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abstract: A scientific understanding of the biological world arises
when ideas about how nature works are formalized, tested, refined,
and then tested again. Although the benefits of feedback between
theoretical and empirical research are widely acknowledged by ecol-
ogists, this link is still not as strong as it could be in ecological re-
search. This is in part because theory, particularly when expressed
mathematically, can feel inaccessible to empiricists who may have little
formal training in advanced math. To address this persistent bar-
rier, we provide a general and accessible guide that covers the basic,
step-by-step process of how to approach, understand, and use eco-
logical theory in empirical work. We first give an overview of how
and why mathematical theory is created, then outline four specific
ways to use both mathematical and verbal theory to motivate em-
pirical work, and finally present a practical tool kit for reading and
understanding the mathematical aspects of ecological theory. We hope
that empowering empiricists to embrace theory in their work will help
move the field closer to a full integration of theoretical and empirical
research.
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The great book of nature is written in the language
of mathematics. (Galileo Galilei ca. 1600)
Introduction

Scientific inquiry should operate as a feedback loop in which
theory that describes the natural world is developed, tested
empirically through carefully articulated hypotheses, modi-
fied to better represent reality, and then tested again. When
this feedback loop works, theory provides a framework to
guide inquiry, experimental design, and the interpretation
of observed patterns, supplies mathematical tools to har-
ness information from collected data, and connects individ-
ual experiments to general ideas about how nature operates.
In turn, empirical research can be used to support, refute,
or revise theoretical predictions, indicate which theoretical
assumptions are consistent with the natural world, and point
theoreticians to overlooked processes that can be integrated
into models.
Feedback between theory and experimentation has al-

ways been essential for the progress of ecology (Gause 1935;
Huffaker 1958; Simberloff and Wilson 1969; Tilman 1977),
and as collaborations across disciplines become more com-
mon, theoretical and empirical research have the potential
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to be more tightly linked than ever before (Rossberg et al.
2019; Laubmeier et al. 2020; Servedio 2020). Moreover, in
confronting global challenges such as climate change, bio-
diversity loss, and emerging diseases, humanity can benefit
enormously from the ecological understanding that arises
from a fully functional scientific process (Marquet et al. 2014;
Ferrier et al. 2016).
Unfortunately, the links between theoretical and empir-

ical research in ecology are not as strong as they could be
(Caswell 1988; Kareiva 1989; Fawcett and Higginson 2012;
Scheiner 2013; Haller 2014; Rossberg et al. 2019). Up to
45% of articles on empirical ecology make no mention of
any theory whatsoever (Scheiner 2013), and fewer than 10%
of ecologists and evolutionary biologists agree with the state-
ment that “theoretical findings drive empirical work” in their
fields (Haller 2014). This disconnect has been attributed to
several underlying challenges, including a lack of emphasis
on theoretical training in ecology (Rossberg et al. 2019), a
lack of motivation on the part of some theoreticians to en-
gage with the language of empiricists (Grimm 1994) or with
the elements of nature that empiricists focus on (Krebs 1988),
a general lack of mutual appreciation between empiricists
and theoreticians (Haller 2014), and persistent communi-
cation barriers between these two groups (Servedio 2020).
A major cause of the communication barriers between the-
oretical and empirical ecologists is that in ecology, as in other
scientific fields, theory is often expressed in the language of
math. Ecologists come to the field through a variety of ed-
ucational and experiential pathways, are often drawn to eco-
logical research by an interest in natural history or hands-
on field and lab research, and may not be formally trained
in advanced math. Likewise, theoretical research may not
be written for a general audience and can contain unex-
plained assumptions, terminology, or notation that hinders
comprehension (Dee-Lucas and Larkin 1991; Grimm 1994).
As a result, the mathematical aspects of theory can feel in-
accessible to empiricists (Fawcett and Higginson 2012; Haller
2014). Indeed, the more equations an ecology and evolu-
tionary biology article contains, the fewer citations it receives
(Fawcett and Higginson 2012). Of the empirical articles that
do cite mathematical theory, only about half do so both cor-
rectly and specifically (Servedio 2020). This barrier presents
a major challenge to the full integration of theoretical and
empirical work in ecology.
Previous articles and books have discussed the causes

and extent of the disconnect between theoretical and em-
pirical research in ecology (Łomnicki 1988; Kareiva 1989;
Fawcett and Higginson 2012; Scheiner 2013; Haller 2014;
Rossberg et al. 2019). The value of theory in ecology and
evolutionary biology has been emphasized, andmany have
advocated for a better integration of theory into empirical
work (Caswell 1988; Pickett et al. 2010;Marquet et al. 2014;
Servedio et al. 2014; Servedio 2020). Detailed step-by-step
instructions for building biological models and fitting them
to data have been provided (Pielou 1969; Otto and Day
2007; Bolker 2008; Bodner et al. 2020). Recent work has
helped to demystify the process of theory creation (Otto
and Rosales 2020), has advocated for the training of more
theoretical ecologists (Rossberg et al. 2019), and has pro-
vided an overview of some of the challenges associated with
communicating theory to a broad audience (Shoemaker et al.
2021). However, this still leaves many empiricists who are
interested in motivating their research with theory but who
have little prior experience with math and models struggling
to take the first step.
We seek to fill this gap by providing an accessible guide

that covers the basic step-by-step process of how to approach,
understand, and use ecological theory in empirical work.
We achieve this by (1) briefly reviewing how and why math-
ematical theory is created, (2) outlining four specific ways
that mathematical and verbal theory can be used to moti-
vate empirical work, and (3) providing a tool kit for reading
and understanding the mathematical aspects of ecological
theory. We are ecologists and evolutionary biologists span-
ning the full spectrum from empiricists to theoreticians, and
this guide is the outcome of the empiricists among us feel-
ing intimidated by the mathematical aspects of theory and
reaching across the divide to our theoretical colleagues to
build the tool kit needed to understand and use theory.While
we recognize that the onus should not fall entirely on empir-
icists to bridge the theory-empirical divide and that fostering
collaborations between theoreticians and empiricists and en-
couraging theoreticians to present their theory in a clear
and accessible way are also critical for achieving this goal,
in this article we focus on the steps that empiricists can take.
Our aim is not to teach empiricists how to create theory
or to express it as math but rather to empower empirically
minded ecologists to read and understand mathematical the-
ory and to integrate theory into their work at every step in
the research process.
A Primer on Theory

We begin by introducing the general concept of theory:
what it is, what it aims to do, and how it is created. While
we focus on ecological theory, many of the ideas discussed
here will also apply to evolutionary theory and to other sci-
entific fields. We focus primarily on theory that is expressed
mathematically because these elements of theory often pres-
ent the steepest accessibility barrier to empiricists, while rec-
ognizing that theory and math are not inexorably linked.
Indeed, many excellent theories do not involve math (e.g., the
theory of evolution by natural selection; Darwin 1859), and
many uses of math in ecology are not theory (e.g., practical
applications of statistics). Finally, we restrict our discussion
to model development that does not use data but discuss
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statistical model fitting as an empirical approach (see “Ap-
proach 3: Use the Mathematical Equations”).

What Is Theory?

