
Theoretical Population Biology xxx (xxxx) xxx

a

b

c
p
d
s
t
1
h
p
e
g
c
o
s
1

a
a
m

h
0

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Coevolution fails tomaintain genetic variation in a host–parasite
model with constant finite population size
Ailene MacPherson a,∗, Matthew J. Keeling b, Sarah P. Otto a

Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
Zeeman Institute of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Coventry, United Kingdom

a r t i c l e i n f o

Article history:
Received 15 April 2020
Available online xxxx

Keywords:
Coevolution
Genetic variation
Matching-alleles
Negative frequency-dependent selection

a b s t r a c t

Coevolutionary negative frequency-dependent selection has been hypothesized to maintain genetic
variation in host and parasites. Despite the extensive literature pertaining to host–parasite coevolution,
the temporal dynamics of genetic variation have not been examined in a matching-alleles model
(MAM) with a finite population size relative to the expectation under neutral genetic drift alone. The
dynamics of the MA coevolution in an infinite population, in fact, suggests that genetic variation in
these coevolving populations behaves neutrally. By comparing host heterozygosity to the expectation
in a single-species model of neutral genetic drift we find that while this is also largely true in finite
populations two additional phenomena arise. First, reciprocal natural selection acting on stochastic
perturbations in host and pathogen allele frequencies results in a slight increase or decrease in genetic
variation depending on the parameter conditions. Second, following the fixation of an allele in the
parasite, selection in the MAM becomes directional, which then rapidly erodes genetic variation in the
host. Hence, rather than maintain it, we find that, on average, matching-alleles coevolution depletes
genetic variation.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

There is a rich history of evolutionary theory exploring the
onditions under which genetic variation is maintained or de-
leted in finite populations. The loss of genetic variation through
rift is exacerbated, for example, by fluctuations in population
ize (Crow, 1970, Eq. 7.6.3.34), but variation is maintained
hrough balancing selection in the form of overdominance (Crow,
970, Eq. 8.6.4) or negative frequency-dependent selection (Taka-
ata and Nei, 1990). First suggested by Haldane (1949), one
rocess that is often posited to maintain genetic variation is co-
volution between hosts and their parasites. Coevolution, it is ar-
ued, should favour pathogens that are best at infecting the most
ommon host genotype. This in turn should favour the spread
f rare host genotypes, a form of negative frequency-dependent
election (NFDS) believed to maintain genetic variation (Clarke,
979).
Following Haldane’s initial hypotheses, balancing selection as

result of coevolution and/or overdominance was suggested as
mechanism behind the extraordinary genetic diversity found at
ammalian Major Histocompatibility Complex (MHC) loci (Bod-
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mer, 1972). These same arguments have been used recently to ex-
plain the diversity of anti-microbial peptides in Drosophila (Unck-
less et al., 2016; Chapman et al., 2019). MHC loci, and other
immune defence genes, are notable not only for their high levels
of heterozygosity (> 200 alleles across three loci Klein and
Figueroa, 1986; Zimmer and Emlen, 2013) but also for the long-
term trans-specific persistence of these polymorphisms (Lawlor
et al., 1988; Klein, 1987). Using a coalescent approach in a sin-
gle species Takahata and Nei (1990) found that heterozygote
advantage and NFDS are both capable of generating the ob-
served levels of polymorphism. Importantly, however, the model
of NFDS they used was not explicitly coevolutionary but rather
explored frequency-dependent selection within a single species.
Despite the long-standing interest in coevolution as a mechanism
maintaining genetic variation, it remains unclear whether NFDS
between species in a coevolutionary model is able to maintain
more genetic variation in a finite population than expected un-
der neutral processes alone and hence contribute to the excess
genetic diversity observed at immune defence genes.

As exemplified by Takahata and Nei (1990), much of the lit-
erature on the maintenance of genetic variation alludes to yet
blurs the distinction between single-species and coevolutionary
NFDS (for example see Tellier et al., 2014; Otto and Michalakis,
1998; Zhao and Waxman, 2016; Llaurens et al., 2017; Ejsmond
aintain genetic variation in a host–parasitemodel with constant finite population

and Radwan, 2015; Rabajante et al., 2016). By the definition of
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FDS in a single-species model (also called direct-NFDS, Brown
nd Tellier, 2011), the fitness of an allele increases as its fre-
uency declines, which can favour the spread of rare alleles and
he maintenance of genetic variation. By contrast, coevolutionary
FDS (also called indirect-NFDS), the sort that commonly arises
ith host–parasite coevolution, favours alleles of the focal species
hat correspond to ones that are rare in the interacting species. As
oted by Brown and Tellier for the gene-for-gene model (2011),
e show that coevolutionary NFDS in the matching-alleles model
ften has little if any impact on the maintenance of genetic
ariation relative to neutral drift.
Hints that coevolutionary NFDS does not maintain genetic

ariation can be found throughout the theoretical literature on
atching-alleles models. Simulating coevolution in a population
here genetic variation is repeatedly introduced through migra-
ion or mutation, Frank (1991, 1993) found that the dynamics
ere dominated by the fixation and loss of genetic variants.
e attributed this effect to the repeated population bottlenecks
hat occur from coevolutionary driven fluctuations in population
ize, but it was unclear whether this same behaviour would
rise in a population of constant size. Similarly, although not
xplicitly discussed, many individual-based models of coevolu-
ion include mutation in either one (Agrawal and Lively, 2002)
r both species (Lively, 1999; Borghans et al., 2004; Ejsmond and
adwan, 2015) in order to maintain variation and hence coevo-
ution over the long term. Modelling coevolution in an infinite
opulation, M’Gonigle et al. (2009) found that genetic variation is
ot maintained at equilibrium except when mutation is very fre-
uent. This is echoed in simulations in finite populations, where
n the absence of mutation/migration, allele fixation in either
he host or pathogen is very rapid (Gokhale et al., 2013; Schenk
t al., 2018). In addition to including mutation, there are several
heoretical indications that, rather than being driven by NFDS, the
mergent effects of coevolution are dependent on the existence
f heterozygote advantage in diploids. For example, M’Gonigle
nd Otto (2011) showed that the evolution of parasitism depends,
ot solely on NFDS, but on whether the interaction induces het-
rozygote advantage, on average. Similarly, Nuismer and Otto
2004) showed that whether there is, on average, heterozygote
dvantage is the key determinant of how ploidy levels evolve in
oth hosts and parasites.
Despite this long and extensive history of verbal and theoreti-

al models, it is unclear whether coevolutionary NFDS can indeed
aintain genetic variation at a single locus and hence contribute

o extensive diversity observed at immune defence loci. Here we
ompare the maintenance of genetic variation in finite coevolving
opulations relative to that expected under neutral drift. Previous
tudies of the MAM in finite populations have focused instead
n the relative advantage of host versus parasite (Veller et al.,
017), the number of alleles maintained by mutation (Borghans
t al., 2004; Xue and Goldenfeld, 2017), and the time to fixa-
ion/loss of alleles in either host or parasite with and without
cological feedbacks (Gokhale et al., 2013; Schenk et al., 2020).
e aim to understand the effect of host–parasite interactions
n the maintenance of genetic variation, relative to the neutral
xpectation, by examining a simple single-locus model of co-
volution with constant population sizes, where some analytical
rogress is possible. Metaphorically, we seek to understand when
he Red Queen, defined here as coevolutionary maintenance of
olymorphism in both hosts and pathogens, collapses because of
he loss of polymorphism in one species or the other.

