) in
which a balanced polymorphism maintains
both red and nonred male breeding types
presumably through the interaction of nat-
ural selection (predation by trout) against
the red type and sexual selection favoring
the red type [see O’Donald (1973) for a the-
oretical discussion of this polymorphism].
The condition for initial increase of p in a
population that is originally polymorphic is
more complex than the previous analysis
near fixation on the TP haplotype and de-
pends on the recombination fraction, r. The
local linear analysis is presented in Appen-
dix 1 along with the invasion criteria. Other
than the limiting case discussed in Appen-
dix 1, it was found that the leading eigen-
value is always greater than one (p will al-
ways invade) for r < r* where

_ Wn(@PP) — W (PPIIW(PP) — W (PP)]
© 2W(PP)2W(PP) — W(PP) — W,(PP)]’

This cutoff point depends only on the fit-
nesses [W,(PP)] before the introduction of
p. The condition of heterosis [2] guarantees
that r* will be positive and below 0.25. For
r > r* fixation on Pis stable (all eigenvalues
are less than unity): a loosely linked pref-
erence allele will never increase when rare
from an overdominant equilibrium. If the
V; are chosen at random (uniformly) be-
tween 0 and 1, the «; are chosen uniformly
between 0 and 10, and r* is calculated when-
ever there is heterozygote advantage, the
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average value of r* equals 0.14 (based on
100,000 samples), with r* being greater than
0.2 in 22.7% of the samples but never great-
er than 0.25, as expected. Basically, r* de-
creases as the fitness of the heterozygote ap-
proaches the fitness of one or the other
homozygote. This indicates that the driving
force for invasion is the advantage of the
heterozygote; the smaller the advantage, the
more restrictive are the conditions under
which invasion will occur.

The fact that invasion depends on the re-
combination rate alone and not on the new
mating preference scheme seems at first
counterintuitive. While it must be true that
invasion occurs through the maintenance of
disequilibrium with sufficiently low recom-
bination rates, the manner by which this
works is not at first obvious. In fact, without
a full analysis of the invasion criterion and
an understanding of the development of dis-
equilibria, one may be easily led to the wrong
conclusions [see Koeslag (1990)]. In the fol-
lowing section, I describe how invasion oc-
curs in both mathematical and intuitive
terms.

Disequilibrium Analysis.—To clarify the
role of disequilibrium, let us look at the
changes in genetic associations that occur
during the initial increase of the new (p)
allele at an overdominant polymorphism.
The analysis is presented in Appendix 2.
There we show that, at » = 0, a positive
association will always develop between the
Tt genotype and one of the two rare hap-
lotypes (Tp or tp). This positive association
between the fittest genotype and a rare hap-
lotype drives the initial increase of the rare
allele.

As an example, consider the case in which
the rare female (Pp) has a greater preference
for TT males relative to the common fe-
males (PP). In this case, a Pp female will
carry either the Tp haplotype or the ¢p hap-
lotype and she will more likely mate with a
TT male. If such a mating occurs, then the
rare haplotype that she carried will be more
often paired with a T allele in her children.
If she carried the Tp chromosome, then this
pairing leads to a positive association be-
tween the Tp haplotype and the homozygote
(T'T). If she carried the zp chromosome, then
the increased preference for 77 males would
create a positive association between the tp
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haplotype and the heterozygote (7%). Since
the heterozygote has the highest fitness in
the original population, the ¢p haplotype will
be carried by individuals who are more fit
on average and so this haplotype will in-
crease when rare. Initially, then, one hap-
lotype decreases when rare while the other
increases. At r = 0, one haplotype will in-
vade and the other will not, but the invasion
of one haplotype means that the p allele will
also invade. Depending on the starting po-
sition, there may even be a slight initial de-
crease in the frequency of p reflecting the
fact that the Tp haplotype is disappearing
from the population, but eventually most
of the p alleles will be in ¢p haplotypes that
are increasing in frequency by the above
argument. As long as there is enough link-
age, the increase of one haplotype is suffi-
cient to guarantee the invasion of the new
allele. The rather surprising fact is that one
of the haplotypes always develops a positive
association with the 77 genotype, regardless
of the new preference scheme, even if, as in
this example, Pp females were to prefer 7t
males less!

It is also worth having an “intuitive” un-
derstanding of why such a positive associ-
ation develops when the Pp females prefer
heterozygous males. I am grateful for the
following heuristic supplied by an anony-
mous reviewer. Assume that 77 males are
more viable than ¢t males in the original
population and for simplicity assume that
mating is initially random. Also assume that
the new females (Pp) greatly prefer hetero-
zygous males over homozygous males (5,
> B, = 8,). A Pp mother carrying the Tp
haplotype will generally mate with a 7¢ male
and so produce an equal mixture of 77 and
Tt genotypes among her offspring that re-
ceive the Tp haplotype. In contrast, a PP
mother who passes the TP haplotype on to
her offspring will produce homozygous 77T
offspring with a frequency equal to the orig-
inal frequency of the T allele:

frequency (7) =
[W(PP) — W,(PP)]
RWn(PP)— WrH{PP) — W,(PP)]

(4]

and 7t offspring the rest of the time. Since
the 7T genotype is by assumption more fit
than the 7z genotype, frequency (7) is greater
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than 1/2. Hence the TP haplotype will be
found in more 7T offspring than 7t off-
spring whereas the 7p haplotype will be
equally distributed between these two ge-
notypes. A positive association will in this
manner develop between the Tp haplotype
and the heterozygous (7%) genotype and this
gives the Tp haplotype a fitness advantage.
The opposite scenario applies to the new zp
haplotype. We thus predict that for tight
enough linkage the p allele will invade
through the fitness advantage of the 7p hap-
lotype. By similar intuitive arguments, one
can in time convince oneself that one of the
two new haplotypes will always become
positively associated with the most fit ge-
notype (7t) and will thus rise in frequency.

