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ABSTRACT In two-locus models of sex determination,
there are two kinds of interior (polymorphic) equilibria. One
class has the even sex ratio, and the other has equal allele
frequencies in the two sexes. Equilibria of the second class may
exhibit linkage disequilibrium. The condition for external
stability of these second-class equilibria to invasion by a new
allele is that the appropriately averaged sex ratio near the
equilibrium be moved closer to the even sex ratio than the
average among the resident genotypes. However, invasion by a
new chromosome depends on the recombination fraction in a
way that appears to preclude general results-about the evolu-
tionary genetic stability of the even sex ratio in this situation.

1. Introduction

Fisher (1) argued that if the costs involved in producing male
and female offspring were equal, a sex ratio of 1:1 would
maximize the number of ‘‘grandoffspring’’ attributable to any
individual. Models of autosomal sex determination by a
single gene with two alleles in which an individual’s genotype
determined its sex or that of its offspring have supported
Fisher’s prediction (except under certain well-defined re-
strictions) that there should be evolution toward the even sex
ratio (2-6). Sex determination by a single sex-linked locus
produces a different conclusion (5-8), although Eshel (9, 10)
has suggested that Fisher’s argument can be replaced by one
in which the number of one’s genes carried by grandoffspring
is maximized.

Eshel and Feldman (11) suggested an approach to the
long-term evolution at a locus controlling sex determination
by considering the fate of new mutations that arise near a
multiallelic polymorphic equilibrium. This approach may be
regarded as an extension of Hamilton’s (7) ‘‘unbeatable
strategy’’ or of Maynard Smith and Price’s (12) ‘‘evolution-
ary stable strategy.”” Eshel and Feldman showed (i) that no
matter how many alleles exist at the sex-determining locus,
an equilibrium with the even sex ratio is the only one that can
be stable to the introduction of any new mutation that affects
sex determination, and (ii) that if the sex ratio at equilibrium
is not 1:1, then a new autosomal mutation introduced near
that equilibrium will initially increase provided that it renders
the sex ratio closer to 1:1. Eshel and Feldman called prop-
erties i and ii evolutionary genetic stability (EGS) of the even
sex ratio. It was proved by Karlin and Lessard (13, 14) that
after the initial invasion, the new interior equilibrium attained
produced an average sex ratio closer to even than that prior
to the invasion.

In the present note we extend considerations of long-term
evolution to the situation where sex is determined by two
autosomal loci that may recombine. We show that with
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respect to a new mutation at each of the loci separately, there
is a reasonable extension of the property of EGS, although
invasion by new chromosomes presents interesting difficul-
ties.

2. Interior Equilibria in the Two-Locus Model

In an infinite, diploid, random-mating population, we con-
sider alleles A1, A,, . . . , Ak at the first locus and alleles By,
B,, ..., By at the second. There are KL chromosomes
(A;B)). The probability that genotype A,B,/A:B, is male is
Map,cd with 0 = Map,cd = 1 and Mab,cd = Mcdab = Mad,cb =
Mep aq. SOme special cases in which certain m,y, .4 took the
value 1 and others the value 0 were examined by Karlin and
Lessard (chap. 5 in ref. 15). Denote by x;; and y;; the relative
frequencies of the chromosome A;B; transmitted to offspring
by adult males and females, respectively, after recombination
in a given generation. Then among these offspring, the
relative frequency of double homozygotes A;B;/A;B; is x;;y;;
and that of heterozygotes is A;B;/A;B;, where i # k or j # |
is x;yu + xuy;. The total frequency of males among these
offspring is then

M= Z ; ; ; XijYkIMij ki

and of females is 1 — M.