. Theoretical background

There are two classic models of coevolution involving a single
ocus major-effect genes in each species, the gene-for-gene model
2

(GFGM), which was motivated by the genetic architecture of flax-
rust interactions (Flor, 1956), and the matching-alleles model
(MAM), a form of host–parasite specificity that may arise from
lock and key molecular interactions (Dybdahl et al., 2014).

When and how genetic variation is maintained in the GFGM
is relatively well understood. In the GFGM, hosts carry either
a ‘‘susceptible’’ or ‘‘resistant’’ allele. Susceptible hosts can be
infected by both ‘‘virulent’’ and ‘‘avirulent’’ parasite genotypes,
whereas resistant hosts can only be infected by the virulent
parasite genotype. (Brown and Tellier, 2011) identify three factors
promoting the existence of a balanced polymorphism in models
with GFG interactions and hence the maintenance of genetic
variation in finite populations. First, genetic factors (e.g., domi-
nance interactions that result in overdominance in diploids) can
result in stable polymorphisms when costs to host resistance and
parasite virulence are introduced (Ye et al., 2003; Sasaki, 2000).
Second, polymorphisms can be favoured by asynchrony between
host and pathogen allele frequency dynamics. This includes both
temporal asynchrony resulting, for example, from seed dormancy
or perenniality (Tellier and Brown, 2009) and spatial asynchrony
arising from population structure. Finally, stable polymorphisms
can arise in the GFGM via eco-evolutionary or epidemiological-
evolutionary feedbacks (Brown and Tellier, 2011; Ashby et al.,
2019).

The maintenance of genetic variation in the MAM is much
less well understood. MA coevolution is often formulated, and
simulated, as an interaction between a host and pathogen with
discrete non-overlapping generations (Nuismer, 2017). In each
generation hosts are exposed to a single parasite. If host and
parasite carry the same, ‘‘matching’’, allele at the coevolutionary
locus then infection occurs with probability X whereas interac-
tions between ‘‘mis-matching’’ host and parasite genotypes occur
at a reduced rate Y . Successful infection decreases host fitness by
αH and increases parasite fitness by αP . The host and pathogen
opulation sizes are often assumed to remain constant in these
odels such that hosts and pathogens reproduce proportionally

o their fitness creating a subsequent generation of the same size.
In the deterministic (infinite population size) limit, the re-

ulting recursion equations for the MAM are characterized by an
nstable cyclic equilibrium at an allele frequency of 1/2 in both
he host (pH ) and the parasite (pP ), as shown in Fig. 1A (M’Gonigle
t al., 2009; Segar and Hamilton, 1988). To examine the effect
f coevolution on the maintenance of genetic variation we con-
ider the evolutionary dynamics of host heterozygosity, measured
ere as the ‘‘expected heterozygosity’’, the probability two alleles
rawn at random from the haploid population are different H =

pH (1 − pH ). The resulting dynamics of host heterozygosity is
hown in Fig. 1B. Starting from a small perturbation near the
olymorphic equilibrium, heterozygosity in the host population
egins near its maximum of 0.5 and declines, on average, as
he allele frequencies cycle outward. Thus, while coevolutionary
FDS generates allele frequency cycles in the short term, these
ycles grow in amplitude over time and are not expected to
aintain genetic variation in the long term except in the presence
f very high mutation rates (M’Gonigle et al., 2009). Indeed,
imulating the discrete-time MAM in a finite population, we
onfirm that host heterozygosity in this model declines faster
han expected under neutral genetic drift (see supplementary
athematica notebook). Supplementary materials are available on
ryad at doi:10.5061/dryad.m37pvmd0z.
In contrast to the unstable Red Queen cycles generated in

iscrete time, analogous continuous-time models create neutrally
table allele frequency cycles (Woolhouse et al., 2002). Perturba-
ions from the polymorphic equilibrium in these models lead to
llele frequency cycles of constant amplitude, often referred to
s a ‘‘dynamic polymorphism’’ (Hamilton, 1993). This dynamic

http://dx.doi.org/10.5061/dryad.m37pvmd0z
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Fig. 1. Deterministic dynamics of matching-alleles coevolution. Panel A: Phase-plane diagram of the unstable allele frequency cycles of the discrete-time matching-
lleles model given by system (A.11) starting from a small initial perturbation (red point) from the polymorphic equilibrium. Parameters: X = 0.8, Y = 0.4, α =

0.4, tmax = 1000. Initial conditions: Black pH (0) = 0.54, pP (0) = 0.47. Panel B: Solid line gives corresponding temporal dynamics of host heterozygosity whereas
dashed line gives host heterozygosity averaged over time. Panel C: Phase plane of neutrally stable allele frequency cycles arising in the continuous-time MAM given
by system (3) starting form three different initial conditions shown by the red points. Parameters: X = 0.8, Y = 0.4, κ = 100, δ = 1, α = 0.2, γ = 1, tmax = 1000.
nitial conditions: Black pH (0) = 0.55, pP (0) = 0.45, Blue pH (0) = 0.7, pP (0) = 0.3, Green pH (0) = 0.85, pP (0) = 0.15. Panel D: Host heterozygosity at each given
ime point (solid) and averaged over time (dashed). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
his article.)
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olymorphism gives rise to corresponding cycles in heterozy-
osity also of constant amplitude (Fig. 1C). This neutral stability
ndicates that, when averaged over the cycle, genetic variation re-
ains constant in an infinite population, much like the behaviour
f a neutral locus in a single-species model. We thus hypothesize
hat drift in a finite population may have similar effects in the
oevolutionary model as in the neutral single-species model. Our
im here is therefore to develop an appropriate continuous-time
AM of coevolution in a finite population of constant size that,

ike the standard continuous-time MAM, does not lead to an
nherent decline in heterozygosity in the deterministic limit. This
ormulation of the MAM allows us to quantify the loss of het-
rozygosity with drift in direct comparison to a standard model
f neutral genetic drift within a single-species.
All the models discussed thus far make the traditional assump-

ion that both host and parasite densities are infinite and con-
rolled by factors independent of the host–parasite interaction.
his is the case, for example, when host and parasite population
izes are fixed by a hard carrying capacity that is very large. The
umbers of hosts and parasites may, however, vary dramatically
n response to coevolution (Papkou et al., 2016). In addition
arasites that are transmitted directly between hosts may be
ubject to epidemiological dynamics. Both ecological (Ashby et al.,
019) and epidemiological (MacPherson and Otto, 2018) feedback
an stabilize allele frequency dynamics. Ecological feedback has
lso been shown to affect the time until allele fixation in either
he host or parasite (Gokhale et al., 2013; Schenk et al., 2020).
ur goal in this work, however, is to focus solely on the effects
hat arise from coevolutionary NFDS. Specifically, we examine
he stochastic nature of coevolutionary dynamics, allowing us to
3

uantify rates of loss of genetic variation. To do so, we focus on
he simplest case of strict external control of population size in
oth hosts and parasites without ecological or epidemiological
eedback.