To understand the role of recombination,
first realize that recombination will only al-
ter the gamete distribution of doubly het-
erozygous parents. With the first example
described above, the following positive as-
sociations develop at r = O:

Tp haplotype and T'T genotype
tp haplotype and 7t genotype.

Hence double heterozygotes will tend to be
TP/tp individuals, i.e., double heterozy-
gotes tend to carry the favored haplotype.
When recombination occurs in such a dou-
ble heterozygote, there will be one fewer tp
haplotype (and hence fewer 7TPtp children)
and one more 7p haplotype (and hence more
TPTyp children). This increases the proba-
bility that the p allele will be carried by a
homozygote (T'T), decreases the probability
that it will be carried by a heterozygote (7%),
and hence decreases the tendency for the p
allele to invade. Generally, as recombina-
tion is increased, the positive association
between one haplotype and the heterozy-
gote decreases in magnitude while the pos-
itive association between the other haplo-
type and a homozygote increases in
magnitude until these associations balance
each other (at #*), after which point invasion
can no longer occur.

Characterizing an Internal
Polymorphism—a Special Case
Besides understanding evolutionary tra-
jectories near fixation points, we would also
like to identify equilibria towgrds which such
a system may go. Unfortunately most equi-
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libria of this system cannot be found ex-
plicitly. Initial simulations of the model in-
dicated that the following equilibria exist
and can be stable at r = 0O:

Xy, + X4 + X4 = l(only the TP and p
haplotypes are pres-
ent)

Xy, + X3 + X33 = l(only the Tp and tP
haplotypes are pres-
ent).

In fact, with 100 different parameter sets
started from the overdominant polymor-
phism described in the previous section, 65
converged upon one of these equilibria at r
= 0. These are usually called high-comple-
mentarity equilibria (HCE) [Franklin and
Lewontin (1970)]; clearly these equilibria
are possible only in the absence of recom-
bination. I was able to characterize a high-
complementarity equilibrium in the case of
a homozygous (#¢) lethal trait and a domi-
nant preference allele (p):

Males
Genotype T Tt tt
Viability Ver Vo 0
Male genotype
T Tt t
Female pp ZO g‘ gz
genotype 0 ! 2

pp Bo B, B

Under these conditions, the following HCE
can be found analytically:

BV )28,V — BoVrr)
X BV + BiaoVrr
— Boa; V )/ Total
X*23 = 26: Ve — BoVr1)
X 28V = BoVrr)
X BV + BiaoVrr
— Boa, V7)/Total
X*33 = B,V — BoVrr)
X 261,V + BraoVirr
— 2B, Vp)/Total

t 3 —
X" =
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where dividing by the total ensures that these
three frequencies will sum to one. The com-
plementary HCE involving the TP and tp
haplotypes may be obtained by simply re-
naming the alleles at the P locus. All of the
above three frequencies are positive when

ﬁl VTt > ﬁOVTT'

A local stability analysis near this high com-
plementarity equilibrium reveals that the
polymorphism is locally stable whenever

B > a,yf8,.

This case is particularly interesting be-
cause it demonstrates that once the fre-
quency of p is sufficiently high, sexual se-
lection may maintain a homozygous lethal
allele in a population under the simple con-
dition that the heterozygote (7¢) has a mat-
ing advantage among Pp females, which is
greater than its mating advantage among PP
females (8,/8, > a,/a,) and that this mating
advantage outweighs whatever viability dis-
advantage the 7t genotype has relative to
the TT homozygote (8,/80 > Vrr/ V).

NUMERICAL RESULTS

An extension of Heisler and Curtsinger’s
numerical analyses to include linkage re-
veals qualitatively different behavior and
equilibria for a wide range of parameter val-
ues. One hundred ten viability vectors and
preference matrices were chosen at random,
with viability being uniformly distributed
between 0 and 1 and preferences between 0
and 10. For each parameter set, 10 starting
frequency vectors were randomly chosen.
The recursions were iterated until the largest
frequency change observed over a genera-
tion was less than 10~'4, at which point the
population was said to be at equilibrium, or
until a maximum of 100,000 generations
had passed. Local stability of an equilibri-
um was confirmed by perturbing the fre-
quencies slightly away from that equilibri-
um and reiterating. Recombination rates (7)
were set at 0, 0.001, 0.2, and 0.5. Following
Heisler and Curtsinger, I define:

Wr(PP) = agVrr W rop) = YoV rr
WdPP) = a,Vy, WroD) = vV
W (PP) = a,V, W (pp) = V2V
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These values determine the fitnesses for 77,
Tt, and ¢t males when the population is fixed
on Pin the first column and p in the second.
I also define

W r(Pp) = BoVrr
Wr(Pp) =6,V
W (Pp) = B,V

as the fitnesses of 77T, Tt, and ¢t males in a
hypothetical population composed solely of
Pp females. The W,(Pp) give important in-
formation about possible equilibria. For in-
stance, assume directional selection exists
such that 77T individuals are the most fit
when within groups of either PP or pp fe-
males. In this case, a polymorphism is pos-
sible only if 77 males are not the most fit
in the presence of Pp females as well, be-
cause, if they were, the 77T males would
always have the highest fitness, irrespective
of the composition of females in the pop-
ulation.