We define ecological theory broadly as an explanation of an
ecological phenomenon. These explanations take the form
of narratives that explain how an ecological process works
or why an ecological pattern is observed and that become
scientifically useful when expressed in a logical structure
(Pickett et al. 2010; Rossberg et al. 2019). The transforma-
tion of an idea in narrative form into a logical, testable theory
often, though not always, involves the use of mathematical
models (Otto and Rosales 2020). A mathematical model is
an equation or a set of equations that describes how differ-
ent aspects of a system relate to one another (Otto and Day
2007). The termmodel refers to the fact that mathematical
models are idealized and simplified versions of reality, just
as architectural models represent key features of complex
structures and model organisms represent a group of or-
ganisms that share common attributes (Kokko 2007). The
translation of ideas in a theoretician’s mind into math on a
page serves several purposes: math provides a clearer and
more objective expression of relationships, it brings to light
assumptions and logical errors that may be obscured in ver-
bal hypotheses, and it places ideas and hypotheses into a
concrete and concise form (Grimm 1994; Kokko 2007; Mar-
quet et al. 2014; Otto and Rosales 2020).

How Is Mathematical Theory Created?

The process of expressing theory in mathematical terms
can seem mysterious to those who have never attempted it,
which can make theory seem unapproachable. Here we pull
back the curtain on theory creation by describing the typical
steps that a theoretician takes when creating a mathemat-
ical model (Otto and Day 2007; Bolker 2008) and, in doing
so, highlight the many similarities between conducting theo-
retical and empirical research.

Step 1: The Motivation. The first step in theory creation
often parallels that of empirical research: the theoretician
thinks of a biological question that she is interested in or
a biological process that she wants to understand. The ques-
tion may be motivated by an unsolved problem, for exam-
ple, how temperature affects consumer-resource dynamics
(O’Connor et al. 2011; DeLong and Lyon 2020). Or it could
be motivated by an empirical observation, for example, evi-
dence of interspecific differences in plant species’ suscepti-
bility to pathogens and an interest in the implications for
plant coexistence (Stump and Comita 2018; Ke and Wan
2020). Or it may be motivated by a practical problem, for
example, the need to understand how population structure
influences COVID-19 dynamics (Britton et al. 2020).
In other cases, the creation of new theory is motivated
by the desire to extend an existing model rather than to
develop a new model from scratch. Indeed, most models
are variants of previous models, extended to include dif-
ferent biological features, to tailor the model to a new sys-
tem, or to address a slightly different question. One under-
appreciated initial goal of some theory is to provide a proof
of concept that verifies or refutes ideas that may have previ-
ously been expressed only verbally (Servedio 2020). This use
of theory demonstrates that something can happen under
certain conditions but not necessarily that it is likely to oc-
cur under all or even most conditions (Servedio et al. 2014;
Otto and Rosales 2020; Servedio 2020). These models can
serve as hypothesis tests themselves and may not be meant
to be tested empirically (Caswell 1988; Servedio et al. 2014).
More broadly, it is important to note that creating theory
and translating it into math is a means of scientific discov-
ery unto itself, and while in this article we focus on the ways
in which empiricists can use theory, theory need not be tested
empirically in order to be useful. Theory can have a major
influence on a field without any empirical testing, for exam-
ple, theory demonstrating that transient dynamics can be
prevalent and long lasting (Hastings 2001). Recognizing that
not all theory was necessarily meant to be tested empirically
can help empiricists focus on the types of theory that are
most relevant to their scientific goals.

Step 2: The Method. Next, the theoretician looks at the ap-
proaches that theory addressing similar questions has used
and decides whether these approaches are relevant, justi-
fied, and suitable. The approach a theoretician takes is likely
to be guided and constrained by her background; for exam-
ple, a theoretician who is most familiar with dynamical mod-
els (those that track how a system changes over time) may
be drawn to research questions that can be answered by that
type of model, just as an empiricist who works with plank-
tonmesocosmsmay focus on questions that are well suited
to that approach.
A feature of this stage of theory development that may

not be obvious to empiricists is the variation in the degree
to which a new model builds on, tweaks, and combines
existing models compared with conceiving of an entirely
new mathematical approach. For example, parameterizing
predator-prey population dynamic models with expressions
for temperature-dependent biological rates from metabolic
theory led to new insights about how temperature affects
the abundance of interacting consumers and resources
(O’Connor et al. 2011). Likewise, many COVID-19models
are variants of the classic epidemiological model docu-
menting transitions among susceptible, infectious, and re-
sistant hosts. In contrast, mathematical approaches drawn
from physics were adopted by ecologists to understand the
complex dynamics of animal grouping behavior (Okubo
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1986), and math from information theory has yielded new
perspectives on ecological problems such as energy flow in
food webs (Rutledge et al. 1976) and biodiversity (Jost 2006).
For empiricists interested in creating models, the recogni-
tion that theory is often created by combining existing mod-
els in new ways can help reduce the perceived barriers to
participation.

Step 3: The Equations. In this step, the theoretician first
decides which parameters and variables are necessary to
describe the biological process of interest. A parameter is a
quantity that has a value that does not vary within a given
equation (e.g., resource supply rate), while a variable is a
quantity whose value can vary within the equation, for ex-
ample, through time (e.g., population size). In the simple
model describing a linear relationship between x and y
(y p mx 1 b), x and y are variables (there are multiple
values of x and y), andm (the slope) and b (the y-intercept)
are parameters (there is only one slope and one y-intercept
for this equation). Note that while parameters do not vary
within an equation, the biological processes that they rep-
resent do vary in nature (e.g., across space, time, organism
identity), and changing the value of parameters and explor-
ing how that affects outcomes of interest is a common ex-
ercise in theory development (see “numerical approaches”
below). A helpful exercise when deciding howmultiple re-
lated equations should be written out is to draw stock and
flow diagrams that show the relationship between the dif-
ferent variables in each equation (Otto and Day 2007).
In determining the equations, the theoretician must make

difficult choices between how broadly the model can be ap-
plied across systems (generality), how closely the model
mimics real-world processes (realism), and whether the
model produces specific quantitative predictions or gen-
eral qualitative predictions (precision) (Levins 1966; Servedio
et al. 2014; Bodner et al. 2020). For example, models can be
written with more terms or relationships to capture more
biological detail, but additional terms may render the model
less general. Note that the aim of mathematical models
is to increase our understanding of some phenomenon, not
to describe nature perfectly, and so a model making unre-
alistic assumptions or simplifying a process is not necessar-
ily a failing of the theory or a reason to discount its ability to
guide empirical research (Levins 1966; Pielou 1969; Grimm
1994; Kokko 2007; Phillips 2015; Servedio 2020). Just as em-
pirical studies vary widely in their realism, from field-based
observational studies to highly manipulated lab experiments,
so, too, do ecological models. And just as each type of em-
pirical study has value, so, too, does each type of theory.