. The model

We use a continuous-time birth–death model to describe
he coevolutionary dynamics between a host and a free-living
athogen, as depicted in Fig. 2. To keep the total host and
athogen population sizes constant at the same fixed value κ ,
e use a Moran model design with coupled birth–death events.
xtension of the model to unequal host and pathogen population
izes is straightforward and the results do not differ qualitatively
rom those presented here (MacPherson et al., 2020). Both host
nd pathogen are haploid, with coevolution depending on a single
iallelic locus in each species. We represent the number of hosts
nd pathogens of each type by Hi and Pj where i ∈ {1, 2} and
∈ {1, 2}. Hosts of type i come into contact with pathogens of
ype j at a density-independent rate HiPj

κ
. In keeping with the

MAM, upon contact the pathogen successfully infects the host
with probability βi,j. If the host and pathogen carry ‘‘matching’’
alleles (i = j) then βi,j = X , whereas ‘‘mis-matching’’ infection
occurs with a reduced probability βi,j = Y < X for i ̸= j. If
infection occurs, hosts die instantaneously with probability α.
The resulting rate of fatal infection of host type i from pathogen
type j is αβi,jHiPj

κ
. Fatal infections result in four coupled events (1)

the death of the infected host of type i, (2) birth of a random
host, (3) birth of the infecting pathogen of type j representing
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Fig. 2. Schematic of the Moran MAM. Coevolution consisting of three different types of coupled birth–death events. Infection (green/thick), natural host death
blue/thin), and free-living pathogen death (purple/standard). Solid lines denote events that occur at a rate that depends on the genotype whereas dashed arrows
epresent birth and death of random individuals irrespective of their genotype. (For interpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)
he release of infectious particles, and (4) death of a random
athogen. Non-fatal infections do not lead to the birth or death
f either the host or pathogen, effectively assuming that the
athogen mounts a very limited infection and returns to the
ree-living pathogen population. In addition to these four events
ssociated with infections, natural host death–birth and free-
iving pathogen death–birth occur at per-capita rates δ and γ ,
espectively. Both events are non-selective consisting of the death
nd birth of random host and pathogen genotypes.
As stated above, our primary aim is to compare the mainte-

ance of genetic variation in a finite coevolving population to that
xpected under neutral genetic drift alone. Focusing on genetic
ariation in the host, for a population of finite size κ , the expected
ecline in host heterozygosity from neutral genetic drift in the
aploid Moran model is given by:

neut (t) = H0e
−2t
κ , (1)

where H0 is the initial host heterozygosity and time, t , is mea-
sured in units of host generations (Moran, 1958; Wakeley, 2016).
In this continuous-time coevolutionary model we define one host
generation as the expected time to the death of κ hosts, 1/D (see
Appendix A.1), where

1
D

=

∑
i,j βi,jαHiPj +

∑
i δHi

κ
. (2)

As D depends on both the host and pathogen allele frequencies,
its value changes over time as the species evolve. We confirm
that this is indeed the appropriate scaling of absolute time into
host generations by comparing equation (1) to neutral individual-
based simulations described below. One consequence of rescaling
time in terms of host, as opposed to parasite, generations is that
the rate of genetic drift in the parasite will exceed that of the host
if γ > δ, increasing the likelihood the parasite will become fixed
for one type before the host does. As the generation time of the
host and parasite are both a function of infection rate, however,
this difference in the rate of drift is small.

3.1. Deterministic dynamics

In the limit as the total host and pathogen population size goes

to infinity (κ → ∞) the dynamics of the host and pathogen allele

4

frequencies pH = H1/κ (hence: 1 − pH = H2/κ) and pP = P1/κ
(hence: 1 − pP = P2/κ) are given by the following system of
differential equations (see Appendix A.1):
dpH (t)
dt

=
(X − Y )α (1 − 2pP (t)) pH (t) (1 − pH (t))

Xα + δ − (X − Y )α (pP (t) + pH (t) (1 − 2pP (t)))
dpP (t)
dt

= −
(X − Y )α (1 − 2pH (t)) pP (t) (1 − pP (t))

Xα + δ − (X − Y )α (pP (t) + pH (t) (1 − 2pP (t)))
,

(3)

where time t is in units of host generations as in Eq. (1).
As shown in Fig. 1, the behaviour of this Moran MAM in the de-

terministic limit is identical to that of the traditional continuous-
time MAM (Woolhouse et al., 2002). Specifically, there are five
equilibria of system (3). Four are unstable equilibria characterized
by the fixation of one host and one pathogen genotype. The final
polymorphic equilibria at p̂H = p̂P =

1
2 is neutrally stable with

purely imaginary leading eigenvalues, generating neutral-limit
cycles in allele frequencies (see Fig. 1C).

As discussed previously, genetic variation neither increases
nor decreases over time in the deterministic continuous-time
MAM (see Fig. 1D). While the neutral stability of the MAM
is well known, the consequences on heterozygosity are under-
appreciated. Contrary to the proposed effect of coevolution and
NFDS on genetic variation (Haldane, 1949; Clarke, 1979), neu-
trally stable allele frequency cycles neither deplete nor restore
genetic variation. Rather, in an infinite population, coevolution
has no net effect on genetic variation, averaged across a cycle.
To see if this behaviour holds in finite coevolving populations,
we begin by describing an analytical approach to compare the
dynamics of genetic variation in a finite population to those
expected under neutral genetic drift. Because this analytical ap-
proach only applies while the cycles are small we couple this
approach with an individual-based simulation describing the loss
of genetic variation more generally.