By considering the ordering of these fit-
ness values, we can better understand the
coevolution of traits and preferences. While
there are 216 (6 x 6 X 6) orderings of
W{(PP), W{(Pp), and W (pp), many are made
equivalent by simply changing the name
given to an allele. These equivalence classes
are shown in Table 1. In Appendix 3, I pre-
sent the results in a manner that illustrates
how an increase in the recombination rate
changes the equilibrium towards which a
certain population is attracted.

To emphasize some of the more inter-
esting findings, only in 60 out of 110 pa-
rameter sets (cases) was fixation the only
behavior observed (on T or ). As expected,
when the T or ¢ allele fixed, the equilibrium
frequency of P depended on the starting
conditions. Besides fixation, the most com-
monly observed behavior for complete link-
age (r = 0) was the high complementarity
equilibrium (HCE) that was found to exist
and be stable in almost half of the cases (42/
110). The only common criterion for the
existence of the HCE was that the hetero-
zygote (Tt) have the highest fitness among
at least one genotypic group of females (PP,
Pp or pp). As linkage was loosened to r =
0.001, almost all (37/42) of the HCE gave
rise to a fully polymorphic, stable equilib-
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TABLE 1.
population.2
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Classification system used to denote the direction of selection within different sectors of the female

Fitness ordering among pp females [ W(pp)]

Highest T T Tt Tt tt 14
Intermediate Tt t T |13 T Tt
Lowest t Tt t T Tt T
Class dy uy o1 02 uy d
Ordering Class
(among PP females)

TT > Tt > tt d; dy,m,d* di,mu* di,m,01* dy,m,00* dyi,m,ux* di,m,dy*
TT > tt > Tt Uy u1,m,d; uy,mu* u1,m,01* u1,m,o2* u1,m,uy* uy,m,dr
Tt>TT>n 0] o1,m,d) 01,m,u; o,mor*  o1,mox*  or,muy o1,m,d>
Tt>tt>TT 02 02,m,d 02,m, U] 02,M,01 02,M,02 02,mMm, Uy 02,m,d>
tt>TT > Tt U uz,m,d Uz,m,u; U2,m,o1 U2,m,07 Uz, m,uy ux,m,dy
tt>Tt>TT d> dr,m,dy da,m,uy dy,m,01 dy,m,07 dr,m,uy dr,m,d>

2 The classification system is based on whether the fitness ordering is directional (), underdominant (%), or overdominant (o). In the table, “m”
refers to the fitness ordering among Pp females. There are six possible fitness orderings each for W,(PP), W,(Pp), and W,(pp), creating a total of 216
classes. However, certain classes are made equivalent simply by changing the label given to a particular allele. For instance, class (d2,m,d>) is equivalent
to class (d1,m,d); both have directional selection but for the opposite alleles. Similarly the class (02,m,u41) is equivalent to the class (41,m,07) by
switching P for p. Hence all classes can be converted to one of the asterisked (*) classes simply by changing the name given to one or both alleles.

rium point (the remaining 5 did not reach
equilibrium within 100,000 generations).
Such a polymorphism is expected sufficient-
ly close to r = 0 by the small parameter
theory [Karlin (1972)]. A further increase in
recombination led to three main classes of
behavior. The first, observed in 11 of the
42 cases, was an internal equilibrium point
in linkage equilibrium (D = x,x, — X,x; =
0), which became stable at some value of
recombination (r,) and remained stable for
all larger rates of recombination (r > ry). In
15 of the 42 cases, the HCE gave rise to
points slowly evolving along an internal
curve (marked by dashed lines in Appendix
3) such that equilibrium was not reached
within 100,000 generations even for com-
pletely unlinked genes (» = 0.5). With their
parametric restrictions, Heisler and Curt-
singer observed several of these quasi neu-
tral curves, movement along which even-
tually terminated in fixation on P or p.
Finally, in 16 of the 42 cases, increasing
recombination eventually led to fixation on
p (or P) with an overdominant polymor-
phism at the T locus, which was stable, as
predicted above, for all r greater than r*.
Clearly, 10 starting points for each pa-
rameter set does not completely describe the
complexity of the system. A more thorough
analysis with 100 starting points demon-
strated that rare but not unexpected behav-
ior does occur as shown in Table 2. With a
little thought, it becomes clear that certain
equilibria should exist and be stable under

certain fitness orderings as described in Ta-
ble 3. However, in the simulations, not all
of'these predictions were borne out as a con-
sequence of the fact that the domain of at-
traction to such points need not be very
large and that only ten trials per parameter
set were run.

The role of recombination in the simu-
lations is revealing. Let D denote the degree
oflinkage disequilibrium (D = x,x, — x,X3).
So far my results show that if D = 0 for
some value of the recombination rate (rp)
then linkage equilibrium holds for all larger
values of r (r > rp). This is a general result
for models in which the two double hetero-
zygotes have the same fitness [Karlin and
Liberman (1979); Christiansen (1990)]. Fi-
nally, it appears to be a general rule that
increasing recombination decreases the pos-
sibility of stable polymorphisms.

TABLE 2. Rare but expected behavior is observed at
equilibrium.

