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a b s t r a c t

Numerous traits under migration–selection balance are shown to exhibit complex patterns of genetic
architecture with large variance in effect sizes. However, the conditions under which such genetic
architectures are stable have yet to be investigated, because studying the influence of a large number
of small allelic effects on the maintenance of spatial polymorphism is mathematically challenging, due
to the high complexity of the systems that arise. In particular, in the most simple case of a haploid
population in a two-patch environment, while it is known from population genetics that polymorphism
at a single major-effect locus is stable in the symmetric case, there exist no analytical predictions on
how this polymorphism holds when a polygenic background also contributes to the trait. Here we
propose to answer this question by introducing a new eco-evo methodology that allows us to take into
account the combined contributions of a major-effect locus and of a quantitative background resulting
from small-effect loci, where inheritance is encoded according to an extension to the infinitesimal
model. In a regime of small variance contributed by the quantitative loci, we justify that traits are
concentrated around the major alleles, according to a normal distribution, using new convex analysis
arguments. This allows a reduction in the complexity of the system using a separation of time scales
approach. We predict an undocumented phenomenon of loss of polymorphism at the major-effect locus
despite strong selection for local adaptation, because the quantitative background slowly disrupts the
rapidly established polymorphism at the major-effect locus, which is confirmed by individual-based
simulations. Our study highlights how segregation of a quantitative background can greatly impact the
dynamics of major-effect loci by provoking migrational meltdowns. We also provide a comprehensive
toolbox designed to describe how to apply our method to more complex population genetic models.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Biological motivation. Many species, if not most, evolve in hetero-
geneous habitats, where varying selection acts upon phenotypic
traits in a manner that causes local adaptation. The genetic archi-
tecture that underlies those traits is known to present an array
of possibilities, from major responses at one particular gene to
diffuse polygenic responses (Slate, 2005; Walsh and Lynch, 2018).
However, despite the boom in of genome sequencing of the last
four decades, global conclusions on the conditions leading to a
major gene or a polygenic response to local adaptation are yet
to be drawn from empirical studies. For example, as reviewed
in Walsh and Lynch (2018), different conclusions on the genetic
basis of the evolution of resistance to the insecticide BT toxin
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have emerged between field and lab experiments. Indeed, in
the field, major-effects are more often found to be the main
drivers of evolution of resistance, whereas a polygenic response
is more commonly found in the lab (McKenzie and Batterham,
1994), even if intensity of selection might not differ (Groeters and
Tabashnik, 2000). In more recent studies, divergent conclusions
about the genetic basis of pathogen resistance in cattle have
been reached in different regions of the world (major-effect in
Australia: Turner et al., 2010, polygenic in the tropics: Porto-
Neto et al., 2014). Other empirical studies also highlight cases
where the genetic basis of local adaptation has a large variance
in effect size, thus combining major and polygenic responses (see
e.g. Koch et al., 2022 about the genetic architecture of local
adaptation in Littorina saxatilis and Gagnaire and Gaggiotti, 2016
for a review for marine species). We are therefore interested
in investigating the following biological question: What are the
stability conditions of either major gene responses or polygenic
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esponses (with either a small or large variance in effect size)
nderlying species’ evolution in patchy environments?
From a theoretical point of view, the genetic basis of adapta-

ion has been the subject of an ongoing debate since the early
ays of evolutionary biology. On the one hand, the field of pop-
lation genetics explicitly describes and models the dynamics of
few major genes and alleles that have discrete Mendelian ef-

ects, like eye colour. On the other hand, the quantitative genetic
ield explores the evolution of quantitative and continuous traits,
ike limb size, which are thought to arise from the combined
mall effects of many genes. A first theoretical milestone in the
elationship between the two fields was reached in 1919, when
isher proposed the infinitesimal model to formalize how such
polygenic trait can be inherited, using the Mendelian frame-
ork, clarifying the connection between the two genetic ap-
roaches (Fisher, 1919). His framework was subsequently made
ore precise (Bulmer, 1971; Lange, 1978) and recently justified