3.2. Ensemble moment dynamics

To model the dynamics of genetic variation in a finite popula-
tion we express the model depicted in Fig. 2 as a continuous-time
Markov chain. The complexity of the model limits the available
analytical approaches. One approach we can use, however, is
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Fig. 3. The effect of early perturbations. Panel A: The effects of the three processes on host heterozygosity shown schematically, infection (green see Fig. 2), natural
ost death (blue), and natural pathogen death (purple) on host and pathogen allele frequency and the resulting effect of selection (red arrows) on host heterozygosity.
anel B: Hcoev −Hneut as given by the ensemble moment approximation as a function of the relative host and pathogen death rates. Points give the deviation at time
= 50 host generations for 200 randomly drawn combinations of γ and δ, where 0.1 < γ < 1, 0.1 < δ < 1, and X = 0.9, Y = 0.7, α = 0.2, κ = 105 . R2 describes

the non-linear model fit to the sigmoidal function y = a +
b

1+e−c(x−d) . (For interpretation of the references to colour in this figure legend, the reader is referred to
he web version of this article.)
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he ensemble moment approximation, the derivation of which is
iven in the Appendix. The result is an approximation for the
xpected host heterozygosity which we will call Hcoev(t). As with

the neutral expectation in Eq. (1), this is the expectation of host
heterozygosity over all realizations of the stochastic process, the
approximation of which is given by a Taylor series assuming the
system is near the deterministic equilibrium (H0 ≈ 1/2) and the
population size large.

Hcoev(t) ≈ H0

(
1 −

2t
κ

)
+ O(ϵ3) (4)

here ϵ is the deviation of the stochastic process from the de-
erministic equilibrium and ϵ = 1/κ . Once again t is measured
n units of host generations. To this order, the ensemble moment
ynamics are identical to that of the neutral expectation given
y (1). Hence, as expected from the deterministic dynamics, host
eterozygosity in the MAM declines as expected under neutral
enetic drift. Although analytically unwieldy, numerical evalu-
tion of Hcoev to third order reveals slight deviations between
he ensemble moment dynamics and the neutral expectation that
re also observed in the individual-based simulations presented
n the following section. Specifically, Hcoev exceeds the neutral
xpectation when the free-living pathogen death rate γ is less
han the death rate of the host δ (negative values of γ − δ in
ig. 3B) and falls below the neutral expectation when γ − δ > 0.
The mechanism behind these lower-order deviations is shown

chematically in Fig. 3A. If we start, for example, at the equi-
ibrium host and pathogen allele frequencies (p̂H = 0.5, p̂P =

.5), infection, natural host death–birth, and free-living pathogen
eath–birth events perturb the allele frequencies. Selection then
cts on those perturbations to produce small counter-clock wise
llele frequency cycles. Although over the long term these allele
requency cycles have no net effect on heterozygosity, they do
ave an effect over the short term. For example, if only the host
llele frequency is perturbed by a random host birth event then
uring the first quarter cycle natural selection will increase host
eterozygosity, because the parasite that matches the host that,
y chance, became more common, will spread in turn reducing
he more common host genotype. In contrast, if only the pathogen
llele frequency is perturbed, selection will decrease host het-
rozygosity by preferentially killing off the host that matches the
arasite allele that increased by drift.
The effect of these early quarter cycle responses to selection

ould average out if perturbations were distributed uniformly
bout the equilibrium. However, natural host death affects only
5

he host allele frequency whereas free-living pathogen death only
ffects the pathogen allele frequency. Hence the relative rates
f these two events determine whether these early responses
o selection transiently increases or decreases heterozygosity.
pecifically, relatively high rates of natural host death and low
ates of free-living pathogen death (γ −δ < 0) lead to an increase
n host heterozygosity relative to the neutral expectation (see
ig. 3B).

.3. Individual-based simulations

Using a Gillespie algorithm we simulated host–parasite co-
volution in a finite population. In short, the waiting time for
he next event is drawn at random from an exponential distri-
ution with a rate parameter given by the sum of the rates to
ll possible next events (Table A.1). Which of these next events
ctually occur is then determined randomly by a multinomial
ssignment with n = 1. This is repeated and time is measured
n units of generations as determined by the death of κ hosts.
ndividual based simulations were implemented in C++ (avail-
ble at doi:10.5061/dryad.m37pvmd0z) For each of one-hundred
andomly drawn parameter sets, we simulated coevolution for
even different populations sizes ranging on a log scale from

= 102 to κ = 103.5
= 3162. The relative infection rates

of matching and mis-matching genotypes were drawn such that
0 ≤ Y < X ≤ 1. We restricted the probability of dying from
infection, α, to lie between 0 and 1/2 as much stronger se-
lection causes the rapid loss of alleles, limiting the amount of
coevolution. Host and pathogen free-living natural death rates
δ and γ were both drawn between 0.1 and 1. For each of the
700 parameter sets, we simulated 1000 replicate populations for
tmax = 500 host generations. All replicate populations begin at
the internal equilibrium with pH = pP = 0.5.

In tandem with each coevolutionary replicate population we
simulated an analogous ‘‘neutral population’’ to check that it
behaved correctly according to the neutral expectation given
in Eq. (1). In these simulations, the exact same series of host and
pathogen birth–death events occurred as in the coevolutionary
simulations, except that the individual who was born or died
due to infection was drawn at random hence capturing neutral
genetic drift in both host and pathogen. As shown in Fig. 4A,
the mean heterozygosity of these neutral simulations in grey is
identical to the analytical neutral expectation given by Eq. (1),
confirming that this is the appropriate neutral expectation for the
two-species model.

http://dx.doi.org/10.5061/dryad.m37pvmd0z
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Fig. 4. Individual-based simulations. Panel A: Light red lines give mean heterozygosity across replicate populations for each of the 100 parameter sets (given
κ = 316). Dark red line gives mean heterozygosity across parameter sets. Blue line gives analytical neutral expectation. Vertical dashed line corresponds to the
time point shown in panel C at t = 100. Panel B: An example of simulations for one of the parameter sets that maintains more heterozygosity than the neutral
expectation in panel A (X = 0.39, Y = 0.13, α = 0.38, δ = 0.99, γ = 0.24, κ = 316). Red curve (red shaded area) gives mean heterozygosity across the 1000
eplicate populations each starting at the polymorphic equilibrium (red shaded area gives 95% confidence interval). Black curve (grey shaded area) gives mean (95%
I) heterozygosity in neutral model. Blue curve gives the analytical neutral expectation from Eq. (1). Green curve gives ensemble moment approximation. Panel C:
ean heterozygosity in coevolutionary simulations Hcoev for each parameter set compared to the corresponding simulated neutral model Hneut . Black dashed line gives

he neutral expectation. Thick red curve gives LOESS smoothed mean fit whereas light red curves give smoothed mean fit to 100 bootstrap samples. Table gives the
ean (standard deviation) of the relative turnover rates γ − δ, leading eigenvalue λ, and strength of reciprocal natural selection X−Y

X+Y for points falling significantly
bove, not significantly different from, and significantly below the neutral expectation. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)
o
l

Fig. 4 summarizes the results of the individual-based simu-
ations. Panel A illustrates the mean heterozygosity for each set
f parameters using κ = 316. Panel B illustrates one particular
arameter set where more heterozygosity is maintained than
xpected under the neutral model because of a high natural
eath rate in the host. As illustrated in panel B, the ensemble
oment approximation given in Eq. (4) accurately predicts the
ynamics of host heterozygosity early on. Hence, as predicted by
his approximation, early on host heterozygosity deviates either
lightly above or below the neutral expectation depending on the
elative turnover rates in the host versus the parasite. In panel C,
e show the heterozygosity observed in hosts versus the neutral
xpectation at generation t = 100, where each dot represents

the mean heterozygosity among the 1000 replicate simulations
for a given parameter set. Whether points fall above or below the
neutral expectation is well predicted by γ − δ. Given in the table
n Fig. 4, γ −δ is negative for points significantly above the neutral
expectation and positive for those that are significantly below.

