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A COMPARATIVE APPROACH TO THE POPULATION-GENETICS
THEORY OF SEGREGATION DISTORTION

Marcus W. FELDMAN AND SArRAH P. OTTO

Department of Biological Sciences, Stanford University, Stanford, California 94305

Abstract.—Mathematical models of four well-known naturally occurring systems of segregation
distortion are compared. These include the sex-ratio chromosome of Drosophila pseudoobscura,
the Segregation Distorter (SD) complex of D. melanogaster, the t locus in Mus musculus, and
the sex-ratio system in Aedes aegypti. Dynamics of these models are compared with the classical
one-locus multiple-allele viability system. For the SD complex and the sex-ratio model of A.
aegypti, the role of recombination is reviewed. Departures from Mendelian segregation cause
fascinating irregularities in the relationship between linkage and linkage disequilibrium, as well
as in predictions for the evolution of recombination itself.

The discovery of segregation distortion in nature has led to the development
of some fascinating mathematical theory. This theory has had two objectives. On
the one hand, it is possible to design experiments that produce estimates of forces
that might balance distortion, and the theory can be used to indicate whether
these estimates are enough to explain the persistence of distortion and the poly-
morphism associated with it. On the other, one can ask questions about
the evolution of segregation distortion itself, and among these, perhaps the
most prominent concern the robustness of Mendelian segregation and its evolu-
tionary stability. Reviews that address the qualitative issues posed by the exis-
tence of extreme meiotic drive are those of Zimmering et al. (1970) and Crow
(1979).

Segregation distortion produces significant qualitative departures from the the-
oretical predictions that can be made from the mathematical theory of natural
selection with Mendelian segregation. The first models to include segregation
distortion treated a single gene or gene arrangement. Included among these are
the studies of ‘‘sex ratio’’ in Drosophila pseudoobscura, the Segregation Distorter
(SD) complex in Drosophila melanogaster, and the t locus in Mus musculus.
The sex-determination system in Aedes aegypti has been modeled in terms of
two linked genes, and the more recent treatments of SD have also included a
second locus. These developments make it possible to compare aspects of
two-locus theory with and without distortion and to consider such issues as
the evolution of linkage between genes, one of which causes biased segregation.
In this article, we summarize these one- and two-locus studies in a comparative
manner.
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BACKGROUND

Viability Selection at One Locus with Mendelian Segregation

The following is a brief and far-from-inclusive summary of a few of the main
results concerning evolution at a single autosomal locus with alleles A; (i = 1,
2, ..., k) with the relative rates of survival of the genotypes A;A; given by w;.
The viability matrix W = [w;] is nonnegative and symmetric, and it is usually
assumed that all of its principal minors are nonsingular. Mating is random, and
selection acts only on viability. The dynamic for the frequency x; of allele A; is
given by

X = x; Z WX, /W = xw,.Iw, 1
J

where x;is the frequency of allele A; in the next generation, the mean fitness is

kK k
w = E WX, X; 5
i=1 j=1

and the marginal average fitness of allele A, is

k
w; = % Wuxj.
Jj=1

The following are well-known facts concerning the dynamics of system (1).

1. wixy, x5, - . ., X)) = Wx;, x5, . . ., xy), with equality only at equilibria of
equation (1). This is the fundamental theorem of natural selection (Fisher 1930;
Kingman 1961), which in qualitative terms means that the population’s average
fitness increases over time. It enables us to infer global convergence of the system
to one of its equilibria.

2. There are 2 — 1 possible equilibria of the system.

3. For generic W there is only one possible equilibrium (£,, £,, . . . , £,) with
all alleles present (i.e., such that £, > 0, fori = 1,2, ..., k).

4. This fully polymorphic equilibrium is globally stable if W has one positive
and k — 1 negative eigenvalues or, equivalently, if the determinants of the princi-
pal minors of W alternate in sign. For example, with two alleles, the equilibrium

’fl = (W12 - sz)/(zwlz - Wi — W22) and Xy = 1 — X1 (2)

is globally stable if w,, is greater than both w;; and w,, (i.e., if there is heterozy-
gote advantage).