Fitness Common Uncommon

ordering? behavior Frequency behavior Frequency

uuup? Fixation 99/100 Fixation 1/100
onT on ¢

did102° Fixation 99/100 HCEatr=0 1/100
onT gives rise to

fixation on p
for larger r.

2 See Table 1 for an explanation of the fitness orderings.

b The Tt heterozygote is never favored (underdominance) so that both
fixation on T and ¢ are stable. The domain of attraction to fixation on ¢
is, however, smaller than that on T as indicated by the simulations.

¢ Both fixation on T and fixation on p (with T and ¢ maintained in an
overdominant polymorphism) are stable for recombination rates greater
than r* but again the domain of attraction to fixation on p is smaller.
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TaBLE 3. Equilibrium behavior may, in part, be de-
duced from the fitness orderings.

Fitness Ordering? Stable
equilibrium
dy—, -dy-, —d; Fixationon T (Directional
selection)
dr—, —d>»—, —d, Fixation on ¢ (Directional
selection)
uy—, -u1—-, —u; Fixationon T (Underdomi-
ort nant selection)
uy—, —Us—, —uy Fixationon T (Underdomi-
ort nant selection)
01—, 02— Overdominant polymorphism with
P fixed (stable when r > r¥)
—01, —02 Overdominant polymorphism with

p fixed (stable when r > r¥)

a See Table 1 for an explanation of the fitness orderings.

DiscussioNn

To explain the existence of secondary sex-
ual traits that lower viability, we must un-
derstand how the genes that determine such
traits and their mating preferences might
initially increase. For general reviews of this
subject, see Kirkpatrick (1987) and Pomi-
ankowski (1988). For the specific case of the
above two-locus model, preference genes
increase when rare under one of the follow-
ing three conditions. The first is that ran-
dom genetic drift takes the frequency of the
preference allele to a frequency high enough
that the assumptions of the local linear anal-
ysis no longer apply (second order terms can
no longer be ignored) [Kirkpatrick (1982)].
At this point the full recursions must be
considered to determine the fate of the pop-
ulation. The above numerical analysis in-
dicates that full polymorphisms are possi-
ble, especially when there is some degree of
linkage between the loci.

The second scenario corresponds to Fish-
er’s (1958) “runaway process.” Here, an ad-
vantageous mutation () arises that increas-
es when rare (aoVy+ < a;Vy) and a new
preference allele (p) has the possibility of
increasing as well through a “correlated re-
sponse.” This new preference allele may then
give sufficient advantage to another trait
mutation that lowers viability so that this
disadvantageous mutation can also increase
when rare. Using Fisher’s example, an ini-
tial mutation that increases plumage size

1451

and produces a viability advantage through
some means increases in frequency along
with a preference for larger plumage. A sec-
ondary mutation that causes overly large
plumage may then increase due to a mating
advantage, despite the fact that the now bur-
densome plumage reduces viability. This
“runaway process” would be checked only
when the viability selection becomes severe
enough to counter the mating selection.

Finally, if the secondary sexual trait is
already polymorphic within the population
through overdominance, any new prefer-
ence allele can increase when rare if the trait
and preference loci are sufficiently linked.
This mechanism provides an alternative ex-
planation for the initial rise in frequency of
nonrandom preferences that can then fur-
ther drive sexual selection.

After invasion, a polymorphic equilibri-
um may be stable, especially for low recom-
bination rates. For instance, ‘“‘simulations”
that perturb a population away from an
overdominant polymorphism indicate that
the population dynamics often stabilize at
a high-complementarity equilibrium for r =
0 and a fully polymorphic equilibrium for
0<r<r*

Although a two-locus model is strictly ap-
plicable to the most simple examples of sex-
ual selection (e.g., stimulus—receptor sys-
tems), it does lend insight into the strength
of sexual selection and the conditions under
which preferences may evolve. Since a mu-
tant preference will not significantly alter
the fitness of a mutant male type, the initial
increase of a preference allele in the absence
of a polymorphism at the trait locus can
proceed only by random genetic drift or as
a “correlated response” to the increase of a
new advantageous mutation. On the other
hand, if there is already a polymorphism at
the trait locus then a new preference allele
can always invade given sufficient linkage
between the two loci (r < r*), even if the
new preference allele increases the proba-
bility of mating with the least viable male.
This fact demonstrates that models such as
the one studied here can help us tune our
intuition about evolutionary processes. For
what we imagine to be adaptive and what
actually is adaptive may be two very dif-
ferent things indeed.
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APPENDIX 1: Local Linear Analysis
(Near Fixation on P and a Polymorphism in T/t)

To determine whether or not p will increase when
rare, we will examine the stability matrix that keeps
track of the frequencies of the four rare genotypes: TP/
Tp(e,,,), TP/tp(e,,,), Tp/tP(e,,,), and tP/tp(e,,,). The fre-
quencies of Tp/Tp, Tp/tp, and tp/tp are very small
[O(e?)] and are ignored.