While initial departures are due mainly to the effect of per-
urbations (Fig. 3), heterozygosity over longer time frames is
ominated by a second phenomenon. Shown in Fig. 5A, fol-
owing allele fixation/loss in the pathogen, natural selection in
he matching-allele model becomes directional (red trajectories),
avouring whichever host allele is better able to resist the re-
aining pathogen type. This directional selection rapidly erodes
enetic variation within the host, typically resulting in the fixa-
ion of the mis-matching host allele and rapidly decreasing host
eterozygosity (see the Fig. 5B). The effect of directional selection
ollowing allele fixation in the pathogen is strong enough that
ven for parameter sets with host heterozygosity initially above
he neutral expectation (Fig. 4B), heterozygosity eventually falls
elow the neutral expectation.
One consequence of re-scaling time in terms of host rather

han parasite generations is that the parasite will experience
lightly more (less) genetic drift than the host and hence more
6

(less) rapid fixation of genetic variation whenever γ > δ (γ <
δ). The effect of the relative rates of drift in the host and par-
asite due to these differences in generation times is small and
overwhelmed by the effect of selection on early perturbations
described above. Other factors that might be expected to in-
fluence host heterozygosity include the strength of reciprocal
natural selection, as measured by (X −Y )/(X +Y ), and the period
f the Red Queen allele frequency cycles, as measured by the
eading eigenvalue (λ = i (X−Y )α

(X+Y )α+2δ ). In contrast to the relative
turnover rates in the two species (shown in Fig. 3), the mean
value of these parameters does not differ among parameter sets
with heterozygosity greater than, less than, or not significantly
different from the neutral expectation, see table in Fig. 4.

In summary then, as predicted by the neutral stability of the
deterministic model, host heterozygosity in the MAM behaves
by-and-large neutrally. At generation 100, 52% of parameter con-
ditions shown in Fig. 4C do not statistically differ from the neutral
expectation and the average deviation of Hcoev (red curve) from
the neutral expectation (black dashed diagonal) is small. Of the
remainder, the majority of parameter sets result in less het-
erozygosity than neutral (overall, 10% are significantly above and
38% are significantly below the neutral line). The variability in
Hcoev − Hneut can be explained mechanistically by both the effect
of natural selection on perturbations from the equilibrium (Fig. 3
and the probability of directional selection following pathogen
fixation (Fig. 5). These results are consistent across host popu-
lation sizes, κ , which as we expect by Eq. (1) only changes the
rate of genetic drift.

4. Discussion

Contrary to theories that posit that host–parasite coevolu-
tion and the associated negative frequency-dependent selection
(NFDS) should maintain genetic variation (Haldane, 1949; Clarke,
1979; Takahata and Nei, 1990), we use stochastic methods, both
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Fig. 5. Effect of directional selection on the long term dynamics of host genetic variation. Panel A. Host allele frequency trajectories for the 1000 replicate
opulations for a single parameter set (X = 0.15, Y = 0.1, α = 0.34, δ = γ = 0.21, and κ = 562). Trajectory coloured grey while both host and pathogen are

polymorphic (ongoing coevolution), red if only the host remains polymorphic (directional selection), and blue if one allele is fixed in the host. Panel B. Each bar
corresponds to one parameter set and gives the frequency of replicates at t = 250 exhibiting ongoing coevolution, directional selection, or host allele fixation. Bars
are ordered with respect to decreasing average Hcoev across replicate demes. Bottom Row: randomly chosen trajectories shown in the allele frequency phase plane.
Trajectories begin at the internal equilibrium (red point) and are coloured as in panel A. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
describing ensemble moments and conducting individual-based
simulations, to show that genetic variation is often lost faster
than in the neutral model. Although these results are consistent
with stability analyses of the corresponding deterministic models,
such stability analyses only apply near the equilibrium with equal
allele frequencies. In contrast to single-species NFDS, we thus find
that coevolutionary NFDS does not generally maintain genetic
variation. Specifically, the neutrality of the cycles ensures that,
for any given host allele frequency, selection is equally likely to
favour or disfavour the allele, depending on the point in the cycle.
While the largely neutral effect of matching-alleles coevolution
is recovered in our models of finite-population size, we find
that stochasticity introduces two new effects. First is the effect
of the initial response to selection following perturbations in
allele frequency from the deterministic equilibrium, which may
on average either maintain or deplete heterozygosity depending
on the relative death rates of the host and pathogen. The second
non-neutral effect is that of directional selection following the
fixation of one of the pathogen alleles, after which host genetic
variation rapidly erodes in the host.

The contrasting effects of coevolutionary NFDS and single-
species NFDS have been pointed out previously by Brown and
Tellier (2011) in the context of the gene-for-gene coevolutionary
model. Nevertheless, the distinction between these two processes
and in particular their differing effects on the maintenance of
genetic variation remains under-appreciated. Our finding that the
MAM does not inherently maintain genetic variation contrasts
with and clarifies the findings of previous computational models
of the maintenance of genetic variation at MHC loci (Ejsmond
and Radwan, 2015; Borghans et al., 2004). Simulating matching-
alleles coevolution at multiple loci in the presence of rapid host
mutation, both Ejsmond and Radwan (2015) and Borghans et al.
(2004) find a weak signal of increased fitness of rare host alleles.
Our results clarify, however, that this is not in fact a true signal of
negative frequency-dependent selection. Rather this is a result of
the fact that novel, and hence rare, host alleles may be favoured
transiently if there does not yet exist genetic variation at the cor-
responding pathogen locus. In contrast, long term changes in host
allele frequencies are not associated with corresponding changes
in fitness as would be required under NFDS (see Borghans et al.,

2004 Fig 4A).

7

Here we have focused on coevolution in a single population.
Coevolution is however inherently a spatial process. Previous the-
oretical models suggest that spatial structure in combination with
variability in the strength and nature of host–parasite coevolution
across space may promote local adaptation (Gandon et al., 1996;
Nuismer, 2006). Our results illustrate, however, that this is an
emergent effect of spatial structure and gene flow, not solely the
result of coevolution within each individual deme. Whether these
spatial models maintain more genetic variation than expected
under neutral drift remains a valuable topic for future work.