Step 4: The Analysis. The theoretician then uses mathemat-
ical procedures to understand the behavior of her equations
within the range of parameters that she is interested in ex-
ploring. This can include solving for equilibria, investigat-
ing the stability of the equilibria, or studying how a response
of interest (e.g., equilibrium density) varies across a range of
parameters. These are common ways of determining the
outcome of the processes being modeled. Models can be ana-
lyzed analytically or numerically. Analytical approaches use
mathematical techniques to solve the equation (i.e., find the
equation that has the output of interest on the left-hand side)
(table S1, available online). This approach requires mathe-
matical labor but producesmore general conclusions (Otto
andDay 2007).Numerical approaches (e.g., simulations) in-
volve setting model parameters to specific values and ob-
serving the outcome graphically or as numeric values (ta-
ble S1). Here, conclusions are limited to the specific range
of parameter values being explored, but because no ana-
lytical solutions are needed, theoreticians may turn to this
approach when a model is too complex to be approached
analytically. Numerical approaches are somewhat akin to
empirical experiments in that the theoretician varies a spe-
cific process (e.g., resource supply rate) to determine how
that affects an ecological outcome (e.g., consumer popula-
tion density). While analyzing a model’s behavior cannot
match the biological realism of an empirical experiment,
it does allow researchers to hold potentially confounding
factors constant and to explore a wide range of parameter
space, whereas empirical experiments need to randomize
factors that cannot be controlled (e.g., individuals, sites) and
are often logistically constrained to smaller ranges or discrete
categories (e.g., low vs. high). Likewise, the ability to depart
from the realities and constraints of the natural world allows
theoreticians to explore questions that would be difficult or
impossible to address empirically, such as the consequences
of very long timescales, complex interactions, or extreme
trait values.
Step 5: The End. Finally, the theoretician refines her equa-
tion(s) and writes up and publishes the research questions,
model, analyses, and conclusions. To refine the equations,
the theoretician will often check whether the results make
sense, both logically and in light of previous empirical or
theoretical work, and will revise the model and analyses ac-
cordingly. In writing up her findings, the theoretician will
ideally adopt practices that help empiricists understand
and use her work, such as describing how the model follows
or departs from previous theoretical research, interpreting
the results verbally, including a table of all model parameters
and their biological meanings, and describing experiments
that could be used to test the predictions. A full integration
of theoretical and empirical research in ecology will depend
on sustained efforts by both empiricists and theoreticians to
bridge the divide, and these efforts will be most fruitful when
theoreticians are motivated to write up their findings with
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empiricists in mind and to highlight assumptions and re-
sults that can be measured and tested in the lab or field.

How to Use Theory in Empirical Research

In this section we outline four ways that theory can be in-
tegrated into empirical research. These classifications are
not strict categories, and a single theory may fall into sev-
eral categories. This organization simply represents one way
to think about theory that can guide empiricists as theymove
through different stages of their research. All four of these
approaches could be used in a single study, as they are ap-
plied at different stages of project design (fig. 1).
Figure 1: How to use theory in empirical research: a case study. The highlighted study (Narwani et al. 2013) uses theory in each of the four
ways discussed in this article (see “How to Use Theory in Empirical Research”). Their research question, empirical methods, and conclusions
are shown in the center, and the specifics of how they applied each of the four approaches are in the surrounding four sections. While Narwani
et al. (2013) used all four approaches in their study, each of these four approaches can also be used effectively on its own.
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An important philosophical question to consider when
integrating theory into empirical work is what “testing a
theory” actually means. To us, an empiricist tests theory by
using empirical data to evaluate whether the outcomes pre-
dicted by the model or the assumptions it makes occur in
a natural system, not whether themath is correct (Servedio
et al. 2014). Two of the approaches covered below (test the
predictions and test the assumptions) involve testing theory.
The other two approaches (adopt the framework and use
the math) do not actually test the theory but rather accept
that it is applicable enough to be useful in guiding empir-
ical research.
Approach 1: Adopt the Framework

Some ecological theories act as general frameworks for un-
derstanding ecological dynamics (in the broadest sense) or
for understanding a major class of ecological processes (Pick-
ett et al. 2010). While these theories may also provide spe-
cific mathematical equations or predictions, the larger con-
tribution is often a new way of thinking about a problem
or a unification of related ideas. Examples of this type of
theory include the theory of evolution by natural selection
(Darwin 1859), consumer-resource theory (Lotka 1926; Vol-
terra 1927), Grime’s triangle of plant strategies (Grime 1977),
life history theory (Pianka 1970), modern coexistence theory
(Chesson 2000), the neutral theory of biodiversity (Hubbell
2001), the metabolic theory of ecology (Brown et al. 2004),
and the maximum entropy theory of ecology (Harte and
Newman 2014). Some of these theoretical frameworks are
purely verbal, some are heavily mathematical, and some in-
volve a mixture of both verbal and mathematical reasoning.
Theoretical frameworks create a scaffold within which eco-
logical patterns and the processes that generate them can
be understood, and they can provide the context in which
to integrate evidence from experiments, observational stud-
ies, and mathematical modeling (fig. 1). In some cases,
a new theoretical framework sparks the interest of empiri-
cists and prompts a rapid rise in empirical work focused on
a certain topic.
How to do it. Theoretical frameworks can enhance em-

pirical research in several ways: they can reorient how we
understand and study a biological process (e.g., the theory
of evolution by natural selection), they can unite disparate
lines of evidence into a unified framework (e.g., the effect
of temperature across organizational scales in metabolic
theory), they can help focus empirical research on a specific
process or relationship (e.g., dispersal in metapopulation
theory), or they can provide a null model for how patterns
emerge in nature (e.g., the neutral theory of biodiversity).
Although theoretical frameworks can be extremely useful,
it is also important to keep inmind that they all have short-
comings, that many will eventually outlive their utility, and
that the lack of diversity among the authors recognized for
generating theoretical frameworks in ecology has undoubt-
edly limited the range of perspectives represented.
A useful first step when motivating empirical research

with a theoretical framework is to become familiar with
the framework and with existing empirical work that has
adopted it. This can help clarify which aspects of the frame-
work have been well explored and where gaps in our collec-
tive understanding remain. It can also help reveal common
experimental designs that address the questions or capture
the processes described in the framework (Grainger and
Gilbert 2016; Broekman et al. 2019). This step can also help
reveal situations in which new empirical methods are needed
to apply an emerging framework, which can be an exciting
opportunity for empiricists (e.g., methods to quantify se-
lection on phenotypic traits on ecological timescales, intro-
duced by Lande and Arnold [1983]; methods to account
for phylogenetic relatedness in comparative studies, intro-
duced by Felsenstein [1985]; methods to applymodern co-
existence theory, introduced by Godoy and Levine [2014]).
Approach 2: Test the Predictions

Theoretical work often generates specific predictions, and
testing these predictions is a common way that empiricists
use theory (fig. 1). The central aim of testing predictions
from theory is to determine whether a pattern that a theo-
retical model predicts matches a pattern that manifests in
a natural or experimental system, ideally with the end goal
of using the theory to deepen our understanding of the pro-
cesses that create those patterns. Examples of recent em-
pirical tests of classic theoretical predictions include the pre-
dicted increase in species richness with increasing island
area and connectivity from the theory of island biogeogra-
phy (proposed by MacArthur andWilson [1967]; e.g., tested
by Prugh et al. [2008]), the predicted negative density de-
pendence of seed recruitment from the Janzen-Connell hy-
pothesis (proposed by Janzen [1970] and Connell [1971]; e.g.,
tested by Harms et al. [2000]), and the predicted strategy of
delayed germination in variable environments (proposed by
Cohen [1966]; e.g., tested by Venable [2007]).
How to do it. The first steps in testing theoretical pre-

dictions are to consider what type of model the theory uses
(box 1), to explore the model and understand (well enough)
what the math means biologically (see “ATool Kit for Un-
derstanding Equations”), and to determine what assump-
tions the theory makes (box 2). Next, the empiricist can
consider how the theory can inform experimental design.
The theoretical article will ideally lay out its predictions
clearly, in words and in figures (see box 3), for example, the
prediction that local diversity is maximized at intermediate
levels of dispersal between habitat patches (Mouquet and
Loreau 2003). The empiricist can then determine what needs
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Box 1: Types of mathematical models

Determining the general attributes of a theoretical model by asking the following three questions can help
empiricists understand a model and determine whether a model is a good fit for their research.