n various situations using a multi-loci model and a central limit
heorem approach (Barton et al., 2017). This debate on the genetic
asis of adaptation can be illustrated by the tension between the
extbook prediction of Orr (1998) of an exponential distribution
f allelic effect sizes following adaptation in a homogeneous
nvironment and the review in Rockman (2012), which presents
everal lines of evidence highlighting infinitesimal polygenic basis
f quantitative traits. Here, we would like to revisit the classical
rediction of an exponential distribution in allelic effects from
rr (1998), not in the context of weak selection in panmictic
opulations, but rather in the context of spatial heterogeneity.
lthough this has been explored through individual-based sim-
lation studies (see Yeaman and Whitlock, 2011; Yeaman, 2022),
e aim at providing analytical predictions that can yield mech-
nistic insights on the distribution of effect sizes likely to be
bserved following adaptation in patchy environments.

ims. The adaptation of species to heterogeneous environment
t a small number of loci has been extensively studied in the
opulation genetic field (see Nagylaki and Lou, 2001; Bürger and
kerman, 2011 for one or two-locus models, Yeaman and Otto,
011 for a model including the effect of drift, Geroldinger and
ürger, 2014 for a two-deme two-locus model). In particular, we
ould like to draw attention to the predictions from the simplest

one-locus model describing the dynamics of local adaptation of a
haploid species to a symmetrical two-deme environment. In the
case-study where two alleles segregate at a single locus, each
allele being favoured in one deme and selected against in the
other, it can be shown that polymorphism is always maintained at
this locus, independently of the migration rate or selection strength
(unless the population goes extinct — see a proof of this result
in Proposition D.3). However, it is not clear whether this poly-
morphism would similarly be maintained if, in addition to this
biallelic major-effect locus, local adaptation was also influenced
by very small contributions from a large number of unlinked loci.
The main aim of this paper is therefore to answer the following
question: Could a polygenic background constituted by very small
allelic effects topple the polymorphism at the major-effect locus, even
though the latter is a priori beneficial for local adaptation when
considered on its own?

From the point of view of population genetics, answering
this question in heterogeneous environments would require the
analysis of models whose complexity would quickly grow as
the number of small effect loci considered increases (however,
note that multi-loci models in heterogeneous environments exist,
but either focus on the case where all the alleles have equal
effects – see Lythgoe, 1997; Szép et al., 2021 – or on panmictic
populations — see de Vladar and Barton, 2014; Jain and Stephan,
2017; Höllinger et al., 2019). In this work, we propose to circum-

vent this limitation with a new eco-evo model and methodology. It

50
merges the point of views of population genetics and quantitative
genetics and considers the combined contributions of a quantita-
tive background (summarizing the polygenic background’ small
effects contributions) and a major-effect locus on the focal trait
determining local adaptation (note that the latter is typically not
considered in quantitative genetic models; see Ronce and Kirk-
patrick, 2001; Hendry et al., 2001; Débarre et al., 2013; Mirrahimi,
2017; Mirrahimi and Gandon, 2020; Hamel et al., 2021; Dekens,
2022).

This approach has the immediate benefit that each individ-
ual is only described by two variables (major-effect allele and
quantitative background) instead of potentially many (for each
allele). The drawback is that how to implement efficiently the
inheritance of the quantitative background becomes less obvious,
which adds a methodological challenge to our objectives. One
way to proceed would be to make the ad-hoc assumption that
the quantitative background only adds Gaussian noise around the
major-effects. This was employed in Lande (1983) in order to
investigate the genetic architecture of adaptation to a shifting en-
vironment (via major-effect allelic sweeps or subtle shifts in the
frequency of many small effect alleles). However, our proposed
method aims to avoid any prior assumption on the distribution of
the quantitative background and rather analyse the distribution
that naturally emerge from the dynamics of adaptation. Instead,
we focus on the within-family distribution by extending Fisher’s
infinitesimal model (Fisher, 1919; Bulmer, 1971; Lange, 1978;
Bulmer, 1980; Turelli and Barton, 1994; Barton et al., 2017).