5. If the k-allele equilibrium £, £,, . . . , £, is stable, then a new allele A, ,
introduced near this equilibrium increases in frequency if its marginal average
fitness exceeds the population’s previous average fitness, that is, if

k
Wesr. = _5_ Wike1X; =W = WiXiX; (3)
= L 4

J
(Kingman 1961). (For more details, see Karlin 1978.)
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Viability Selection at Two Loci with Recombination and Normal Segregation

For the present purposes, it is enough to consider two alleles at each of the
two loci A and B, with x;, x,, x;, and x, denoting the frequencies of A,B,, A,B,,
A,B,, and A,B,, respectively, and with R denoting the recombination fraction
between the loci. With the chromosomes numbered in the order given, we con-
sider a two-locus viability matrix,

A\B, AB, A,B, A)B,

A,B, Wi Wi W3 Wiy

W = A,B, W Wi3 Wo ,
A,B, Wi3 Wiy
AyB, Wyy

with w; = wj; and the usual assumption that w;, = w;, so that the two double
heterozygotes are equally fit. Evolution is described by the system

wx| = x;w,. — RDw,,, (4a)
Wx; = X,W,. + RDw,,, (4b)
Wx3 = x3w3. + RDw,,, (4¢c)
wx) = x,w,;. — RDw,,, (4d)

where the primes signify the next generation, the mean fitness is

w = i i WiiXiX; s (4e)

and the linkage disequilibrium is
D = x1xy — xpx3. (4f)

The following are some of the facts known about system (4). (For more details,
see, e.g., Karlin 1978.)

1. It is not always true that w(xj, x3, . . ., x) = W(x;, X5, . . . , X). This has
been called the ‘‘nonexistence of adaptive topographies’” (Moran 1964).

2. Seven interior equilibria have been found. It is conjectured that this is the
maximum number of isolated interior equilibria in this system. Of these, at most
two have been found to be simultaneously stable, and it is conjectured that no
more than two fully polymorphic equilibria can be stable simultaneously (Karlin
and Feldman 1970; Karlin 1975).

3. Polymorphisms and boundary equilibria can be simultaneously stable. It is
conjectured that at most four boundary and two interior equilibria can be stable
together (Feldman and Liberman 1979).

4. If D = 0 is stable for some value R, of the recombination fraction, then it
is stable for R > R,. It is conjectured that the equilibrium value D decreases as
a function of R (Karlin 1980).

5. If the stability of a boundary equilibrium depends on R, then the equilibrium
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is stable for large R and unstable for smaller R, with a single value R* dividing
the two parametric ranges (see, e€.g., Bodmer and Felsenstein 1967).

The Theory of Neutral Modifiers

Suppose that, in addition to the two genes under selection described above, a
third locus with genotypes M,M,, M,M,, and M,M, controls the rate of recombi-
nation between the A and B loci. The three genotypes produce recombination
rates ry, ry5, and ry,, respectively, between the A and B loci and are indistinguish-
able insofar as viability selection is concerned. This kind of system was intro-
duced by Nei (1967) to describe the evolution of recombination. When M, is
fixed, consider the equilibrium approached by the system A,B,M,, A,B,M,,
A,BM,, and A,B,M, under the influence of selection and recombination (r,,).
Close to this equilibrium, M, is introduced, and we seek conditions for the initial
increase in the frequency of M,. Provided that the four M, chromosomes are
initially in linkage disequilibrium, M, increases in frequency when it is rare, pro-
vided that ry, is less than r,; (Feldman 1972; Feldman et al. 1980; Liberman
and Feldman 1986). This result is independent of the recombination fraction,
R, between B and M. If ry, is less than both r|; and r,,, then both M, and M, in-
crease when they are rare. The frequency of M, in the resulting polymorphism
is given by

ISMI =(rp =)/ Qriy = ry = 1), )

which is stable for R large enough and unstable for R very small (Feldman and
Krakauer 1976; Liberman and Feldman 1986).