In the main text we have focused on host–parasite coevolution
in a continuous-time model as opposed to a model of coevolution
in discrete time (see Eq. (A.11)). This is because, as explored
in the background section, the continuous-time model is more
likely to maintain genetic variation based on the behaviour of
the deterministic dynamics. We confirmed that heterozygosity
is lost faster in discrete-time host–parasite models by extending
our analysis to a Wright–Fisher model where the entire host and
pathogen population is replaced each generation (see Appendix).
As illustrated in Fig. A.1, heterozygosity measured relative to
the neutral expectation was significantly lower in the discrete-
time MAM than in the continuous-time model (i.e., the mean
value of

(
HWF

coev − HWF
neut

)
was significantly less then the mean of(

HMoran
coev − HMoran

neut

)
). The stability of the deterministic model is

therefore a good but not perfect, predictor of the dynamics of
host heterozygosity in a finite population and could be used to
generate hypotheses about the maintenance of genetic variation
in more complex models of host–parasite coevolution.

Given that genetic variation typically erodes at similar or faster
rates in MAM than in a single species neutral model, we con-
clude that coevolutionary NFDS is an insufficient explanation for
the long-term persistence of polymorphisms found at immuno-
defence loci (Lawlor et al., 1988; McConnell et al., 1988; Takahata
and Nei, 1990). The models presented here, however, make sev-
eral implicit assumptions that may influence the maintenance
of genetic variation at single loci and their contribution to this
broader multi-locus diversity. In particular, we assume that mu-
tations are absent and that the population size remains constant.
Mutations can replenish lost genetic variability, allowing Red
Queen cycles to continue, or they can introduce new parasite
types followed by new hosts that resist them in an ever increasing
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rms race. Although constant population size is a classic as-
umption in coevolutionary theory, coevolution is known to have
rastic effects on population sizes of both host and pathogen in
atural systems (Papkou et al., 2016). Indeed inclusion of explicit
opulation size dynamics in the MAM results in fluctuations in
ost and pathogen population size (Nuismer, 2017; Frank, 1993).
hile these changes in population size are expected to have

ittle to no effect on the allele frequency dynamics, they are
xpected to have important consequences on the maintenance of
enetic variation (Crow, 1970). We also assume that the host and
arasite generations are synchronized. The extensive literature
n the deterministic stability of the polymorphic equilibrium has
uggested that temporal asynchrony between the host and par-
site, arising for example through seed dormancy, can stabilize
olymorphisms and maintain variation (Brown and Tellier, 2011;
ellier and Brown, 2009). Developing an analogous MAM, we find
hat here too including a temporal delay in the ability of one
pecies to respond to the other (here by including seed dormancy)
as a stabilizing effect and can help maintain variation (see the
Appendix).

The abundance of genetic diversity at human MHC loci may
lso be the result of coevolution between hosts and pathogens
hat are transmitted directly from one host to another and hence
ubject to epidemiological dynamics. Our previous work showed
hat these epidemiological dynamics stabilize Red Queen al-
ele frequency cycles resulting in a stable polymorphic equilib-
ium (MacPherson and Otto, 2018). In contrast to the instabil-
ty of the discrete-time MAM and the neutral stability of the
ontinuous-time MAM, the stabilizing effects of these epidemi-
logical dynamics are expected to maintain genetic variation.
n a parallel paper, we have found that adding ecological or
pidemiological feedback does not greatly help maintain genetic
ariation. Indeed, population size fluctuations can make parasite
opulations more likely to lose an allele, leading to directional
election and rapid depletion of variation in the host (MacPherson
t al., 2020). Thus, our main conclusion is that negative frequency
ependent selection that acts via another species is generally not
strong mechanism for preserving genetic variation.
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ppendix

.1. Derivation of Eq. (3)

Here we derive the ODEs given by Eq. (3). Shown by the arrows
n Fig. 2, host and pathogen allele frequencies change as a result
f the 24 different possible events and summarized in Table A.1.
o facilitate comparison to the neutral expectation of genetic drift

iven by Eq. (1) we must rescale absolute time in terms of host

8

generations. If the total rate at which hosts die is given by d, then
ne host generation, which we define as the expected time until
deaths is D =

κ
d . In the MAM time in generations, t , then is

iven by t =
τ
D where τ is time in absolute units and D is given

y:

(τ ) =
κ∑

i,j βi,jαHi(τ )Pj(τ ) +
∑

i δHi(τ )
(A.1)

Noting that host allele frequency is pH =
H1
κ

and pathogen
allele frequency is pP =

H2
κ

the differential equations for each are
given by:
dpH
dt

=
1
κ

dH1

dτ
dτ
dt

=
D
κ

∑
e

fe(τ )∆eH1

dpH
dt

=
1
κ

dH1

dτ
dτ
dt

=
Dd
κ

∑
e

fe(τ )∆eP1
(A.2)

here fe(τ ) is the rate at which event e occurs and ∆eH1 (∆eP1)
s the change in the number of hosts (parasites) of type 1 due to
hat event as listed in Table A.1. Substituting in the values and
implifying gives system (3) in the main text (see supplementary
athematica file).

.2. The ensemble moment approximation

.2.1. General approach
We consider the general stochastic process in Z+n. Specifically,

or the MAM model presented here n = 2, one dimension for the
umber of hosts of type 1 and pathogens of type 1, respectively.
et z⃗(t) denote the state of the process at time t , for our case

⃗ = {H1, P1}. We begin by transforming the variables into their
eviation from the deterministic equilibrium. Specifically if ẑi
s the value of variable i at equilibrium, then the transformed
ariables are given by x⃗ = z⃗ − ⃗̂z. In addition, we only consider
he case where the initial condition of the stochastic processes
s the deterministic equilibrium, x⃗ = 0⃗. This transformation
n variables will then allow us to easily express the moments
f the stochastic process in terms of Taylor series around the
eterministic equilibrium. In terms of the transformed variables,
he stochastic process is described by m distinct events that occur
t rates fe(x⃗) where e = {1, 2, . . . ,m}. Finally, we denote the
nsemble average, the average across all sample paths, by ⟨∗⟩.
The aim of the ensemble moment approximation is to derive
system of ODEs giving the change in the moments of the

tochastic process. Beginning with the first moment (mean) we
ave:

d⟨xi⟩
dt

=⟨

m∑
e=1

(event rates) (change in xi from event)⟩

=⟨

m∑
e=1

fe
(
x⃗
) ((

xi + ∆e,i
)
− xi

)
⟩

(A.3)

where ∆e,i is the change in xi from event e (Keeling, 2000). To
take the ensemble average of the sum we express the argument
as a polynomial by approximating it with a Taylor series around
the deterministic equilibrium assuming xi ∀ i is small. Eq. (A.3) is
then approximated as:

d⟨xi⟩
dt

≈ ⟨

m∑
j

ajxj +
m,m∑
j,k

bj,kxjxk +

m,m,m∑
j,k,l

cj,k,lxjxkxl + · · ·⟩ (A.4)

where aj, bj,k, and cj,k,l are constants, which are themselves func-
tions of the deterministic equilibrium ⃗̂z. Rearranging we have:

d⟨xi⟩
dt

≈

m∑
aj⟨xj⟩ +

m,m∑
bj,k⟨xjxk⟩ +

m,m,m∑
cj,k,l⟨xjxkxl⟩ + · · · (A.5)
j j,k j,k,l
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Table A.1
MAM events. The 24 possible events as given by arrows in Fig. 2. The effect of event e on the number of hosts (parasites) of type 1
is given by ∆eH1 (∆eP1). The rate of event in units of host generations as used in the EM approximation is given by fe(t) = fe(τ )D.
Description {i, j, k, l} Rate fe(τ ) e ∆eH1 ∆eP1