Contributions. We show that our model for composite traits gives
new analytical insights on the stability of polymorphism at a
major-effect locus underlying local adaptation in a symmetrical
heterogeneous environment in the presence of a quantitative
background due to a large number of small effect loci. Due to
small perturbations induced by the quantitative component of
the trait, polymorphism at the major-effect locus is lost both
at low and high strengths of selection, below a certain level
of migration. The first region of loss of polymorphism, at low
selection intensities, is intuitively expected, as migration blends
more strongly than selection differentiates. More surprising is
the lost of polymorphism at high intensities of selection, where
one would expect polymorphism at the major-effect locus to be
strongly favoured. To our knowledge, this phenomenon, where
quantitative differences displace polymorphism at a major-effect
locus, has not yet been documented. We confirm that our analysis
is consistent with individual-based simulations.

This case study suggests that the long-term influence of a
quantitative polygenic background on the polymorphic equilib-
rium at major-effect loci can lead to unforeseen phenomena. In
this work, we present an integrative framework that is meant
to help analytically bridge population genetics and quantitative
genetics. Our method goes deeper than previous models (Lande,
1983) by justifying in a certain regime of small variance that
the traits are normally distributed around the major-effect alleles
effects, thanks to new arguments of convex analysis. It allows a
separation of time scales, which ultimately leads to the conditions
for when the infinitesimal quantitative background slowly dis-
rupts the rapidly established symmetrical polymorphism at the
major-effect locus.

Furthermore, we provide a comprehensive toolbox that de-
scribes how to apply our methodology to more general cases
in terms of number of major-effect loci, number of patches,
and form of selection for haploid or diploid populations (see

Appendices A and B).
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. Methods

.1. Model

.1.1. From a generic quantitative genetic model to a composite
odel
We consider a haploid population reproducing sexually and

haracterized by a quantitative trait ζ in a heterogeneous envi-
onment with two habitats connected by constant migration at
ate m1 (from habitat 1 to habitat 2) and m2 (from habitat 2
to habitat 1). Following classical models of quantitative genetics,
we model each habitat i selecting toward a different optimum
θi with strength g i. Maladaptation and local uniform competition
for resources (with intensity κi in deme i) are sources of mortality
leading to a per capita decline at rate:

−g i(ζ − θi)2 − κi N i,

for individuals of trait ζ in habitat i (N i denotes the local popu-
lation size). At time t ≥ 0, let n1(t, ζ) and n2(t, ζ) be the local
trait densities in patches 1 and 2, and B[ni](t, ζ) the number
of individuals born with a trait ζ in habitat i, with reproduction
occurring at rate λi. The dynamics of the local trait densities read:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂n1
∂t (t, ζ) = λ1 B[n1](t, ζ) − g1 (ζ − θ1)2 n1(t, ζ)
− κ1n1(t) n1(t, ζ) + m2 n2(t, ζ) − m1 n1(t, ζ),

∂n2
∂t (t, ζ) = λ2 B[n2](t, ζ) − g2 (ζ − θ2)2 n2(t, ζ)
− κ2 n2(t) n2(t, ζ) + m1 n1(t, ζ) − m2 n2(t, ζ).

(1)

We can define the trait axis such that: θ := θ2 = −θ1 > 0
without loss of generality. We next describe the novel aspect
of this work, which allows the trait ζ to be the sum of two
components, a major-effect locus and a quantitative background
z . We furthermore describe the sexual reproduction operator
used.
major-effect. The first component comes from a locus where two
alleles A/a are segregating. They have a major-effect on the trait:
ηA and ηa. Inheritance of this locus is Mendelian.

Quantitative background. The second component, denoted by z ∈

R, represents the quantitative background due to infinitesimally
small additive contributions to the trait from a large number
of unlinked alleles. Although it comes from infinitesimally small
contributions, z should not be thought of as being necessarily
small, due to the large number of alleles contributing to it. We
also assume that the major-effect locus is effectively unlinked
with the small-effect ones.