How does the model deal with the passage of time? Determining whether and how a model involves the passage
of time will provide insight into the type of study system it describes. Models that describe how a system changes
through time are called dynamical models and are very common in ecology. Some dynamical models include dis-
crete time steps (e.g., from one life stage to the next or from one generation to the next), whereas others model time
continuously. Discrete-time models will have something like n(t 1 1) or nt11 on the left-hand side of the equation
(which represents the value of a variable at the next time step), whereas continuous-time models will have something
like dn=dt on the left-hand side of the equation (which represents a change in the value of a variable over time). This
distinction can be important when determining whether a model matches a given study system. For example, because
population sizes change when organisms reproduce or die, if the focal organism reproduces in discrete time steps with
nonoverlapping generations (e.g., annual plants, birds), then a discrete-time model may be most applicable. However,
if the organism reproduces continuously (e.g., zooplankton, aphids), a continuous-time model might make more
sense. While understanding how time is passing in a model can be helpful to the empiricist, note that theoreticians
may model time in a certain way for mathematical convenience and that it is possible to convert a model between dis-
crete and continuous time under the appropriate assumptions (Otto and Day 2007). Finally, some models do not in-
clude the passage of time at all, including most metabolic theory (Brown et al. 2004) and optimal foraging theory
(Charnov 1976).

Is the model mechanistic or phenomenological? Although the distinction between mechanistic and phenomeno-
logical models is often fuzzy and will depend on the perspective of the investigator and the theoretical framework
in which she is working, thinking about this distinction can help the empiricist decide whether a model fits her
needs (Otto and Day 2007; White and Marshall 2019). Mechanistic models explicitly include underlying biological
mechanisms or, put another way, explicitly model dynamics happening at a different level of organization. For exam-
ple, in models that describe resource competition, a mechanistic model will model the amount of each resource pro-
duced and consumed through time. Classic examples include MacArthur’s consumer-resource model (MacArthur
1970) and Tilman’s resource competition model (Tilman 1977). In both of these, the resources being competed for
are included in the model. In contrast, phenomenological models are focused on the patterns (i.e., the phenomena) that
emerge from an underlying process rather than the process itself. For example, a phenomenological model of popu-
lations competing for a shared resource tracks population dynamics of consumers without explicitly including the
underlying mechanisms that drive those responses (Otto and Day 2007; White andMarshall 2019). Instead of includ-
ing the entity being consumed in the model, competition for limited resources is implied by including terms such as
the carrying capacity or competition coefficients. A classic example is the Lotka-Volterra competition model (Lotka
1926; Volterra 1927).

If the empiricist has an interest in the underlying mechanisms (e.g., the nature of resource competition) and has
the required information to apply a mechanistic model (e.g., the key resources underlying competition are known),
then a mechanistic model can offer deeper insights about the system. If the empiricist does not, then a phenomeno-
logical model may be more appropriate and does not require as in-depth an understanding of underlying drivers.

Are the predictions qualitative or quantitative? Qualitative predictions state that x is related to y in some way and
are very common in ecological theory. For example, the theory of island biogeography predicts that species rich-
ness is positively related to island size and proximity to the mainland (MacArthur and Wilson 1967). A qualitative
prediction may describe a broad pattern, such as “Species reach carrying capacity” or “x affects y,” or may be more
specific, such as “Carrying capacity scales linearly with intrinsic growth rate” or “There is a hump-shaped relationship
between x and y.” By contrast, quantitative predictions include specific numerical values and are more common in eco-
system theory and metabolic theory. For example, metabolic theory predicts that an organism’s metabolic rate scales
with the 3/4 power of its body mass (West et al. 1997). Considering the level of specificity of a model’s predictions can
help the empiricist start to think more precisely about the possible outcomes of an experiment that would support a
given prediction.
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Box 2: Meeting model assumptions

A critical step in designing empirical research that provides a robust test of theoretical predictions is to ensure
that the study meets as many of the model’s assumptions as possible. This is not always straightforward, as model
assumptions may not be explicitly stated in words in a theory article. If assumptions are stated explicitly, they will
often be found in the “model” section of the article, and some indication will hopefully be given of how critical the
different assumptions are for the predictions generated by the model. For example, there may be a paragraph in
the discussion that mentions the assumptions and limitations of the model and is somewhat analogous to a “caveats”
section in an empirical article. If this is not in the article, the tips provided in “ATool Kit for Understanding Equations”
may help empiricists uncover assumptions that are described mathematically but not verbally and feel empowered to
explore how sensitive the outcome is to the assumed relationship between variables and parameters using a plug-and-
play approach (tip 4).

Some common assumptions in models used in ecological theory are as follows:

• The system is analyzed or observed at dynamic equilibrium.
• Species interactions are competitive (i.e., not facilitative).
• Resources are limited.
• Individuals interact with all other individuals with equal likelihood (i.e., no spatial structure).
• Individuals within a species are identical in terms of how they interact, reproduce, and survive (i.e., no
intraspecific variation).

• There is a timescale separation between ecology (fast) and evolution (slow).
• There is a timescale separation between resource growth (fast) and consumption (slow).
• Dispersal rates are homogenous across species and are not spatially explicit (i.e., global dispersal).
• The outcomes of biological processes are deterministic (i.e., no stochasticity).
• Population growth is density dependent and follows a simple functional form (e.g., linearly declining per
capita growth rate as the population size increases in the logistic equation).

• Predator consumption rates saturate as prey densities increase (i.e., type II functional response).
Note that some of these assumptions are made for mathematical convenience (e.g., no spatial structure, no sto-
chasticity), whereas others reflect biological realities (e.g., resources are limited; population growth is density depen-
dent). Likewise, some of these assumptions should be evident from the mathematical equations themselves (e.g., spe-
cies interactions are competitive; predator consumption rates saturate as prey density increases), whereas others must
be stated explicitly in words in order to be communicated (e.g., no spatial structure, no intraspecific variation).

While keeping these types of distinctions in mind can help the empiricist navigate the task of determining what
a model’s assumptions are and how closely they need to be matched experimentally, deciding how perfectly assump-
tions need to be met in order for a model to be useful is a subjective exercise. Our stance is that empirical work does not
need to perfectly satisfy every model assumption and that the focus should be on understanding which assumptions are
critical to the outcomes and which are more flexible. Ideally, this is outlined or at least alluded to in the theory article
(Servedio 2020). Worthwhile questions to ask include “If these assumptions were broken, how would this change the
predicted outcome?” and “Is it possible to meet the critical assumptions of this model in the biological system of in-
terest, or is a different model or system needed?”