A general framework for the study of such neutral modifiers of recombination,
mutation, and migration has been described (Altenberg and Feldman 1987), and
the general property of such modifiers is that alleles that reduce parameters of
mutation, migration, and recombination are favored. This reduction principle is
likely to rely critically on properties of the mathematical rules of intergenerational
transmission that are violated in the presence of modes of selection other than
viability selection (Altenberg and Feldman 1987). Segregation distortion is one of
these modes.

EVOLUTIONARY DYNAMICS UNDER SEGREGATION DISTORTION: ONE-LOCUS THEORY

Sex Ratio

Deterministic one-locus models for the evolution of alleles subject to seg-
regation distortion with viability differences among genotypes reached the
population-genetics literature in the early 1960s. These models were developed
to describe observations from the laboratory and field concerning the Segregation
Distorter complex in Drosophila melanogaster, the t locus in Mus musculus, and
the sex-ratio chromosome in Drosophila pseudoobscura.

The sex-ratio chromosome, denoted X,, causes males (Whose karyotype is X,Y)
to produce only daughters. Edwards (1961) developed a model to describe the
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evolutionary dynamics of X, and its normal homologue X, and then applied his
model to Wallace’s (1948) experimental observations from population cages. Us-
ing viabilities estimated by Wallace, Edwards found a marked discrepancy be-
tween the dynamics predicted by his model and those Wallace observed in popu-
lation cages. Edwards developed alternative estimates from Wallace’s data and
went on to show that the dynamics of his model, with these estimates inserted,
were qualitatively compatible with those of Wallace’s cages. He also used the
model to develop viability estimates that would support the chromosomal fre-
quencies in nature reported by Sturtevant and Dobzhansky (1936; Dobzhansky
1943).

A larger experimental study of sex-ratio polymorphism allowed an estimation of
fertilities as well as viabilities and extended Edwards’s model to include fertility
differences (Curtsinger and Feldman 1980). When parameter estimates from the
experiments were inserted into the model, equilibrium frequencies were obtained
that agreed reasonably well with the frequencies observed in the field population
from which the experimental stocks originated.

Suppose that X, and X come to equilibrium under the forces of viability selec-
tion, fertility differences between X,Y and XY males, and segregation distortion
in X,Y males whose offspring are male and female in the ratio 1 — m,:1 + m,.
It has been shown that a new sex-ratio chromosome, X,”, whose corresponding
segregation bias is m,, introduced near this equilibrium succeeds if

[+ my) <fH(1 + my),

where f,:f, is the ratio of the fertilities of the X, and X, males (Thomson and
Feldman 1975). Clearly, in the absence of the fertility effects, increased distortion
is favored.

The Segregation Distorter Complex

The formulation here is that originally due to Hiraizumi et al. (1960). At a locus
with alleles D and d, the relative viabilities of the genotypes are as follows:

genotype DD Dd dd
viability 1w w.

(6

The proportion of d-bearing gametes among all functional gametes produced by
Dd is k. The relationship between the frequency of d-bearing gametes in consecu-
tive generations, x and x’, is

xXw + 2x(1 — x)kw,

YT w22 —ow, + (- 2 @

Fixation in D, corresponding to x = 0, is unstable if
ZUow, > 1; @®)
and fixation in d, corresponding to x = 1, is unstable if
2(1 — bw, > w. 9
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If inequalities (8) and (9) both hold, then there is a globally stable polymorphic
equilibrium with

%= Qkw, — D/ICw, — 1 — w), (10)

which should be compared with equilibrium (2), the result with k = %,. We shall
return to equation (10) in the context of two-locus models for the Segregation
Distorter complex.