Inheritance of the trait: an extension of the infinitesimal model. Let
us recall that the infinitesimal model, first introduced in Fisher
(1919), provides a way to encode efficiently the inheritance of
complex traits coming from a large number of alleles, each with
small effects. The classical version states that an offspring receives
a trait Z from its parents with traits Z1 and Z2, where Z differs
from the mean parental trait Z1+Z2

2 following a centred Gaussian
aw, with variance σ2

2 . The latter accounts for the stochasticity of
egregation, and therefore the variance is called the segregational
ariance. Specifically:

|Z1,Z2 ∼
Z1 + Z2

2
+ Y, Y ∼ N

(
0,
σ 2

2

)
, Y ⊥ Z1,Z2.

The Mendelian view of the infinitesimal model has been dis-
ussed in Fisher (1919), Bulmer (1971) and Lange (1978): the
ommon interpretation is that the trait results from a large num-
er of small additive contributions at unlinked loci. For a more in
epth description, see Barton et al. (2017).
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Because the trait we are considering is a composite of a major-
effect locus inherited according to Mendelian laws and an in-
finitesimal background, it is natural to use an extension of the
infinitesimal model for this composite case. Now, the offspring’s
trait (A,Z) given their parents (A1,Z1) and (A2,Z2) reads:

(A,Z, ) | (A1,Z1), (A2,Z2) ∼(
XA1 + (1 − X)A2,

Z1 + Z2

2
+ Y

)
, (2)

where Y ∼ N
(
0, σ2

2

)
follows a centred Gaussian law of variance

σ2

2 and X ∼ B
( 1
2

)
follows a Bernoulli law with parameter 1

2
assuming fair meiosis). The random variables are independent
f each other and of Z1,Z2,A1,A2.

odified reproduction operator. Let us translate Eq. (2) into a
ontinuous density model. Let nA

i (z) (respectively na
i (z)) denote

the density of individuals of patch i carrying allele A (respectively
a) along with an infinitesimal background z , therefore having
a trait ζ = ηA

+ z (respectively, ηa
+ z). In agreement with

q. (2), the number of offspring born with the allele A and an
nfinitesimal contribution z in habitat i then reads:

A
σ[n

A
i , n

a
i ](z) =

∫
R2

1
√
πσ

exp

[
−

(
z −

z1+z2
2

)2
σ2

]
×

1
Ni

[
nA
i (z1) n

A
i (z2) +

1
2

[
nA
i (z1) n

a
i (z2)

+ na
i (z1)n

A
i (z2)

]]
dz1 dz2

=

∫
R2

1
√
πσ

exp

[
−

(
z −

z1+z2
2

)2
σ2

]

× nA
i (z1)

nA
i (z2) + na

i (z2)
N i

dz1 dz2.

Similarly, the corresponding number of offspring born with the
allele a and an infinitesimal part z reads:

Ba
σ[n

A
i , n

a
i ](z) =

∫
R2

1
√
πσ

exp

[
−

(
z −

z1+z2
2

)2
σ2

]
×

1
Ni

[
na
i (z1) n

a
i (z2) +

1
2

[
na
i (z1) n

A
i (z2)

+ nA
i (z1)n

a
i (z2)

]]
dz1 dz2

=

∫
R2

1
√
πσ

exp

[
−

(
z −

z1+z2
2

)2
σ2

]

× na
i (z1)

nA
i (z2) + na

i (z2)
N i

dz1 dz2.