Thinking about assumptions can be a useful philosophical exercise for empiricists at both the microscale of an
individual experiment and the macroscale of the entire field. At the microscale, there are assumptions in every em-
pirical study, even those not based on theory, and grounding experiments strongly in theory can help bring assump-
tions to light and force researchers to explicitly state what they are and when they are bent or broken. This can en-
courage the empiricist to think more deeply about experimental design and can make it easier for future researchers to
build on their work. At the macroscale, it is useful for the discipline as a whole to regularly examine the common
assumptions that have become the default and to consider whether they indeed reflect reality and how outcomesmight
change if these assumptions were to be broken (see “Test the Model Assumptions”).
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to bemanipulated andwhat needs to bemeasured: here, an
experiment in which organisms’ dispersal rates between lo-
cal patches are manipulated and diversity is measured (e.g.,
Parain et al. 2019). Theory can also help inform the more de-
tailed elements of experimental design, for example: Should
all organisms have the same dispersal rates? Howmany dis-
persal levels are needed to detect the predicted relationship?
Is repeated sampling over time necessary? For each question,
the empiricist will have to consider trade-offs between match-
ing the experimental design to the theoretical assumptions,
matching the design to the attributes of a natural system,
and designing an experiment that is feasible to implement
(box 2; Grainger and Gilbert 2016; Laubmeier et al. 2018;
Uszko et al. 2020).
At this stage, a careful consideration of what evidence

is needed to strongly support or refute a theoretical predic-
tion can be valuable. Powerful empirical tests of theoretical
predictions document a pattern (or, ideally, multiple patterns)
that are very unlikely to occur by chance or alternative mech-
anisms, that support a single hypothesis, and that (ideally)
reject one or multiple alternative hypotheses (Platt 1964;
Loehle 1987). They quantitatively measure responses to the
manipulation of the independent variable, they have suf-
ficient replication to detect the theoretically predicted re-
sponses, and they use experimental conditions that are consis-
tent with the theory’s assumptions. Doing somakes it possible
to draw conclusions about the validity or generality of the
theory, based on whether results are consistent with the
theory’s prediction.
However, a challenge with hypothesis testing in ecology

is that the context and system-specific nature of ecological
dynamics mean that results that fail to reject a null hypoth-
esis are not necessarily a strong refutation of a theory (Har-
din 1960; Loehle 1987). As such, it is worthwhile to carefully
consider what conclusions can be drawn if experimental re-
sults do not support the theoretical prediction and how the
experiment can be designed so that any outcomewill provide
interesting insight into the process of interest. One way to
conduct more nuanced hypothesis testing is to ask “When
does x affect y, as predicted by theory?” rather than “Does
x affect y?” The answer is more likely to be “sometimes”
than “always” or “never.” For example, research suggests that
dispersal is a stronger driver of diversity in the absence of
predators than when predators are present (Kneitel and
Miller 2003; Chase et al. 2010). There is a good reason why
many conclusions in ecology include the word “can”: it takes
a critical mass of empirical evidence frommany systems in
order for the field to accept that a theoretical prediction is
broadly and generally supported. However, while contribut-
ing empirical support for a theoretical hypothesis is a worth-
while achievement, we also strongly encourage the dissem-
ination of negative results (those that detect no effect), which
make important but undervalued contributions to scientific
progress and can highlight areas where existing theory needs
modification (e.g., fig. 1; Loehle 1987; Knight 2003).
Approach 3: Use the Mathematical Equations

Sometimes a valuable part of a theory to an empiricist is a
specific equation that can be used to obtain a quantitative
estimate of a biological process that is difficult or impossi-
ble tomeasure directly (fig. 1). For example, measuring the
strength of competitive interactions or the rate of disease
transmission is difficult, but established models can be used
to estimate these from more easily measured quantities such
as birth and death rates. Below, we discuss two specific ways
that an empiricist can use equations from theory to gain
new information: model fitting (in which parameters are
estimated) and the direct use of an equation (in which the
response variable is calculated). A third and very straight-
forward way that an empiricist can use mathematical equa-
tions, particularly those that are tailored to a given biological
system, is to help determine which biological processes are
most relevant to a particular outcome and should therefore
be measured or manipulated in experiments. For example,
models of flour beetle dynamics identify several types of
cannibalism as important to population growth (Dennis
et al. 1995), while annual plant models highlight germina-
tion rate and seed bank viability as key mediators of pop-
ulation growth rates (Levine and Rees 2004). This guidance
can be particularly helpful for empiricists starting work in a
new system.
How to do it. The first step in using equations is to fig-

ure out what information is desired and which candidate
models can provide that information. At this stage, it is im-
portant to check that the assumptions of candidate models
are satisfied by the biological system and experimental de-
sign being used (box 2), because once a model is used to es-
timate a biological process, it becomes implied that the sys-
tem meets the assumptions of that model and the quality of
any subsequent results will depend on this being (mostly) true
(Clark et al. 1998). When selecting candidate models, estab-
lished models can be used, or existing models can be mod-
ified to reflect the dynamics and conditions of the study
system. The modification of existing models to fit the study
system or the dynamics of interest can blur the line between
using and creating theory, which is often a sign of effective
integration of empirical and theoretical research (e.g., Duffy
et al. 2005; Moeller et al. 2016).
The first way to use equations in empirical research is

model fitting (aka “fitting models to data”). To do this, the
empiricist identifies mathematical models that describe a
process of interest, collects measurements of the response
and predictor variables in these models, and then uses sta-
tistical techniques to estimate the values of free parameters
(those whose values are unknown) that best match the
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relationship observed in the data (Bolker 2008; table S1). Each
of the free parameters represents a biological process or prop-
erty of interest. An example of this approach is using a
functional response model to estimate two parameters—
the space clearance rate (aka attack rate) and handling time
in a predator-prey interaction—by inputting data from an
experiment that quantifies the number of prey consumed
(response variable, y) when different numbers of prey are
available (predictor variable, x) (West and Post 2016). To fit
amodel, the empiricist provides candidatemodels (e.g., Ricker
Box 3: How to interpret common figures in ecological theory articles

Here, we present five common types of figures in ecological theory (box fig. 1) and walk through their interpre-
tation. Each panel shows a different way of representing the structure (A) or the outcome (B–E) of model simulations
of the same model (eq. [1] in the main text).

Stock and flow diagram (box fig. 1A). These diagrams visually summarize a model by showing its components
and how they interact. Box figure 1A shows one of many ways to draw a stock and flow diagram and follows con-
ventions from Otto and Day (2007; see also Ogbunugafor and Robinson 2016). Here, circles are variables that can be
thought of as “stocks” (e.g., the total amount of resources R and consumers C). Symbols within circles are variables,
and symbols labeling the arrows are parameters. Arrows moving toward a circle are inflows that increase the amount
of stock, while arrows moving away from a circle are outflows that decrease the amount of stock. Arrows moving from
one type of stock to another show how those variables are interdependent and where one type of stock is converted
into another (e.g., consumed resources converted into consumer growth). In this model, arrows between two stocks
represent interspecific effects, arrows that feed back on themselves represent intraspecific effects, and arrows that point
out of one stock without connecting to another stock represent flows out of the system (i.e., mC).

Time series (dynamic) plot (box fig. 1B, 1C). This type of figure shows how variables of interest change over time.
They can be used to assess equilibria; for example, for a given combination of parameter values, one can see how
long a system exhibits transient dynamics (i.e., an initial phase of instability) before it stabilizes. They can also be used to
determine whether dynamics are static (i.e., population size remains constant in box fig. 1B) or oscillatory (box fig. 1C).
Finally, they can be used to quickly assess ecological outcomes (e.g., which species persist over the long term) or how
the dynamics of two variables are interrelated (i.e., synchronous dynamics vs. asynchronous dynamics).

Phase-plane (phase-portrait) diagram (box fig. 1D, 1E). These summarize the trajectories of variables in multi-
variable models and serve as an alternative to time series plots. In these plots, the location of the tail of each arrow
marks the value of each variable at the start of a time step, and the location of the head of the arrow is the value at
the end of the time step. The length of the arrow represents the size of the change, and the arrow’s angle shows the
relative magnitudes of change of one variable compared with the other. The isoclines (colored lines) represent the
range of values at which the specified variable experiences no net growth if the value of the other variable were to
be held constant (often not biologically plausible). The point at which the isoclines of the two species intersect is
the two-species equilibrium. Here, the two-species equilibrium is stable when e p 0:65, as population sizes con-
verge on these points. Note that variables’ trajectories could instead be shown as a vector field in which arrows point
toward stable equilibria and away from unstable equilibria.