Random death of
host i and birth of
host k

{1,NA, 1,NA}

δHi(τ )
Hk(τ )

κ
2(k − 1) + i

0 0
{1,NA, 2,NA} −1 0
{2,NA, 1,NA} 1 0
{2,NA, 2,NA} 0 0

Random death of
parasite j and birth
of parasite l

{NA, 1,NA, 1}

γ Pj(τ )
Pl(τ )

κ
2(l − 1) + j + 4

0 0
{NA, 1,NA, 2} 0 −1
{NA, 2,NA, 1} 0 1
{NA, 2,NA, 2} 0 0

Infection of host i by
parasite j: death of
host i, birth of host
k. Birth of parasite j,
death of parasite l.

{1, 1, 1, 1}

αβi,jHi(τ )Pj(τ ) ×
Hk(τ )

κ

Pl(τ )
κ

i + 4(j − 1) + 2(k − 1) + l

0 0
{1, 1, 1, 2} 0 −1
{1, 1, 2, 1} −1 0
{1, 1, 2, 2} −1 −1
{1, 2, 1, 1} 0 1
{1, 2, 1, 2} 0 0
{1, 2, 2, 1} −1 1
{1, 2, 2, 2} −1 0
{2, 1, 1, 1} 1 0
{2, 1, 1, 2} 1 −1
{2, 1, 2, 1} 0 0
{2, 1, 2, 2} 0 −1
{2, 2, 1, 1} 1 1
{2, 2, 1, 2} 1 0
{2, 2, 2, 1} 0 1
{2, 2, 2, 2} 0 0
The result is an expression for the change in the first mo-
ent as a linear function of the first, second, third, and higher
oments.
We use the same technique to derive the second moment

DEs:
d⟨xixj⟩
dt

=⟨

∑
e

fe(x⃗)
((
xi + ∆e,i

) (
xj + ∆e,j

)
− xixj

)
⟩

=⟨

∑
e

fe(x⃗)
(
xi∆e,j + xj∆e,i + ∆e,i∆e,j

)
⟩

(A.6)

Approximating the right-hand argument as a sum once again
y a Taylor series expansion we have:

d⟨xixj⟩
dt

≈

m∑
j

Aj⟨xj⟩+

m,m∑
j,k

Bj,k⟨xjxk⟩+

m,m,m∑
j,k,l

Cj,k,l⟨xjxkxl⟩+ · · · (A.7)

Similarly for the third moments:

d⟨xixjxk⟩
dt

≈

m∑
j

Aj⟨xj⟩ +

m,m∑
j,k

Bj,k⟨xjxk⟩ +

m,m,m∑
j,k,l

Cj,k,l⟨xjxkxl⟩ + · · ·

(A.8)

where A, B, C,A,B, and C are all constants that depend on the
deterministic equilibrium.

A.2.2. Dynamics of host heterozygosity
We are interested in the dynamics of host heterozygosity and

calculate the ensemble moment approximation for the dynamics
of heterozygosity, Hcoev:
dHcoev

dt
=

d
dt

(E[2pH (1 − pH )]) = 2
d
dt

E[pH − p2H ]

=2
(

d
dt

⟨H1⟩

κ
−

d
dt

⟨H2
1 ⟩

κ2

) (A.9)

The dynamics of heterozygosity thus depends directly on that
f the first two moments. If we substitute in Eqs. (A.5) and (A.7)
nd assume that population size is large κ = 1/ϵ, then approx-
mated to O(ϵ2) the dynamics of host heterozygosity simplify
o Eq. (4) given in the main text.
9

A.3. Maintenance of genetic variation in discrete time

A.3.1. Wright–Fisher model specification
Here we model host–parasite coevolution in discrete time

with non-overlapping generations with a Wright–Fisher model
with a constant host and pathogen population size κ . In each gen-
eration, hosts come into contact with a single random pathogen.
If host and pathogen have the same genotype i, the probability
of successful infection is given by βi,i = X , whereas hosts of
type i are infected by pathogens of mis-matching genotype j,
with probability βi,j = Y < X . In the absence of infections
hosts and pathogens have a fitness 1, whereas infection decreases
host fitness by a factor αH and increases pathogen fitness by αP
such that the expected fitness of host genotype i and pathogen
genotype j are given by:

WH (i, t) = 1 − αH

∑
j

βi,j
Pj
κ

WP (j, t) = 1 + αP

∑
i

βi,j
Hi

κ

(A.10)

A.3.2. Deterministic dynamics
As we do for the continuous-time model, we begin by devel-

oping an understanding of the effect of coevolution on genetic
variation in a finite population by analysing the dynamics of
heterozygosity in the limit as the population size goes to infinity.
In this deterministic case the coevolutionary dynamics are given
by the following difference equations:

pH (t + 1) =pH +
αHpH (1 − pH )(1 − 2pP )(X − Y )

αH (pH (1 − 2pP ) + pP )(X − Y ) − αHX + 1

pP (t + 1) =pP −
αPpP (1 − pP )(1 − 2pH )(X − Y )

−αP (pH (1 − 2pP ) + pP )(X − Y ) + αPX + 1
(A.11)

There are five equilibria of this model, four of these specify
the fixation/loss of one host and one pathogen type, and a fifth
internal equilibrium occurs at pH = pP = 1/2. Unlike the
continuous time model explored in the main text this internal
equilibrium is unstable and cyclic. The dynamics of the allele
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Fig. A.1. Comparison between Wright–Fisher (discrete-time) and Moran (continuous-time) models. Panel A: Mean heterozygosity in a coevolving population
ersus the neutral expectation for the Wright–Fisher model (green) at time t = 500 generations versus. Light green curves give smoothed fits to 1000 bootstrap
amples in the WF model. Points depict heterozygosity for each of the 420 (60 × 7) parameter conditions simulated for the WF model averaged over the 1000
eplicate populations. Red curve gives the mean heterozygosity across parameter combinations for the Moran model with values limited to Hneut < 0.375 to
void extrapolation beyond the simulated values at this time. Panel B: Deviation in heterozygosity from the neutral expectation in the WF as a function of the
agnitude of the leading eigenvalue. R2 values are given for the linear model fits. Panel C: Example allele frequency dynamics in the WF model. Allele frequency

rajectories are coloured grey when there is ongoing coevolution, red when there is directional selection, and blue when the host population is fixed. Parameters:
= 0.27, Y = 0.07, α = 0.24, κ = 102.5

= 316. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)
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requency and heterozygosity are shown in Fig. 1 panels A and B,
espectively. The rate at which the amplitude of the cycles grow is
iven by the magnitude of the leading eigenvalue, which is given
y ∥λ∥, a result consistent with those of M’Gonigle et al. (2009).