€y = Exp[ X0 Vir(a/u + Bo/v)/2
+ x3(Virag/u + Vi, 8,/v)/4]
+ e [rxu(Via/u + Vi Bo/v)/2
+ rx 3V (a/u + B,/v)/4]
+ €, [(1 — Nx (Viay/u + Vi Bo/v)/2
+ (1 = Nx3Vn(a/u + B,/v)/4]
€y = € (1 — Nx, (Vo /u + Vi Bo/v)/2
+ (1 = nx 3V (a/u + 8,/v)/4]
+ e [rx i, (Viay/u + Vi Bo/v)/2
+ rx 3V (o, /u + 38,/v)/4]
+ e X1 (Viao/u + Vi Bo/v)/2

+ xXu3(Vieax/u + V5, 8,/v)/4]

€ = 5x,2[x|3(VTrﬁ|/v + Viray/u)/4

x23
+ X33(ViuBa/v + Viran/u)/2]
+ 6X|4[rxl3VTl(al/u + B,/v)/4
+ rx33( Vnﬁz/v + VT, 0(1/14)/2]

+ €, [(1 — x5V (/u + B,/v)/4
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Value

0.075¢

A=1.000

r=r*=0.157

r=0
A=1.027

-0.05T

FiG. 1. An illustration of the characteristic polyno-
mial and its dependence on the rate of recombination,
using the following parameters:

Tt Tt
12/3 1/3

Male genotype:

Viability (V,):
Preference among
PP females (o,): 1 10 10
Fitness among
PP females

[W.(PP)]: 1 20/3 10/3 (-~ overdominance)

Preference among
Pp females (8,): 1 4 10

Fitness among
Pp females
[(W/(PP)]:

(— directional

1 8/3 10/3 selection)

which gives r* = 0.157. The three curves are for r =
0, r = r* and r = 0.5. Notice that as recombination
increases, the largest root decreases from A = 1.027 to
1.000 to 0.998.

+ (1 = Nx5:3(V,B82/v + V5 /u)/2]
=€, [(1 = rx; 3V (a)/u + 8,/v)/4

€rnd
+ (1 = r)x33(V,B/v + V5 /u)/2]
+ e, [rx 3 Vi (@/u + 8,/v)/4
+ rxs3(V,Bo/v + V5 /u)/2]
+ e, [x3(ViB1/v + V,a,/u)/4
+ X33V, (Bo/v + ar/u)/2]

where

u = x, Vi + Xi3Vna, + x5V,
v=xu Vo + xi3VrBi + X33 VB2

and the frequencies (x,,, X 5, and xs;) are given by [3]
in the text. The characteristic polynomial of the above
stability matrix is a quartic function of «,, 8, V,, and
r. As an illustration, the shape of the characteristic
polynomial is shown for various values of  in Figure 1.

When r = 0, the characteristic polynomial splits into
two quadratics. The slope of these quadratics evaluated
at A = 0 is negative and at A\ = 1 is positive. AtA = 1,

the value of one quadratic has the same sign as [Al]
while the value for the other quadratic is opposite in
sign to [A1], where [A1] equals:

W (Pp) — W.(Pp)]
[2Wr.(Pp) — Worr(Pp) — W, (Pp)]

_ (Wr.(PP) — W, (PP)]
[2W7,(PP) — W (PP) — W,(PP)]’

Hence, one of the two quadratics has a leading eigen-
value greater than one and invasion will occur. In the
limiting case when [A 1] equals zero, the largest root of
both quadratics equals unity and selection is expected
to be neutral with respect to the new allele. Such is the
case when the new allele does not change the expected
frequency of the T allele in the population (I am in-
debted to Mark Kirkpatrick for pointing out this special
case). We conclude that, except for some limiting cases,
every new preference allele is able to invade when there
is complete linkage.

When r = 0.5, the characteristic polynomial splits
into a cubic and A = 0. It can be shown that the leading
term of the cubic is positive and the inflection point
is between 0 and 1. At A = 1, the polynomial is positive

[A1]
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with a positive slope. Hence the largest eigenvalue is
strictly less than unity. No new preference allele can
invade.

As claimed above, the value of the characteristic
polynomial at A = 1 is negative when r = 0 (unstable)
and positive when r = 0.5 (stable). In fact, the value
of the characteristic polynomial is linear in r and in-
creases with increasing r at A = 1. This demonstrates
the existence of a value, r*, below which the p allele
will invade and above which fixation in P is stable.
The value of r* was determined by solving the char-
acteristic polynomial for r when the largest root equalled
one and found to be:

_ Vrnoy = Via))Via, — Virag)
2V Vyay = Virag — Vi)

_ Wn(PP) — W,(PPIW,(PP) — W (PP)]
 2Wn(PP)2W 1, (PP) = W(PP) — W, (PP)]’

r*

APPENDIX 2: The Development of
Disequilibria

In this appendix, we change the variables of interest
from genotype frequencies (as in Appendix 1) to mea-
sures of association between the two loci during the
initial introduction of the rare (p) allele at an over-
dominant polymorphism at the trait locus. This tech-
nique was introduced by Uyenoyama and Bengtsson
(1989) and has proved useful in understanding the role
of disequilibria in evolution [see, for instance, Uyeno-
yama, 1991].

Theory.—Consider a local stability matrix (M) of
dimension (#) such as the one considered in Appendix
1. To understand the initial development of disequi-
libria, we want to transform the basis of analysis from
the rare genotype frequencies to a basis composed of
the total frequency of the rare allele (p) and appropri-
ately chosen disequilibria (D, . .. D,). These disequi-
libria measures must be linearly independent and should
also be fairly easy to interpret. This basis change is
most simply accomplished by performing the following
matrix multiplication:

N = AMA™! [A2]

where A is an appropriate transformation matrix, ex-
amples of which will follow. N is now the transformed
linear stability matrix, i.e., the stability matrix in the
new basis. Because N and M are “similar” ([A2] is the
definition of similarity, see Gantmacher, Vol. 1, p. 68
(1960)), they have the same determinant, the same
characteristic polynomial and the same invasion cri-
teria. Hence, whenever the standard stability analysis
predicts invasion, a stability analysis in the new basis
will also predict invasion.