Bifurcation plot (box fig. 1F). These are useful for visualizing where the nature of the dynamics changes, for example,
between having a single stable value to having unstable values or to something more variable. A bifurcation point is the
value of a given parameter where such changes in the model’s dynamical behavior occurs. In box figure 1F, for exam-
ple, a conversion efficiency of 0.65 leads to stable dynamics (a single consumer density over time), whereas a conver-
sion efficiency of 0.75 causes oscillations (a range of consumer densities over time; minimum and maximum values of
the oscillation are denoted on the plot). For this model, the range of abundances after the bifurcation is shaped like a
tuning fork because as conversion efficiency increases, the amplitude (or the range of values covered) of the oscillating
dynamics increases.

Summary plots (box fig. 1G). These show how changing multiple parameters at once affects an outcome of in-
terest, for example, the type of population dynamics observed (e.g., stable limit cycles), and show the parameter values
where transitions between outcomes occur. Here, each axis is a different parameter in the model, and the shading
indicates which outcome is observed. They can also show whether the effect of one parameter on an outcome of interest
depends on the value of other parameters. Parameters that are not explicitly shown on the axes are assigned fixed values
that are often specified in figure captions (see box fig. 1 caption).
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Box Figure 1: Five types of figures that are commonly encountered in theory articles: a stock and flow diagram (A), time series plots (B,
C), phase plane diagrams (D, E), a bifurcation plot (F), and a summary plot (G). All panels are based on a modified Rosenzweig-
MacArthur model of consumer-resource interactions (eq. [1]). B–F are parameterized as follows: r p 1, K p 3:5, a p 1:3, h p 0:8,
m p 0:5. Two values of conversion efficiency (e) are contrasted in B–E and are represented by dots in F and G. Parameters and code
to reproduce this figure are available at https://mabarbour.github.io/foodweb-theory/rosenzweig-macarthur.html.

https://mabarbour.github.io/foodweb-theory/rosenzweig-macarthur.html
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model, Beverton-Holt model, a new model) that each pro-
pose a different relationship between x and y (e.g., straight
line, hump shaped), along with the data for the variables in
the model (e.g., x and y). Then statistical methods such as
maximum likelihood are used to estimate the attributes (pa-
rameters) of that relationship (e.g., the y-intercept, the slope,
and the curvature) of the model with the highest probability
of explaining the observed data. These statistical methods
usually quantify the deviation between the model expecta-
tion and the data and then iteratively alter the parameters
to make the deviations smaller until the best-fitting model
is found (Bolker 2008). The outputs of model fitting and
model comparison are estimates of the parameters, their
uncertainties (errors), and relative support for the differ-
ent candidate models. The empiricist may be interested in
these parameter values themselves (e.g., determining the
space clearance rate of a given predator on a specific prey)
or how they change with an experimental manipulation
(e.g., determining how space clearance rates vary with tem-
perature, as in DeLong and Lyon 2020).
A second way to use equations in empirical research is

to collect data that can simply be plugged into an equation
as predictor variables in order to calculate the response var-
iable. In this case, the collected data are the variables and
parameters on the right-hand side of the equation, and the
variable on the left-hand side of the equation is the value of
interest that is calculated. Examples of this approach in-
clude estimating maximum sustainable yield in fisheries from
population growth rate and carrying capacity (Schaefer 1954)
and estimating the spread rate of invading organisms from
dispersal and population growth rates (Kolmogorov 1937;
Andow et al. 1990). To do this, the empiricist collects the
necessary data and enters them as predictor variables into
the equation. The estimated outputs that are generated can
then be used in subsequent analyses, for example, determin-
ing how species spread rates are affected by habitat type
(Andow et al. 1990). One issue to be aware of with this ap-
proach is that collected data will have error surrounding
them, and determining the proper way to carry this error
through to the final estimated data can require careful con-
sideration (e.g., Terry et al. 2021).
Approach 4: Test the Model Assumptions

A final way that empiricists can use theory is to directly test
the assumptions that underlie theoretical models (fig. 1;
box 2). This type of empirical research has a strong link
to theory and is often conducted with the express purpose
of informing future theoretical work (Price et al. 2012; Serve-
dio et al. 2014). This type of research has the potential to
make a major impact in the field, particularly when the tested
assumptions are widely invoked. For example, empirical re-
search that challenged the widespread assumptions that evo-
lution is slower than ecology (Reznick et al. 1990; Losos
et al. 1997) and that interspecific niche differences play a
major role in structuring ecological communities (Hubbell
2001) has inspired major bodies of research. Looking for-
ward, many of the simplifying assumptions of the metabolic
theory of ecology have not been adequately verified by em-
pirical research (Price et al. 2012), and the widely adopted
assumption that pairwise interactions can adequately cap-
ture community dynamics, which underlies much of coex-
istence research, remains largely untested (Levine et al. 2017).
How to do it. The first step in testing model assump-

tions is to identify assumptions that are likely to have sig-
nificant impacts on the conclusions drawn in a field but are
not yet well supported by empirical research. This can be
achieved through a broad reading of both the theoretical
and empirical work in the field, and widely applied assump-
tions may be particularly likely to come to light during a
literature review or meta-analysis. Assumptions that have
substantial effects on model outcomes will hopefully be iden-
tified explicitly in theoretical articles (see box 2) and can also
be explored using the techniques for understanding equa-
tions provided below (particularly tip 4, “Achieve a work-
ing understanding of equations”). The next step is to collect
the data required to support or refute the assumption. For
example, while classic foraging theory assumes that per cap-
ita predator feeding rates are independent of predator den-
sity (Holling 1966), empirical data on feeding rates across
predator densities have refuted this assumption and prompted
revised models (Vucetich et al. 2002; DeLong and Vasseur
2011; Novak et al. 2017).
One consideration when designing this type of exper-

iment is how broadly the results can be applied. If the goal
is to assess whether the assumption is met in the type of
system to which this theory is most often or most appropri-
ately applied, then testing in a representative system makes
sense (e.g., Bernhardt et al. 2018). If the goal is to make a
broad statement about whether an assumption is met, in
general, then data from multiple systems may be needed
(e.g., DeLong and Vasseur 2011). Ideally, the final step for
empirical research that tests model assumptions will be that
the results of such experiments will feed back to inform and
improve subsequent theoretical work.
A Tool Kit for Understanding Equations

So far, we have described how theory is created and have
highlighted several ways that empiricists can integrate the-
ory into their research to attain a better understanding of
nature. However, many theories in ecology are expressed in
the language of math, and in order to effectively use math-
ematical theory, empiricists must be able to understand it. A
helpful first step toward understanding mathematical theory
is to determine, generally, what type of model one is dealing
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with by answering some basic questions (box 1). The next
step is likely the biggest hurdle most empiricists face: un-
derstanding equations.We tackle this challenge by provid-
ing concrete tips for visualizing functions, interpreting com-
mon symbols and figures, and deciphering their biological
meanings. For readers looking for a more comprehensive
treatment of these topics, we also provide a list of textbook
sections that cover these topics in much greater depth (ta-
ble S1).
To anchor our discussion,webegin bypresenting amod-