Hartl (1970a) extended the above model to allow for different levels of meiotic
drive in the two sexes. The viability regime is as in specification (6), but now we
allow parameters k and k to be the proportions of sperm and eggs, respectively,
that bear d. If x and y are the frequencies of d in sperm and eggs, respectively,
evolution is described by the two-dimensional system

wx' = xyw + [x(1 — y) + y(1I — x)]wk, (11a)
wy' = xyw + [x(1 — y) + y(1I — x)]wk, (11b)

where
w=xyw + [x(1 —y) +y(1 —x)Jw, + (1 - x)(1 - y). (11c)
The fixation states (0,0) and (1, 1) are both locally unstable if two conditions hold:
wik + 1) > 1 (12)

and

w2 —k—-x)>w. (13)

These reduce to inequalities (8) and (9) when & = k. Under conditions (12) and
(13), there is a ‘‘protected’’ polymorphism (Prout 1968). Hartl showed numeri-
cally that conditions (12) and (13) are not necessary for the existence of a stable
polymorphism. In fact, the polymorphic equilibria of equations (11) are the roots
of a cubic; it is possible that (0,0) and (1, 1) are stable and unstable, respectively,
and that two polymorphic equilibria exist, one of which is stable and the other
unstable. The range of parameters required for this to occur, however, is probably
too extreme to be empirically relevant. Nevertheless, it is clear that the incorpora-
tion of two meiotic-drive parameters entails a substantially increased level of
complexity in the dynamics. Kimura’s (1958) version of the fundamental theorem
of natural selection (in continuous time) was extended by Hartl (1970b) in a
multiple-allele framework with meiotic drive by the addition of a correction fac-
tor. To our knowledge, no equivalent representation in discrete time has been
suggested (but see Ewens 1989).

The t Locus in Mus musculus

In his 1968 study, Lewontin incorporated both viability and male sterility into
a deterministic model for the dynamics of the ¢ allele. In terms of Hartl’s parame-
ters from the preceding section, k = 0.5, since distortion occurs only in males.
The models are not quite comparable, however, since Lewontin assumed that 7¢
males were sterile (equivalent to w = 0 in males). Again writing x and y for the



POPULATION THEORY OF SEGREGATION DISTORTION 449

frequencies of the driven ¢ allele in sperm and ova, respectively, with 1 — x and
1 — y denoting the corresponding frequencies of the wild-type allele, the changes
in these frequencies are governed by

o= kw, [x(1 = y) + y(1 = )]
1 -=x)0 =y + w[x(1 —y) +y(1 - x)]

(14a)

and

_ xyw + w[x(1 —y) + y(1 — x)]/2
Cxyw w1 = y) +y(1 -0l + 1 -0 —y)

’

y (14b)

Note the difference in the denominators here compared with system (11). Lewon-
tin showed that the fixation point (0,0) is unstable if

w(% + k) > 1 (15)

(see inequality [12] with k = %). Karlin (1972) showed that a change of variables
tou = x/(1 — x)and v = y/(1 — y) produces a transformation that is monotonic
in each of u and v and that under condition (15) there is global convergence to a
unique polymorphic equilibrium, which is the root of a rather complicated cubic
polynomial. Such monotonic transformations arise frequently in models of differ-
ential selection between the sexes, and their properties are useful in demonstrat-
ing convergence to equilibrium. ’

Because the ¢ allele is usually found in small endogamous family units, it is
likely that stochastic effects are important in the dynamics of the polymorphism.
Lewontin (1968) simulated a stochastic version of the above model and found
that the stochastic dynamics of the population were not sensitive to decreased
survival of the ¢¢ males unless this loss was on the order of 90%.

TWO-LOCUS MODELS FOR THE MODIFICATION OF SEGREGATION DISTORTION

In the Segregation Distorter (SD) complex of Drosophila melanogaster and the
sex-ratio system of Aedes aegypti, the extent to which segregation departs from
Mendelian expectations has been shown experimentally to depend on other loci
in the organism. These other genes are called modifiers of distortion. They should
not be regarded as analogous to the neutral modifiers of recombination, mutation,
or migration described above, because distortion modifiers affect gametic fitness
and are, therefore, not neutral. It is of interest, however, to ask how two-locus
distortion systems compare in their dynamics to two-locus viability systems. The
two cases studied seem to exhibit some consistent differences.