These offspring develop into adults in whom recombina-
tion occurs at meiosis at the rate R, 0 = R < %. The relative
frequency of A;B; transmitted by these males is then

(1]

1
xjj= Y ; ; {Q = R)xijym + xuyij]

+ Rlxay + xiyaltmij,u [21
1
=M { ; ; ey + xuypmiu — RA’Z} . [3]
In gametes transmitted by females we have
. 1
yi= XA-m) Ek: 2{: {A = R)lxjyu + xuyyl
+ Rlxayi + xgyalt1 — myj ) [4]
1
— m {xu + yU - RAU - 2Mx,-j}, [5]
where
A= ; 21: myj Xy + Xy — Xayi — Xyl [6]

Abbreviation: EGS, evolutionary genetic stability.
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and

= Ek: Z [xijyu + xuyij — xXayig — Xiyidl- [n

From Eq. 5 at equilibrium we have

(1 = 2M)(x;; — y;j) = RA;;. [8]
Simple manipulation of Eq. 7 reveals that
2 Ay=2 A;=0, 91
i J

so that at equilibrium, for all i and j,

(1= 2M)(xi — yi) = (1 — 2M)(xy — y,) =0, [10]

where
Xj =Zx,~j,y,-.=2y,-,-
J J
and

X5 = E Xijs Y = Z Yii [

are the frequencies of A; in males and females' and the
frequencies of B; in males and females, respectively. Thus,
we have Result 1.

RESULT 1. At equilibrium either the sex ratio is 1:1 or the
allele frequencies at each locus are equal in males and
females; in Eq. 10 either M = Y2 or X;. = ¥ and R = 9. The
frequencies of the chromosomes may not be equal in the two
sexes. (The caret will be used to denote equtltbrtum values.)

Suppose that M # ¥ so that £. = . and %, y = ¥y for all i,
J. Then we may write
Ry =X ky + Au’ Pij =R Ry + A" [12]
where
Ay = 2/:' 2{: (Rijkp — XiyZy) [13a]
and
AY, = ; E[ (PP — Jadi)- [13b]

Now write Eq. 7 in the form

= 2A"+2 2 {Ri &y + A[-RAL/(1 — 2M)]

+ (ﬁk. .i.] + Az[)[—RAU/(]. - 2M)]
+ Ry xq + AX )[RAkl/(l —-2M)]
+ (b xy + APIRA/ (1 - 2M)]}, [14]

where we repeatedly have used Eqs. 8 and 12. Major sim-
plification of Eq. 14 is possible because by Eq. 9

-2 Ay =—Z Ay

k#i

This produces the result

. . R .
A--:ZAE-I_zMAij
or
A = Ay[1—2M + R]/2(1 - 2M). [15]
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In the same way
A = Ay[1 - 2M - R1/2(1 - 2M), [16]

so that we get Result 2. .

RESULT 2. At equilibrium with M # Y-,

Ay = A% + A},

and zfAlJ = 0, then A,’j = A} = 0 also. In other words, the

“two-sex disequilibrium’ Ay is the sum of those in the single
sexes.

Remark 1: The quantities A;; are two-sex linkage disequi-
librium values, and if any of them vanishes at equilibrium, then
either M = ¥ or the chromosome frequencies corresponding
to the vanishing A;; are equal in the sexes. If A ;= 0foralliand
jand M # Y, then it is obvious from Egs. 3, 5 15, and 16 that
the equilibrium chromosome frequencies are identical to those
of a one-locus multiple allele selection model with viability
matrix || myy || . Further, since A; = 0, these equilibrium
chromosome frequencies must be products of the constituent
allele frequencies at the two loci. Karlin and Lessard (chap. 5
in ref. 15) discuss stability properties of some special sex-
determination models that allow equilibria of this kind.

Remark 2: Result 1 and Remark 1 have generalizations to
the multilocus situation with an arbitrary number of alleles.
Elsewhere we show, using the representation of Karlin (16)
and Karlin and Liberman (17, 18), that at equilibrium either
the sex ratio is even or the allele frequencies at each locus are
equal in males and females. Further, if the chromosome
frequencies at equilibrium with A # % are sex symmetric,
then they are products of the allele frequencies at each of the
multiple loci.