ified Rosenzweig-MacArthur consumer-resource model
where both the consumer (with density represented by the
variableC) and the resource (with density R) grow and im-
pact each other (Rosenzweig and MacArthur 1963):
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Now, did you read the equations or skip past them? Our
first piece of advice is to give the math a chance: spend five
minutes trying to get to know it. The more time one spends
with equations, the more familiar reading new equations
becomes. Try not to get bogged down by new symbols (e.g.,
Greek lettering), as often the specific choice of symbols used
is arbitrary or based on precedent. Here, C and R are the den-
sities of individuals in each population, and dC=dt and dR=dt
are the rates of change of each population’s size; note that
dC=dt represents a rate of change in continuous-time mod-
els, whereas discrete-time models are expressed as Ct11 p
f (Ct), which represents the value of a variable at the next
time step (box 1). When dC=dt 1 0, the value of C is in-
creasing over time, whereas C is decreasing when dC=dt !
0. In equation (1), resources experience some maximum
per capita growth rate in the absence of competition or con-
sumers, denoted by r, and have carrying capacity K. In equa-
tion (2), a is the space clearance rate (aka attack rate; the
area or volume cleared of prey per predator per prey unit
time), h is the amount of time a consumer spends han-
dling each prey item (e.g., time to kill, eat, digest, etc.) that
would otherwise be spent searching for prey, e is the con-
version rate of consumed resources into new consumer in-
dividuals, and m is the per capita rate of consumer death.
What is the best way to begin approaching these equa-

tions?We start by unpacking an equation’s basic anatomy
and considering the terminology that can be used to discuss
different elements of equations. Each symbol in an equation
can be classified as a variable, a parameter, or an operator.
As described above (“How Is Mathematical Theory Cre-
ated?”), a variable is a quantity whose value changes either
dependently (e.g., population size) or independently (e.g.,
time) of other variables. Parameters are fixed quantities that
remain constant within a given equation (e.g., consumer death
rate). Constants are numbers that enter equations according
to some assumption made by the theoretician. For example,
in equation (1), the 1 in 12 R=K indicates that resources
grow at 100% of their intrinsic growth rate if R is near zero.
Sometimes, constants are called coefficients or constant fac-
tors when multiplying a variable (e.g., the coefficient rN in
an equation of exponential growth represents the fact that
every individual will produce r surviving offspring, on av-
erage). Operators describe how different quantities in equa-
tions interact with each other, including simple operations
from algebra (i.e., addition, multiplication, etc.) and com-
plex ones, such as those associated with set theory (e.g.,∩)
or calculus (e.g., ∫; fig. 2).
Collections of symbols also have their own terminology.

A term is a set of variables and/or parameters that are mul-
tiplied or divided together or placed inside parentheses. There
are two terms on the right-hand side of equation (2): e(aRC)=
(11 ahR) andmC. These terms may be composed of mul-
tiple factors that multiply together to give the term (e.g., m
times C). An expression is the full set of terms contained on
the same side of the equal sign. Any one equation can be
rearranged, or “expressed,” in different ways, resulting in dif-
ferent expressions that maintain the equivalence between
the left-hand side and the right-hand side of the equation
(sometimes abbreviated to LHS and RHS in theory articles,
respectively). Clearly, there is a specific terminology asso-
ciated with different elements of equations that should not
be used interchangeably (i.e., variable( parameter, term(
expression).
Now, let’s get into some concrete tips.
Tip 1: Align the Math with the Biology

Math provides an abstraction of nature, but backtranslat-
ing math into biology can help make equations interpret-
able and can make it easier to identify the model’s assump-
tions. In the equations above, notice that the population
growth of resource R depends on the population size of
consumers C and vice versa (i.e., R and C appear in both
equations). This interdependence makes intuitive biological
sense because the consumer population relies on resources
to produce offspring, and as consumers consume resources,
the resource population is depleted. Also notice that in these
equations, the resource can exist without the consumer (if
C p 0 in eq. [1], the growth of R reverts to logistic growth),
but the consumer cannot persist without the resource (if
R p 0 and C 1 0 initially in eq. [2], C will decline to



Typical
notation

Context/
description

Operator Realm Mathematical
definition

Example of use in
ecology

Visual representation

∫
∫ ( )

Integral Calculus The area under a
function f(x) for
the range of x
values between a
and b.

Total amount of
resources consumed 
by consumer, with a
gradient of resource
types (e.g., seeds of
different sizes)
(Roughgarden 1971).

d

or ′( )

Derivative Calculus The slope of a
function 
evaluated for any 
value of x. Equals
the rise/fall in the
function for a
very small
change in x.

Used to address rates
of change of
population size over
time and the stability 
of equilibria.

d2 2

2

or ′′( )

2nd-degree
derivative

Calculus The derivative of
a derivative
indicating how
fast the slope
changes (i.e.,
acceleration) for
any value of x.

Used to describe
whether fitness is

stabilizing (
2

2 <0) or

disruptive (
2

2 >0)

for trait x.

∂ Partial
derivative

Calculus When a function 
has more than 
one variable, say 
x and y, a partial
derivative
assesses the slope
in one direction,
say x at a specific
(underived) value
of y.

Change in population 
size over time at a
particular point in 
space (Okubo and 
Levin 2013)

A or Aij Uppercase,
bold Roman 
symbol

A matrix.
If unbolded 
and italicized 
(i.e., Aij),
refers to a
single cell in 
the matrix.

Matrix 
algebra

An i (row) by j
(column) matrix.
For square
matrices, i and j
vary from 1 to n,
the number of
dimensions.

A Leslie matrix 
contains information 
on fecundity and 
survival of different
life stages.

v or vi or
⃗⃗

Lowercase,
Roman 
symbol

A list or
vector if
bold, a single
element if
unbolded

Matrix 
algebra

A vector A vector representing 
population sizes of
different life stages or
species
Figure 2: Common theoretical notations.
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extinction [i.e.,C p 0] over timebecausedC=dt ! 0). Again,
this intuitively makes sense (see tip 4 for tips on how to un-
derstand any equation), and it illustrates how models often
build on previous models (here adding a consumer to a
model of resource growth). Notice also that the equation
for resource population growth includes a carrying capac-
ity (K), which causes population growth to slow as the value
ofR (resource density) approachesK (i.e.,R=K approaches 1,
causing the quantity in the parentheses to approach zero).
This indicates that in this particular set of consumer-resource
equations, the resource R is biological and is itself limited
by density-dependent competition. This equation for R thus
fits the behavior of a plant but not an abiotic resource that
enters and exits the system in a density-independent fashion
Jacobian matrix Matrix 
calculus

A square matrix 
of derivatives
describing linear
approximations
of function fi(x1,
x2, …, xn) for each 
equation i, with

as the entry in 

row i column j.

The Jacobian matrix 
describes the rate of
change of each 
function with respect
to each variable.
Used in linear
stability analyses,
where the functions
describe how each 
variable changes over
time.

Hessian matrix Matrix 
calculus

A square matrix 
of second-order
derivatives
describing the
curvature of
function fi(x1, x2,

…, xn), with
2

as the

entries in row j
and column k.

Describes the local
curvature of a
function with many 
variables. Can be
helpful in identifying 
critical points of a
function (e.g., local
maxima). Used in 
evolution to 
determine
evolutionarily stable
strategies (ESS).

Eigenvector Linear
algebra

A vector
associated with a
square matrix 
which, when 
multiplied with 
the matrix, does
not change its
direction.

The dominant
eigenvector (with the
largest eigenvalue) of
the Leslie Matrix is
the stable age
distribution of a
population.

Eigenvalue Linear
algebra

A unique real
number
associated with 
an eigenvector
which represents
how much the
eigenvector gets
scaled when 
multiplied by the
square matrix.

Describes the
direction and speed of
change. The largest
eigenvalue of the
Leslie Matrix 
represents the long-
term growth rate of
the population.