The disequilibria measured in the new basis may
oscillate. In this procedure, we choose initial disequi-
libria so that they are locally invariant (let .D, = D,
when D, = D)), i.e., we set the generational change in
the disequilibrium to zero in the neighborhood of the
original equilibrium. This gives (n — 1) equations in
(n) variables that are then solved to give the locally
invariant disequilibria as functions of the total allele
frequency (p). More precisely, we want to find a starting
vector, g = (p, D>, ..., D,), in the new basis such
that the change in g over one generation is given by
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I-N)g=g—- Ng=A4, [A3]

where I is an 7 by nidentity matrix and A is the column
vector (p — p’, 0, ..., 0). To determine g, multiply
both sides of [A3] by the inverse of (I — N)[(I — N)™!]
and use the adjoint method for determining this in-
verse:

(I — N) ' =adj[d — N)/Det(I — N), [A4]

where adj denotes the classical adjoint and Det denotes
the determinant of a matrix. Combining [A3] and [A4]
we get:

g = adj[I — N)]A/Det(I — N)
= adj[@ — N)], (0 — p')/DetI — N).
where adj{(I — N)], is the first column of the adjoint

of (I — N). We can now calculate the following rela-
tions:

p =adj[d — N)I,,(p — p')/Det — N)  [AS5]
D, = adj[@ — N)],, (0 — p'V/Detd — N)
fori#1 [A6]

= adj[d — N)ip/adi[X —N)],,

where adj[(I — N)],, is the ith row in the first column
of the adjoint of (I — N). At this point, we have all the
elements of the starting vector, g, in terms of the initial
allele frequency and the parameters of the model.

Let us assume that all the successive principal sub-
matrices of (I — M) have positive determinants, where
these submatrices are constructed by successively re-
moving the first column and the first row. For a par-
ticular problem, this may be true in general or it may
be true for weak modifiers of the trait of interest. Under
this assumption, stability of the original equilibrium
is ensured whenever

Det(I — M) > 0 [A7]

[Gantmacher, Vol. 2, p. 74 (1960)]. With positive sub-
matrix determinants, condition [A7] is equivalent to
the condition that all eigenvalues be less than unity in
magnitude. We know that, for stability, [A7] must hold
in the new basis as well [Det(I — N) > 0], because of
the similarity of M and N. Using [A5], this constraint
on the determinant of (I — N) may be rewritten as:

(0 = pNadjld — N)I,/p > 0.

Note that the initial allele frequency (p) must always
be positive. So long as the adj[(I — N)],, is positive,
we have the desired property that the original equilib-
rium is stable if the allele frequency decreases and is
unstable if it increases. Note that if adj[(I — N)],, is
negative then invasion can occur despite a local de-
crease in the new allele frequency, presumably because
disequilibrium builds up that will eventually drive the
increase of the rare allele frequency. In summary,
whenever all the determinants of the principle sub-
matrices of M are positive and adj[(I — N)],, is posi-
tive, we can rewrite the stability condition [A7] as:

(o —p)>0,
and the criterion for invasion as:
@ —p >0 [A8]

This particular method of deriving [A8] was shown to
me by Shripad Tuljapurkar, to whom I am grateful.
In an application such as those that follow, [A8] is
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a check on the original stability analysis, [A6] deter-
mines the signs of the locally invariant disequilibria
and hence gives insight into the genetic associations
which develop, and, finally, [A3] relates these genetic
associations to the increase or decrease of the allele
frequency and thus to the stability of the initial equi-
librium.

The Case of Complete Linkage.— With the model at
hand, when there is no recombination between the two
loci (r = 0), the recursions of the local linear analysis
presented in Appendix 1 can be split into two systems
of equations which track the introduction of the two
new haplotypes (7p and ¢p) separately:

Introduction of 7p (Stability matrix, M,)
€1y = €, [X01 Vi (ao/u + By/v)/2
+ X 3(Virag/u + Vi, 8,/v)/4]
+ e, [ X1 (Via/u + VirBo/v)/2
+ X3V (a/u + B,/v)/4]
€y = & [Xs(VrB1/v + Virag/u)/4
+ X33V, Bo/v + Viran/u)/2]
+ e [x13 Vi (/u + 8,/v)/4
+ Xx33(V Bo/v + Vi /u)/2]

Introduction of ¢p (Stability matrix, M,)

€& = & X (Vio/u + Vi Bo/v)/2
+ x5V (/u + B,/v)/4]
+ e X1 (Via/u + Vi By/v)/2

+ x3(Vieay/u + Vi, 8,/v)/4]
€y = € X3V (a)/u + B,/v)/4
+ X33V, Bo/v + Vi /u)/2]
+ e, [x (Vi Bi/v + V, ar/u)/4
+ X33(V, (Bo/v + ax/u)/2]

Forboth 2 x 2 matrices, M, and M,, we want to change
the basis vector from genotype frequencies to a vector
whose first element is the total frequency of the new
haplotype (p, for Tp, p, for tp) and whose last element
is an appropriately chosen disequilibrium. As long as
the disequilibrium is not simply a multiple of the allele
frequency (so long as the new basis elements are lin-
early independent), any disequilibrium measure could
have been chosen but not all would be easy to interpret.
A disequilibrium that is fairly easy to interpret in this
system tracks the association of a haplotype (7p or tp,
respectively) with the T allele on the complementary
chromosome. For the Tp haplotype, then, the new basis
is:

p, = frequency(TP) = ¢, + ¢,
D, = frequency(7P/Tp)