The Two-Locus SD Model

Prout et al. (1973) proposed the following two-locus extension of the model
described above (see the subsection ‘‘The Segregation Distorter Complex’’). One
locus with alleles D and d is subject to viability-level selection with the relative
viabilities of DD, Dd, and dd given as 1, w,, and w, respectively, as in specifica-
tion (6). A second modifier locus with alleles M and m controls the extent of
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segregation distortion in gametes produced by Dd individuals as follows:

modifier genotype MM Mm mm
fraction of d produced ki, k, 05

Thus, fixation of m entails Mendelian segregation at the D/d locus; fixation of M
results in the dynamics described above with &, substituted for £. The recombina-
tion between the D/d and M/m loci is r. Let the frequencies of DM, Dm, dM,
and dm be x;, x,, x;, and x,, respectively. Then, evolution at the two loci is
described by the system

wx| = x(x; + x) + 2xw (1 — k) + 2wi(1 — k) [rox; + (1 — pxx,], (16a)

Wxy = x)(x; + x,) + xxw; + 2wi(1 — k) [rexy + (1 — Pxpx3], (16b)
Wxy = wxs(x; + xg) + 2xx3w k) + 2wk, [rxx, + (1 — r)xx;], (16¢)
Wxy = wx,(x; + x5) + xx0w, + 2wk, [rxox; + (1 — Pxx,l, (16d)

where
W= (x; + x)% + 20x; + x) (x5 + x)w; + (x5 + x)*w. (16¢)

We cannot produce here a detailed description of the properties of system (16)
or of the extensions discussed by Charlesworth and Hartl (1978). Instead, we list
some of the interesting results and compare them with the results for viability
selection at two loci, where Mendelian segregation was assumed (see above).

Result 1.—Suppose that w; > 1 and w; > w (heterozygote advantage); then,
with m fixed, there is a one-locus two-allele stable equilibrium in the x, — x,
boundary where m is fixed. Introduction of M near this equilibrium perturbs the
segregation away from Mendelian expectations. Hartl (1975) and Liberman (1976)
showed that such a distorting allele (M) invades the population, provided that
0 = r < Y, (see also Thomson and Feldman 1976). In other words, if the distortion
modifier is linked to the distorted gene, then Mendelian segregation is unstable.

Result 2.—Suppose that 2w, (1 — k;) > w and 2wk, > 1. Then, equilibrium
(10) (with k, substituted for k) is stable in the x; — x; boundary where M is fixed.
Near this equilibrium, m appears, changing the proportion of d gametes produced
by Dd genotypes from k, to k, in the Mm heterozygotes. If the inequalities
ky > ky > Y, or Yy > ky > k, are satisfied, then m invades, provided that r < (k,
— ky))/(1 — 2k,). Otherwise, m invades for all recombination values. In other
words, more intense distortion by Mm, in the same direction as that induced by
MM, is favored if the genes are tightly linked. If Mm genotypes have less distor-
tion than MM genotypes (e.g., if k;, > k, > %), then m invades if 0 < r < Y%,
From results 1 and 2 we see that if invasion of a new distorting allele depends
on r, then tighter linkage favors invasion, just as in the case of viability selection
at two loci with Mendelian segregation.

Result 3.—Eshel (1985) examined the special case of r = Y, which is excluded
from result 1, and demonstrated that, if segregation at equilibrium is non-
Mendelian, then invasion by any allele that reduces the average level of distortion
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will occur. For r = Y, Mendelian segregation has the property of evolutionary
genetic stability (according to the definition of Eshel and Feldman 1982).