λ∥ =

√
1 +

αHαP (X − Y )2

(2 − (X + Y )αH) (2 + (X + Y )αP)
(A.12)

Due to the instability of the internal equilibrium host het-
rozygosity decays over time. Furthermore the larger the value
f ∥λ∥ the faster the heterozygosity should decay.

A.3.3. Simulations of a finite population
In analogy to the continuous-time model presented in the

ain-text where the death of the host and birth of the pathogen
rom infection are coupled, for our simulations in a finite
opulation we assume αH = αP = α. These Wright–Fisher

simulations with fitnesses defined by Eq. (A.10) were run inMath-
ematica (see supplementary material). As with the continuous-
time model we simulate coevolution for 50 random parameter
sets of X, Y , and, α (0 < α < 0.5, 0 < Y < X < 1) and 7 values
f κ (ranging on a log scale between 102 and 103.5) for a total of
50 simulations. In contrast to the continuous-time model nat-
ral host death and free-living pathogen birth are incorporated
irectly in the Wright–Fisher model. For each of the simula-
ions, sample paths were generated for 1000 independent repli-
ate populations. All simulations are initialized at the internal
olymorphic equilibrium and run for t = 500 generations.
In the absence of coevolution, the dynamics of host heterozy-

osity are given by the neutral expectation for the Wright–Fisher
10
model:

Hneut = H0

(
1 −

1
κ

)t

(A.13)

The difference between the simulated heterozygosity and the
eutral expectation at time t = 500 is shown in Fig. A.1A. When
opulation sizes is large (κ = 3162 upper right hand corner) the
eviation in heterozygosity between the coevolutionary simula-
ions and neutral expectation, ∆H = Hcoev − Hneut , is statistically
egative as expected due to the erosion of genetic variation by
oevolution. The magnitude of this deviation is however small, so
hile coevolution does indeed erode genetic variation the process

s slow with only small effects over the parameter and time scale
ampled.
As with the continuous-time model presented in the main

ext, directional selection (see Fig. A.1C) following fixation in the
athogen has a much larger effect than that of coevolutionary
election. When the population size is small (e.g. κ = 100),
rift dominates over the effects of selection, and the heterozy-
osity behaves nearly neutrally. As the population size increases,
he effect of this directional selection emerges. As predicted by
he deterministic model variation in ∆H for a given popula-
tion size is explained largely by variation in ∥λ∥ (see Fig. A.1B).
This is not only because ∥λ∥ determines the effect of coevo-
lution but because it is highly correlated with the probability
of pathogen fixation and the strength of directional selection
following pathogen fixation.

A.4. Seed dormancy

Here we extend the above discrete-time model to include
the effects of seed dormancy, or any other process that causes
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Fig. A.2. Life-cycle diagram and numerical stability analysis of the MAM with seed dormancy. Host and pathogen life-cycle (blue arrows), flux in and out of seed
ank (green arrows). Shaded region of right-hand plot gives region for which the polymorphic equilibrium is stable assuming αH = αP and given X = 1, Y = 0. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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subset, s, of the host population to avoid parasite induced
election, making the host less responsive during coevolution.
pecifically, ever generation a proportion s of the reproducing
ost population is deposited into a seed bank and replaced by
germination of a random sample of seeds currently in the

eed bank whereas a proportion 1 − s of the reproducing host
opulation produces seeds that immediately germinate. Seed can
ersist indefinitely once in the seed bank with the expected time
o germination being geometrically distributed with probability
, creating a temporal asynchrony between host and parasite. We
nalyse the effect of this temporal asynchrony on the stability of
he polymorphic equilibrium. Given a life cycle shown if Fig. A.2
e model evolution by following the allele frequencies among the
ost seedlings pH , host juvenile seeds pJ , and within the parasite
P . The dynamics are given by:

pH (t + 1) =spJ (t) +
(1 − s)pH (t)(1 − αHpP (t)(X − Y ) − αHY )

αHpH (t)(1 − 2pP (t))(X − Y ) + αHpP (t)(X − Y ) − αHX + 1

pJ (t + 1) =(1 − s)pJ (t)

+
spH (t)(1 − αHpP (t)(X − Y ) − αHY )

αHpH (t)(1 − 2pP (t))(X − Y ) + αHpP (t)(X − Y ) − αHX + 1

pP (t) =
pP (t)(αPpH (t)(X − Y ) + αPY + 1)

1 − αPpH (t)(1 − 2pP (t))(X − Y ) − αPpP (t)(X − Y ) + αPX

(A.14)

There are five equilibria of system (A.14), four of which are
rivial fixation/loss of the host and pathogen. The fifth internal
quilibrium is at p̂H , p̂J , p̂P =

1
2 . The Jacobian matrix at this

nternal equilibrium is given by:

=

⎡⎢⎢⎣
1 − s s s(X−Y )αH

αH (X+Y )−2

s 1 − s (1−s)(X−Y )αH
αH (X+Y )−2

0 s(X−Y )αP
αP (X+Y )−2 1

⎤⎥⎥⎦ (A.15)

Focusing on the diagonal elements, we note that dpH (t+1)
dpH (t) < 1

nd dpJ (t+1)
dpJ (t)

< 1. As noted by Tellier and Brown (2009) this is
indicative of direct negative frequency-dependent selection. We
can evaluate the stability of system (A.14) by using the Routh–
Hurwitz conditions on the transformed characteristic polynomial
of (A.15). Specifically, although the Routh–Hurwitz conditions can
only be applied to identify the stability criteria in continuous
time, if we transform the characteristic polynomial, p(λ), into a
11
third order polynomial in z such that:

(z − 1)3p
(
z + 1
z − 1

)
= a0 + a1z + a2z2 + a3z3 (A.16)

hen the equilibrium is stable (all eigenvalues have a magnitude
ess than 1) if and only if ai < 0∀i and a2a1 − a3a0 > 0 assuming
αH = αP = α. These criteria are satisfied in our model for
range of s, indicating the internal equilibrium is stable under

hese conditions:

α2(3X − Y )(X − 3Y ) + 4 − B
α2XY − 1

< s <
α2(3X − Y )(X − 3Y ) + 4 + B

α2XY − 1

B =

√
−(α(X + Y ) + 2)(2 − α(X + Y ))

(
α2

(
9X2 − 14XY + 9Y 2

)
− 4

)
(A.17)

where B must be real.
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