3. External Stability and EGS

Suppose that an equilibrium solution (£;, ;) with i = 1, 2,
;J=1,2,. .., L exists and is stable with respect to
perturbations among these KL chromosomes. Consider a
new allele Ag,, that arises in the neighborhood of this
equilibrium. The frequencies of chromosomes Ag.1Bj,
Agi1Bs, . . . ,Agxi1Brare €, €, . . . , g7 in males and 7y, 1,
., ¢ in females. Primes denote frequencies in the next
generation, and quadratic and higher order € and n terms may
be ignored. Recursions 2 and 4 reduce under these conditions
to the linear system

A "y A x
2MEJ' = EjMK+1,j- + anK+1,j-

- R 2 mK+1,j,st(8j§’st + njfcs; - gtf’sj - "Itfcsj), [17a]
s#K+1
t#j

20— M)} = (1 = M43 + nj(1 = M1 )
~R 2 (1—mgerjs)
s#K+1
1

X (sj?st + nj-ist - 3t5’sj - ntksj)’ [17b]

where
K L K L
M= 2 2 2 2 Mupci¥apPeas [17¢]
a=1 b=1 c=1 d=1
K L
K+1,o = Z 2 Mmi1,j,stXsts [17d]
s=1t=1
K L
M) = 21 121 Mg +1,j,stVst- [17¢]
& E
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For R = 0, the problem reduces to that studied by Eshel
and Feldman (19) with multiple alleles at one locus. The
system 17 has a strictly positive matrix when R > 0. Hence,
there is a unique largest eigenvalue that has an associated
strictly positive right eigenvector. Denote this eigenvalue by
Ao, and restrict attention to perturbations in the direction of
this main eigenvector, which we write as

&, 0=, &, ..., 8L, A, M. ..,00). (18]
Then of course
= AoEj, j = Agl)j (19]
and, if we write € = Ej &, N = Z; W
&+ 9 = A&+ ). [20]

Set w; = &;/(¢ + 7)) and z; = 7;/(¢ + 7) so that T, (w; + z))

From Eqgs. 17a and 17b we have
L
g :'21 = (¢+ ﬁ)[z wiM 1+ 2 zj ;(+1,j-]/2M [21]
J= J J
L A
W= 2, =&+ )| 2wl = M1

+ ; zi(1 - MXK+1,J‘-)] /21— M). [22]

Combining Eqgs. 21 and 22 we have

Mir s 1- Mo,
&+ )=+ {Z Wj[ e K“”'J
J

2M 2(1 - M)

LS y K41 N 1- M7<+1,j- (23]
<Y Tm  2a-m |

Comparison of Egs. 23 and 20 reveals that

(% — M)(M%,1 . — M)
Ay = 2 {WjI:I + i ]

J M1 - M)

. (%~ M) (M1, — M) 2
+z| 1+ A -
zZj M= 1) [24]
Gy,
=1+m{2(WJMK+lJ+ZJ kL) = } (23]
(s — M) (Mg1— M
2~ MMy = M) [26]
M1 - M)
say, where
Mg = 2 WiM¥s1). + 5 M¥1 - [27]

Thus, Ag > 1 if either M < Y and MK+1 > M or M > % and
Mg+1 < M. The expression Mg in Eq. 27 may be regarded
as the marginal average sex ratio induced by Ak in the
direction of the leading eigenvector of the local linear trans-
formation Eq. 17 that governs the external stability to inva-
sion by Ag.1. Note that if M = %, the leading eigenvalue is
unity, and linear analysis is uninformative about the fate of
Ag+1. We summarize with Result 3.

RESULT 3. In a two-locus random-mating system of auto-
somal sex determination, if a new mutation at one of the loci
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appears near an equilibrium where the sex ratio is not 1:1, the
mutation will invade if it initially renders the sex ratio closer
to even in the direction of the leading eigenvector of the local
linear transformation.

Remark 1: If at equilibrium prior to the introduction of
Ag+1 we had £; = yy; for all i, j (so that A,, = 0 also), then
M% kel = = M1 _ and the local stability analysis reduces to
exactly that used by Eshel and Feldman (20) to study external
stability in the two-locus multiallele model.