Result 4. —In an extensive analysis of the case when k; = k, = land w; = 1,
Prout et al. (1973) found a single equilibrium:

.21:0,’

X =Qr-w/(1—-w),

fH=0=21*1-w), .
X, =2r(1 = 2/ —w),
which is locally stable if
Yy > r > wi2. (18)

With k;, = k, # 1 and w; = 1, there is a single polymorphic equilibrium whose
stability depends on r according to

Yo>r> 2k +w — 2)/2Qk — 1), (19)

which reduces to inequality (18) when k; = 1. When k; = k, # 1 and w; # 1,
the upper bound for r in the analogous condition to inequality (19) may be reduced
below %. All these equilibria have linkage disequilibrium, but even in the simple
case of equilibrium (17), the magnitude of the linkage disequilibrium is not a
decreasing function of r throughout the range ', > r > w/2. In fact, for w/3 + Y%
> r > w/2, the product £,%; from equilibrium (17) increases with r. It then de-
creases for w/3 + Y, < r < Y. Thus, we have the following results (Thomson
and Feldman 1976).

Result 5.—With any parameter set examined (k;, = k, or k; # k,), whenever
an equilibrium with D # 0 is stable, |D| increases as r increases, achieves a
maximum, and then decreases. This is in direct contrast to the result when Men-
delian segregation was assumed.

Result 6.—When k, # k,, there is an equilibrium with D = 0. This equilibrium
is stable in an interval of recombination values strictly contained between 0 and
Y,. Again, this result stands in direct contrast to the stability properties of D = 0
with Mendelian segregation.

Sex-Ratio Distortion in Aedes aegypti

The genetics of sex-ratio control in mosquitoes are described by Wood and
Newton (1991). Maffi and Jayakar (1981) proposed a two-locus model for the
determination of sex in Aedes aegypti. The first gene is a sex-determination locus
with alleles M and m, such that Mm individuals are males and mm individuals
are females. Linked to M/m is another locus with alleles A;, which operate to
produce probabilities s;; that males of genotype MA;/mA; transmit M; with com-
plementary probability 1 — s, they transmit m. It is assumed that these segrega-
tion probabilities are symmetrical (s; = s;). Maffi and Jayakar studied the case
of two alleles, A, and A,, and the multiple-allele case was analyzed by Lessard
(1987). For the present purposes, it is enough to concentrate on the two-allele
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case, for which new phenomena have recently been discovered (Feldman and
Otto 1989).

Suppose that x; and x, = 1 — x; are the frequencies of mA,; and mA,, respec-
tively, among all gametes transmitted by females; y, and y, = 1 — y, are the
frequencies of MA,; and MA,, respectively, among all M gametes transmitted by
males; and z, and z, = 1 — gz, are the frequencies of mA, and mA,, respectively,
among all m gametes transmitted by males. The two genes evolve according to
the system

x; = (x, + z)/2, (20a)
yi = [ = px.y, + rey /s, (20b)
zyp = [y = x) + A = Nx, (1 = y)l/A = %), (20c)
where
2 2
X, = z $iiX; s i = Z SiY; s (20d)
j=1 j=1
and

2 2
s = Z yix. = iny,'- = Z Z SiXiYj (20e)
; — — £
(Lessard 1987).

Maffi and Jayakar (1981) emphasized the cases
s > s1; and sy, and s12 < sy and sy, (21)

when an equilibrium exists of the form

B =91 =24 = (52 — 50/ 251, — 511 — 5p). (22)
Lessard (1987) showed that, with multiple alleles, there is a corresponding iso-
lated equilibrium with £, = ¥, = Z; given by the usual one-locus multi-allelic

polymorphism with viability matrix [s;]. Equilibria of this form exhibit linkage
equilibrium, since the frequencies of the A, alleles are independent of whether
they occur on MA; or mA; chromosomes.

Result 1.—Equilibria of the form of equilibrium (22) are stable in an interval
of recombination values bounded by r* > 0 and r** < Y%, This is analogous to
result 6 for the SD complex: in two-locus segregation-distortion models, linkage
equilibrium may be stable for an interval of recombination values fully contained
in the interval between 0 and %, (Thomson and Feldman 1976).

Result 2.—Under conditions (21) when r < r*, Maffi and Jayakar (1981) found
numerically that no isolated point was stable and that cycling occurred. Lessard
(1987) argued that such periodic orbits are expected according to Hopf bifurcation
theory.