Mathematical term Realm Mathematical
definition

Example of use in
ecology

Visual representation

Figure 2: (Continued)
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(i.e., sunlight). Try picturing two organisms that adhere to
the biological assumptions above in order to make the
abstract math more tangible. Last, if the consumer spends
relatively little time handling a resource relative to the time
it takes to find and attack that resource (so h ≈ 0, e.g., a ses-
sile filter feeder), then the rate of resource consumption by
each consumer increases linearly with the population size
of the resource (because the denominator in eq. [2] equals 1).
If, by contrast, substantial time is spent handling resources
(i.e., h ≫ 0, e.g., carnivores that hunt large prey), then the
rate of resource consumption saturates when more resources
are present than the consumer has time to consume.
Tip 2: Think in Terms of Stocks and Flows

On a basic level, equations describe how variables grow or
shrink in response to other variables. The stock is the amount
of a given variable that exists at any point in time (e.g., pop-
ulation size), whereas flows are inflows (i.e., individuals added
by birth) and outflows (i.e., individuals being removed by
death) that affect the amount of stock and its rate of change.
It can help to keep track of which parameters represent in-
flows compared with outflows. Drawing out a stock and flow
diagram (box fig. 1A) by linking stocks (typically represented
by circles) and flows (arrows) can be helpful, especially when
multiple terms cause any one variable to shrink or grow or
when multiple variables are linked. Although the conven-
tions for stock and flow diagrams vary across the literature,
we use a recommended approach that maximizes connec-
tions between the equations and the diagram (Otto and
Day 2007; see also Ogbunugafor and Robinson 2016).
Tip 3: Verbally Summarize Complex Terms

Some mathematical terms are complex and involve many
symbols. For example, the term eaRC=(11 ahR) is the con-
sumer birth rate, but it can be broken into three main parts:
the number of consumers (C), the foraging rate per con-
sumer (aR=(11 ahR)), and the number of consumers pro-
duced per resource eaten (e). By breaking down multisymbol
terms in this way, we can see which mechanisms are being
invoked (here, individual-level foraging, satiation, reproduc-
tion) to generate higher-order phenomena (here, population-
level growth). Thus, although complex, we can simplify equa-
tion (2) to read as just two parts: individuals added via birth
due to consumption minus individuals lost via death. These
simplifications can be written out in words, as we have done
in our description of eaRC=(11 ahR), or can be shown by
annotating the equations to reflect the summarized descrip-
tions. Doing so reduces the number of specific symbols that
need to be tracked. Note that some parameters in equations
may themselves be a simplification made by the author. For
example, parameter h in equation (2) is a consumer’s han-
dling time, but h can be expanded further to include time
spent subduing a resource, time spent consuming it, and
time spent resting after consumption. Rearranging equations
to build new expressions (while maintaining left-hand-side
and right-hand-side equivalence) can produce more biologi-
cally intuitive descriptions of terms (e.g., dividing both sides
of eq. [2] by C in order for the left-hand side to be expressed
as a per capita rate).
Tip 4: Achieve a Working Understanding of Equations

Well enough is better than not at all, but what level of un-
derstanding is sufficient to be useful? For example, onemay
not need to know at what exact value of a variable a func-
tion reaches an inflection point, but understanding whether
the function is saturating or nonsaturating is still useful.
One trick is to think in terms of what happens to a depen-
dent variable when the independent variable takes on a partic-
ular value, especially an extreme value. For example, consider
what happens in an equation if a variable is zero or a large
number: perhaps an asymptote is reached, or the function
may become undefined (e.g., division by zero), meaning that
the value chosen is outside the domain (set of possible val-
ues) of the function. Solving equations with arbitrary values
of variables also can help determine whether a function is
linear or nonlinear or whether relationships between variables
are negative or positive. This is a plug-and-play approach
where plugp input value and playp calculate output value.
This approach can be used to understand the relationship
between two variables for some specific combination of pa-
rameter values or to explore how different parameter values
change the relationship between variables.
Tip 5: Visualize Functions Precisely by Plotting Them

Tip 4 described how to generally understand what a func-
tion looks like. For some purposes, though, this is not suffi-
cient. Although a theoretician’s ideal solution to this problem
would be to find analytical solutions, doing so may require
expert knowledge and may not be feasible for some com-
plex equations. For someone trying to better understand a
theory, another option is to input equations in a spread-
sheet (e.g., Excel) or a programming application (e.g., R)
and use plotting to explore the consequences of changing
different parameter values or the initial value of variables
on the dynamics of the state variable itself (e.g.,Nt). This is
essentially a simple numerical analysis. A worked example of
how to explore equations using simple numerical analysis
can be found in chapter 3 of Bolker (2008). Alternatively,
interactive applications for exploring certain models can be
found online (e.g., Shiny apps; see McGuire et al. 2021).
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Tip 6: Identify Common Signposts

In reading theory articles, one might notice a range of sym-
bols of various script types (e.g., Roman, Greek) and type-
faces (e.g., bolding, capitalization, cursive script). Although
any one symbol may be used to denote entirely different
variables in different articles or, even worse, different sym-
bols may be used to denote the same biological process in
different articles entirely at the discretion of the author,
some symbols are used consistently and have a specific mean-
ing (Edwards and Auger-Méthé 2019). When these types
of symbols appear in theory articles to symbolize complex
operations or data structures, they are rarely defined
because they are considered common knowledge. Not know-
ing what these symbols represent, or even which symbols
are specific to that article and which hold some generally
acceptedmeaning, can be a major barrier to understanding
equations. In figure 2, we present a list of common symbols/
typefaces, describe what they mean mathematically, and
provide an example of their use in a biological context. Al-
though we cannot cover every symbol that will be en-
countered in theory articles, simply knowing that undefined
symbols and specific typefaces often hold specific meaning
should help you recognize when and what to ask of a search
engine (most symbols can be copied and pasted into search
engines). We also cover some commonly encountered math-
ematical objects and operations (e.g., Jacobianmatrices) in
figure 2.
Tip 7: Consider the Fact That Some Information Might
Be Missing, Presented Unclearly, or Incorrect

In some instances, confusion on the part of the reader may
stem from the presentation of the material itself (e.g., un-
defined terms, unclear units) rather than the reader’s knowl-
edge. We hope that our discussion of some of the barriers
to empiricists understanding theory will encourage theo-
reticians to present their work in a way that can be more
easily interpreted by a nonexpert. And while we have fo-
cused our discussion on tests of theory that do not involve
determining whether the math is correct, it may also be
helpful for empiricists to keep in mind that theory is not
infallible and that in some instances the math may indeed
be incorrect. We suggest that empiricists, after putting in
some effort to understand a theory article and arriving at un-
resolved uncertainties, contact the authors for clarification.
Conclusion

Wehope that by demystifying theoretical work, the perspec-
tives presented here will help break down current barriers
to the integration of and feedback between theoretical and
empirical research in ecology. We particularly hope that this
article is valuable to early-career empiricists starting out in
the field. Charles Elton (1935, p. 149), when reviewing
Alfred Lotka’s book on the mathematics of populations, fa-
mously critiqued, “Like most mathematicians, [Lotka] takes
the hopeful biologist to the edge of the pond, points out
that a good swim will help [their] work, and then pushes
[them] in and leaves [them] to drown.” Unfortunately,
nearly a century later, hopeful empiricists are still regularly
being left to flail around in the murky waters of theory.
Here, we offer a life raft and encourage empiricists to dip into
the shallow waters of theory and to slowly gain the confi-
dence, capability, and curiosity to venture deeper.
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