Remark 2: The case of sex determination studied here can
be viewed as a special case of the two-sex viability model
studied by Liberman (21) and Lessard (22). [See also Karlin
and Lessard (15).] Liberman and Lessard independently
obtained an external stability condition similar to that ob-
tained here—namely, that the marginal average fitness of the
new allele should be greater than the mean fitness of the
residents. The averages must be taken over the sexes and in
the direction of the leading eigenvector for the local linear
transformation. It is of interest that this class of results for
initial increase of alleles does not apply to initial increase of
chromosomes, as we shall now see.

4. Invasion by a New Chromosome and Failure of EGS

In the previous section, a new allele arose at one of the two
loci in the system. The fate of a new chromosome that
appears in the population has also been a focus of interest in
studies of evolution at linked loci. The dependence of the
invasion on the extent of recombination has had interesting
qualitative ramifications, for example in the case of kin
selection (23, 24). The same is true in the case of two-locus
models of sex determination, as we now proceed to show.
It will be sufficient to consider the special case K = L =2
of the model in Section 2, in which case sex determination is
described by a 4 X 4 symmetric, nonnegative matrix. For
convenience, in this matrix and for the chromosome frequen-
cies we use the identification 1, 2, 3, 4 for chromosomes
previously denoted [11], [12], [21], and [22], respectively.
Consider the case where A1B; is initially fixed—i.e., £; = ¥;
= 1 prior to the introduction of both Aj and Bz We seek the
local stability properties of £; = 1, y; = 1 in the six-
dimensional simplex 0 < x;, y; =< 1fori=1,2,3,4and =%,
x;=1,3L,y; = 1. Write &,, &3, &4 and n,, 13, 14 for the small
frequencies of A1B,, A;B;, A,B, in males and females,
respectively, near £; = 1, §; = 1. Then from Eqgs. 3 and 4,
neglecting terms of quadratic or higher order, we have

&+ ny = (g2 + mImiy + (g4 + ndmfyR [28a]
&3+ m3 = (e3 + m)mis + (4 + m)mfR [28b]

&4+ My = (g4 + mg)mis(1 — R), [28c]
where for j = 2, 3, and 4

my)(m;; — myy)

my(1 = my)

m,-j + 1—m,~j _ (1/2_
2my 21— myy)

[29]

* —
mij—

Suppose m;; < my; < % and, to make the algebra a little
simpler, set m;3 = my,. Then from Eqs. 28 and 29 neither A,
nor B, separately could invade A;B,. Assume that in addition
%1 =1, ;1 = 1is locally unstable so that

(1 - Rymiy>1, [30]

which entails from Eq. 29 that m;4 > my;. For sufficiently
small £ and 7 values, the leading eigenvector of the matrix
(Eq. 28) is of the form (k, k, 1), where

k= Rm{iy/[mis(1 — R) — m{]. [31]
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Near £; = §; = 1, it is possible to express the difference M’
— M in terms of the (¢; + 7;)—namely,

(myz — my)*(1 — 2my)

M -M=(e+mm+e+m)
2my (1 — myy)

(myg — my)*(1 — 2myy)

+ (64 +
(64 + m4) 2my (1 — myy)

_ R(myy + myg = 2myp)(my + mig — 2mymiy)

32
2m(1 — myy) 121

Substitute Eq. 31 into 32 and reorganize to obtain

_ (e + mg)lmiy(1 — R) — 1]
miy(1 — R) — mfy

+ (myg — my)[miy(1 — R) — mp]} [33]
The sign of M’ — M is therefore the same as that of

M - {2Rmfy(myz — myy)

(m14 — my)(miy — m¥) — RmHKE, [34]

where E is the additive epistasis: E = my4 + my; — 2my,.
Under our assumptions, E > 0. We conclude that M’ < M if

(myg — my)(myy — mpp)(1 — 2myy)
(myy + myg — 2mymyg)(myy + myg — 2myp)

R> [35]

But for instability of £ = 1, § = 1, Eq. 30 holds—namely,

1-2 -
R< (mis — 1)/mi; = ( my)(myg m11)_ 36]
myy + myg — 2mymyy

For Eqgs. 35 and 36 to be compatible, we require
1> (myg — myy)/(myg + my — 2myy) [37]

which is guaranteed by our assumptions.