Result 3.—When inequalities (21) do not hold, we have discovered polymor-
phic equilibria that have linkage disequilibrium and that may be stable for
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r € [0,Y%] or for r € [0, ry]. In the latter case, fixation in one of the A; becomes
stable for r € [r,, %]. This new class of polymorphic equilibria may be stable for
r € [r**,"] (see result 2) under conditions (21) and may be stable simultaneously
with fixation in one of the A alleles (Feldman and Otto 1989).

Result 4. —Suppose that the population is fixed for A, (x, = y, = z, = 0) and
that A, arises near this fixation state. Then, if ¥, > s;; > sy, or 51, > 5, > %,
such that A, causes increased distortion, then A, increases in frequency if
r<(s; — sp/(1 — 2sp,). Otherwise, A, invades for all r between 0 and %,. If
this result is compared with result 2 for the SD complex, substituting k, for s,
and £, for s,,, we see that the two results are equivalent (Feldman and Otto 1989).

MODIFICATION OF RECOMBINATION IN TWO-LOCUS MODELS OF SEGREGATION DISTORTION

Consider a third locus, F, with alleles f; and f,, whose function is to control
the extent of recombination between the major loci D/d and M/m in the SD
complex and between M/m and A,/A, in the sex-ratio model treated above. For
precision, suppose that the order is FDM or FMA. The genotypes f, f;, f1.f»>» and
£/, produce recombination rates r;, r,, and r,,, respectively, between the major
loci and have no other effects on distortion or viability. Suppose further that R
is the recombination fraction between F and D or between F and M and that
there is no interference in the recombination process. The population is initially
fixed for f;, such that the recombination fraction between the major loci is r;;,
and it is assumed that the population is initially at equilibrium with the major loci
in linkage disequilibrium. We then ask for the conditions under which f, increases
in frequency after its introduction near the equilibrium. Recall that in the case of
Mendelian segregation, this condition was simply r, < r;, for all R, independent
of the order of the three genes.

For the SD complex, the only case analyzed thoroughly has k&, = k, = 1 and
w, = 1, as studied by Prout et al. (1973), and the results are as follows.

Result 1.—When rare, f, increases in frequency, provided that

0=R<ry and rp < rpy (23a)
or that
R > i1 and i > i (23b)

(Thomson and Feldman 1974). Thus, there is dependence on the linkage between
F and D/d; tight linkage causes reduction of recombination between D/d and
M/m, and loose linkage causes its increase.

Result 2.—A qualitatively similar result to result 1 holds for linkage modifi-
cation in the model of sex-ratio distortion (Feldman and Otto 1989). For small
enough R, reduced recombination between M/m and A,/A, is favored, and for
large enough R, increased recombination is usually favored. The cutoff points for
R are not as simple as inequalities (23), and it is conjectured that more general
versions of the two-locus §D model will also produce conditions more compli-
cated than (23).

Result 3.—In the model of sex-ratio distortion, if r, is greater than both r,
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and r,,, an equilibrium exists of the form given by equation (5), IsfI = (rp — n)
/(2r;, — r;; — ry), such that the frequency of f; is stable, for large enough R. If
ri, is less than both r;; and r,,, this equilibrium is stable for small R, which is
exactly the opposite of the condition noted with Mendelian segregation (Feldman
and Otto 1989).

CONCLUSION

Most qualitative principles that can be drawn from viability selection acting
alone on one or two loci are violated in the presence of gametic selection caused
by meiotic drive. It is difficult to predict a priori what the nature of such violations
could be. Nevertheless, the results summarized here show that there exist pat-
terns of concordance among the various distortion models. It remains to be under-
stood why this concordance exists and to determine whether the behavior of
models with non-Mendelian segregation should be regarded as anomalous or as
characteristic of more general models of natural selection than have been ana-
lyzed in detail. It might be conjectured, for example, that further development of
the theory of fertility or sexual selection might reveal that the elegant behavior
of classical viability models is in fact the anomaly.
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