— frequency(7'P)-frequency(7p)
= ¢, — frequency(TP)(e,,, + ¢,,)
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For the zp haplotype, the new basis is:
p, = frequency(tp) = ¢,,, + ¢
D, = frequency(TP/tp)

— frequency(7'P)-frequency(zp)
= ¢, — frequency(TP)(e,,, + €

X34

X14 X34)
Let A be the transformation matrix to the new basis.
For both M, and M,, the transformation matrix is:

1 1
A= (l — frequency(7TP) —frequency(TP))

Basically, the first row of A determines the total fre-
quency of the new haplotype and the second row cal-
culates the disequilibrium relevant to the particular
haplotype. The transformation into the new basis is
accomplished by performing the matrix multiplication:
N, =AM,A"' N,=AM,A"!
Using the technique outlined above, we find that the
change in the 7p haplotype frequency, (p," — p,), de-
pends only on .D,. This follows intuitively from the
fact that there is no direct selection on the preference
types and any change in haplotype frequency must re-
sult from disequilibrium with the trait locus. In fact,
the Tp haplotype increases in frequency whenever D,
is negative (7p associated with the 7t genotype) and
decreases when D, is positive (7p associated with the
TT genotype) where the sign of .D, is the same as the
sign of:

(W (Pp) — W, (Pp)]
W (Pp) — W(Pp) — W, (Pp)]

_ (W (PP) — W,(PP)]
W (PP) — W (PP) — W,(PP)]

[A9]

Repeating this analysis for N,, we find that .D, equals
D, but this time the zp haplotype increases when D,
is positive (tp associated with 7t) and decreases when
D, is negative (tp associated with #t).

The above analysis confirms that the increase in al-
lele frequency occurs only as a result of disequilibrium.
Specifically, disequilibrium will always develop such
that one and only one haplotype becomes positively
associated with the 7t genotype. [A9] (also encountered
in Appendix 1 as [Al]) is the critical measure that
determines which haplotype will have this positive as-
sociation and hence which haplotype drives the in-
vasion of the new allele. Whenever [A9] ([A1]) equals
zero, no associations develop between the new hap-
lotypes and the 7t genotype and it is only in this lim-
iting case that invasion will not occur.

With an Arbitrary Rate of Recombination. —For gen-
eral r, M is the 4 x 4 matrix given in Appendix 1,
which corresponds to an iteration of the general re-
cursions over one generation when the (p) allele is rare.
For the new basis, we retain the disequilibria, D, and
D,, from above and set:

p = frequency(p) = ¢, + €., + €, + €,
D, = frequency(7p)
— frequency(7)- frequency(p)
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Fixationon T

FORTY-FIVE CASES.

d1d1d1(5) d1dyuy(3) dydyo4(3)
d1d1uz(2) uidiui(3) uguyuy(d)
djuuy(?) uuyup(d) diuio@3)
diuzop dyuyd; djoyd; dyuzdy
U0y 0ugop dipuy

All r (neutral)

Fixation on t.
[ THREE CASES:

dugda dydauz ujuay;
Simultaneous fixation on T and t.
TWELVE CASES:

djupup dyupdy upuguy UpuRup
djusun(3) dydauy(2) ugupup(3)

High Complementarity Equilibrium
(tP/Tp) giving rise to fixation on p.
SIX CASES: dydjop djo20p
d10101 d10102(2) 010102

High Complementarity Equilibrium
(TP/tp) giving rise to fixation on P.
[TWO CASES: 0j020p 03d202

TP High Complementarity Equilibrium
(tP/Tp) giving rise to fixation on

p, simultaneously stable with
fixation on T.

SIX CASES: dyd;0,(3)

upe10y 019102

3 Al r (neutral)

di0101

tP Tp
High Complementanty Equilibnum
(TP/tp) giving rise to fixation on

p, simultaneously stable with
fixations on T andon t

tp ONE CASE ujup0p

r=05

SARAH PERIN OTTO

High Complementarity Equilibrium
(TP/tp) giving rise to slow evolution
along an internal curve, observed
simultaneously with fixation on t.
ONE CLASS: u;dg0¢

High Complementarity Equilibrium
(tP/Tp) giving rise to slow evolution
along an internal curve, observed
simultaneously with fixation on T.
ONE CASE: u;dy0y

All r (neutral)

Slow evolution along an internal
curve, observed simultaneously
with fixation on T.

ONE CASE: uj010;

Slow evolution along an internal
curve, observed simultaneously
with fixation on T and with
fixation on t.

TWO CASES: uju;02(2)

A High Complementarity Equilibnum
which gives rise to slow evolution
along a curve and finally to fixation
on p, observed simultaneously with
slow evolution along a curve for all
values of r

ONE CASE  ujujop

FiG. Al. Equilibrium behavior as a function of recombination (see Appendix 3).

= (exu + e«\fzz)
— frequency(T) (€, + €y T €y T €x3y)

giving us the transformation matrix (A) shown below:

Define N by N = AMA-!. The interpretation of (o' —
p) is difficult whenever adj[(I — N)],, is negative. All
such difficulties disappear in the vicinity of r*, so I
restrict my analysis to recombination rates which are
sufficiently close to r*. From this analysis, we can un-
derstand how the disequilibria change with increasing
recombination such that, below r*, invasion occurs but
not above r*. With this restriction we find that the
change in the allele frequency (o’ — p) depends on the
sign of: ’

—.D,/frequency(T) + .D,/[1 — frequency(7T)]
[A10]

where both D, and .D, have the same sign as before,
i.e., the sign of [A9].