To summarize we have

RESULT 4. Under the conditions 35 and 36 with m;; < my;
< my4 and with my; < Y2, Ay and B, invade %; =1, 9; =1,
but in the direction of the leading eigenvector of the local
stability matrix, we have M’ < M locally. In other words,
invasion can produce a sex ratio further from even than it was
originally.

As part of a larger numerical study of two-locus sex
determinations, we addressed the question of the ultimate
value of the sex ratio after invasion. Recall the result of
Karlin and Lessard (13, 14) for the one-locus case—that after
invasion the sex ratio at equilibrium is closer to even than it
was prior to invasion.

We considered 21 numerical examples of two loci with two
alleles each in which my;, my; = my3, mys were chosen at
random uniformly on [0, 1]. The choice was made so that for
R > R*, with 0 < R* < ', the fixation state £; = 1, y; = 1(M
= my;) was locally stable, while for 0 < R < R* it was locally
unstable. Of these 21 cases, 8 exhibited the result that for an
interval of R values in which £; = 1, ; = 1 was locally
unstable, the ultimate equilibrium attained was an isolated
interior polymorphism at which the sex ratio M satisfied |M
— Y| > |my; — ¥4|. In other words, the departure of the local
stability from the one-locus result we saw in Result 4 can be
accompanied by violation of the Karlin—-Lessard result for the
ultimate equilibrium:

RESULT 5. Invasion of a chromosomal fixation state by a
new allele at each locus may produce an ultimate sex ratio
further from even than it was originally. The dynamics in
such cases depend on the recombination fraction.
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It seems reasonable to conjecture that invasion of a two
locus polymorphic equilibrium with M # ¥z by new alleles at
each locus would produce the same result.

5. Concluding Remarks

In this paper we have extended a previous model of autoso-
mal sex determination to two loci with multiple alleles. Such
an analysis aims at a better approximation of natural systems
as well as a better understanding of the generality of conclu-
sions based on one-locus models.

We demonstrate that two types of equilibria exist. Either
the sex ratio at equilibrium is even (M = %) or the allelic
frequencies at each locus are equal in the two sexes (£;. = ..,
%, = J.), although the chromosomal frequencies need not be
equal (£; # ¥;;). These results hold for multiple loci as well.

To analyze the long-term evolution of the system, we
continued the approach of Eshel and Feldman (11) by exam-
ining the stability of equilibria to invasion by new genotypes
such as might occur by mutation or migration. This approach
provides insight into the long-term dynamics of the sex ratio
in that it indicates whether, in the long run, the even sex ratio
tends to be approached as a consequence of successive
genetic changes at the loci. This is our concept of EGS.

As in the one-locus case, only the even sex ratio has EGS
in the sense of being stable to the introduction of any new
mutation at a single locus. In fact, a newly introduced allele
will increase when rare if it initially renders the sex ratio
closer to even, at least along the direction of the leading
eigenvector of the local linear transformation. It has been
pointed out by M. K. Uyenoyama (personal communication)
that condition 26 for invasion by a new allele is equivalent to
the inequality (o7 — ap)(¥2 — M) < 0, where (a; — a,) is the
average effect of substituting the new allele relative to the
average of the resident alleles on the character of male
production. Inequalities of this form appear in invasion
criteria for new alleles in many evolutionary contexts (24).
However, the even sex ratio does not have EGS with respect
to all genetic changes in the two-locus system. Thus, we find
that simultaneous invasion by new alleles at each of two loci
may occur despite the fact that the departure of the sex ratio
from one-to-one initially increases. Further, the sex ratio may
achieve ultimate equilibrium at a value further from 1:1 than
it was originally. These violations of EGS for the even sex
ratio depend on the extent of recombination between the two
loci.
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