In the vicinity of r*, increasing the rate of recom-
bination increases .D, (increasing the association be-

tween the 7p haplotype and the 77 homozygote) and
decreases D, (increasing the association between the
tp haplotype and the # homozygote). Below r*, the
positive association between the 7t heterozygote and
one of the haplotypes (¢p if [A9] is positive and Tp if
[A9] is negative) dominates [A10], which is therefore
positive and invasion occurs. With increasing recom-
bination, the haplotype which is positively associated
with the heterozygote becomes less associated with the
heterozygote whereas the haplotype that is positively
associated with a homozygote becomes more associ-
ated with that homozygote. Both of these changes cor-
respond to a lessening of the association between the
pallele and the heterozygous (77) genotype. This occurs
because of the fact that recombination will only affect
double heterozygotes (7t and Pp) and these types carry
the ‘favored’ haplotype more often than expected.
Whenever recombination occurs in such a double het-
erozygote, it will tend to break apart the ‘favored” hap-
lotype and create more of the ‘disfavored’ haplotype.
At precisely r*, the first and last terms of [A10] equal

1 1 1 1
A= 1 — frequency(7P) 0 —frequency(7P) 0
0 1 — frequency(7P) 0 —frequency(7P)

1 — frequency(7)

—frequency(7)

1 — frequency(7) —frequency(7)



A TWO-LOCUS DIPLOID MODEL

r=0 (neutral)

Fully polymorphic equilibna

(neutral, D=0) giving rise to an
internal equilibrium point (D=0).

FIVE CASES:

d101d)2) djojo; dyopdy dyuzo;

High Complementarity Equilibrium
(tP/Tp) giving rise to an intemal
equilibrium point (D=0).

THREE CASES:

dj0101  U00; 01010

High Complementarity Equilibrium
(TPAp) giving rise to an intemal
equilibrium point (D=0).

THREE CASES:

010101(2) 010201

High Complementarity Equilibnum
giving rise to slow evolution along
anintemal curve.

ELEVEN CASES: ddjop djop02
djoady Uj0j0p Uj020p 010102(2)
010101 010202 01Up0 019202

1457

High Complementarity Equilibrium
(tP/Tp) observed as well as an
intemal equilibrium point (neutral,
D=0) both giving rise to the same
internal equilibrium point (D=0).
ONE CASE: oyujop

High Complementarity Equilibrium
(TP/tp) observed as well as an
intemal equilibrium point (neutral,
D=0) both giving rise to the same
internal equilibrium point (D=0).
ONE CASE: 01090,

Two simultaneously stable High
Complementarity Equilibrium both
giving rise to slow evolution along
an internal curve.

TWO CASES: 01dj0; 010101

Two simultaneously stable High
Complementanty Equilibria giving
rise to an intemal equilibrium
point (D=0).

THREE CASES:

didop  01u10;  ©01d0

Fic. A2. Equilibrium behavior as a function of recombination (see Appendix 3).

one another in magnitude and there is no resulting
change in allele frequency [neutrality; (o' — p) = 0].
Finally, above r*, the positive association between one
new haplotype and the heterozygote is not sufficiently
strong to outweigh the positive association between the
other new haplotype and the relevant homozygote and
the rare allele disappears from the population.

APPENDIX 3: Numerical Results

One hundred ten parameter sets were randomly cho-
sen such that preferences were uniformly distributed
between 0 and 10 and all viabilities were uniformly
distributed between 0 and 1. For each parameter set,
initial genotype frequencies were randomly chosen and
the dynamics iterated until an equilibrium was reached
(all A, < 10-'%) or 100,000 generations had passed.
The same starting position was used for recombination
rates of 0, 0.001, 0.2, and 0.5. Ten such trials were run
for each parameter set in order to study the effect of
initial position. Figures A1 and A2 pictorially represent
the behavior observed at equilibrium in these simu-
lations. Each tetrahedron represents the allele frequen-
cy space, with the outside edges corresponding to fix-
ation at one of the loci and the corners corresponding
to fixation at both loci. I focus on the change in equi-
librium behavior as a function of the recombination
rate (r). By drawing lines connecting the equilibria ob-
served for different recombination frequencies, I mean

to show only how the behavior changes starting from
the same initial genotypic frequencies and do not mean
to imply that a particular equilibrium moves along the
given line. For instance, the overdominant equilibrium
with P (or p) fixed exists for r < r* when it exists for
r > r* but it is unstable. In the figures, I use the fol-
lowing symbols:

A fully polymorphic equilibrium point was reached
within 100,000 generations, which was neutral with
respect to small perturbations. Linkage disequilibrium
(D = x,x, — X,Xx3) was not zero.

@}

-A fully polymorphic equilibrium point was reached

within 100,000 generations which was stable with re-
spect to small perturbations. Linkage disequilibrium
(D = x,x, — X,x5) did equal zero.

The dynamics did not reach equilibrium after 100,000
generations. The point reached (not an equilibrium)
was then perturbed and again the dynamics were it-
erated. The point reached after this second run of
100,000 generations was different from the first but
again was not an equilibrium.