The operator reproduction Bσ indicates that it is more relevant
o model the dynamics of the two local allelic densities na

i , n
A
i ,

nstead of ni (which is their sum). From now on, we will therefore
dopt this point of view.

emark 1 (Bridging a Population Genetic Model and a Quantitative
enetic Model). Our model described above bridges the following
opulation genetic and quantitative genetic models:

1. The one-locus haploid model in a two-patch environment,
which considers two alleles A and a segregating at the
same locus, each improving the survival chance in one of
the habitats and being deleterious in the other. We recall
that with symmetrical migration and selection, this model
predicts that polymorphism at the focal locus is always stable,
whenever the metapopulation persists (see Remark 4 and
Proposition D.3 for a proof of this fact).
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2. The quantitative genetic model from Dekens (2022), which
studies the eco-evo dynamics of a quantitative trait in
a heterogeneous environment, where the trait is inher-
ited according to the standard version of the infinitesimal
model. Our work can be seen as an extension of this model,
to which we add the segregation of two major-effect al-
leles at a single locus. Moreover, one can notice that if
one major-effect allele fixes (loss of polymorphism), the
two models are equivalent. Because Dekens (2022) gives
a complete analytical description of the outcomes of their
system (in the small segregation variance regime), the out-
comes for our present study are known given the fixation
of a major-effect allele. Therefore, our study focuses on the
description of polymorphism at the major-effect locus and its
stability.

2.1.2. Dimensionless system
Let us rescale Eq. (1) according to:

ηA :=
ηA

θ
, z :=

z
θ
, gi :=

g iθ
2

λ1
,

mi :=
mi

λ1
, ε :=

σ

θ
, t := ε2λ1t, α :=

κ1

κ2
, λ :=

λ2

λ1
,

and introduce the rescaled trait densities:

nA
ε,i(t, z) :=

κi

λ1
nA
i (t, z), na

ε,i(t, z) :=
κi

λ1
na
i (t, z).

o that Eq. (1) reads:

ε2
∂nA
ε,1
∂t (t, z) = BA

ε (n
A
ε,1, n

a
ε,1)(t, z) − g1(z + ηA + 1)2 nA

ε,1(t, z)
−Nε,1(t) nA

ε,1(t, z) + αm2 nA
ε,2(t, z) − m1 nA

ε1
(t, z),

ε2
∂na
ε,1
∂t (t, z) = Ba

ε(n
a
ε,1, n

A
ε,1)(t, z) − g1(z + ηa + 1)2 na

ε,1(t, z)
−Nε,1(t) na

ε,1(t, z) + αm2 na
ε,2(t, z) − m1 na

ε1
(t, z),

ε2
∂nA
ε,2
∂t (t, z) = λBA

ε (n
A
ε,2, n

a
ε,2)(t, z) − g2(z + ηA − 1)2 nA

ε,2(t, z)
−Nε,2(t) nA

ε,2(t, z) +
m1
α

nA
ε,1(t, z) − m2 nA

ε2
(t, z),

ε2
∂na
ε,2
∂t (t, z) = λBa

ε(n
a
ε,2, n

A
ε,2)(t, z) − g2(z + ηa − 1)2 na

ε,2(t, z)
−Nε,2(t) na

ε,2(t, z) +
m1
α

na
ε,1(t, z) − m2 na

ε2
(t, z),

(3)

here the rescaled reproduction operator is given by:

A
ε (nA

ε,i, n
a
ε,i)(t, z) =

1
√
πε

∫
R2

exp

[
−(z −

z1+z2
2 )2

ε2

]

× nA
ε,i(t, z1)

nA
ε,i(t, z2) + na

ε,i(t, z2)
Nε,i(t)

dz1 dz2. (4)

2.2. Derivation of a moment-based system in the regime of small
variance ε2 ≪ 1

In this subsection, we explain howwe derive a closed moment-
based ODE system on which the separation of time scale analysis
will be conducted, starting from the PDE system (3) based on
the trait distributions, in the regime of small variance ε2 ≪ 1.
o do so, we justify that the quantitative background values
mong bearers of the same major-effect allele are approximately
ormally distributed. Moreover, the mean of these quantitative
ackground values is the same for individuals in the same patch.
his implies in particular that the main driver for trait divergence
ithin each habitat is the major-effect locus.
 w
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2.2.1. Gaussian approximations of quantitative background values in
the regime of small variance: a formal analysis

We choose to place our study in a regime where the amount
of diversity introduced by the segregation of the infinitesimal
background at each event of reproduction is small in comparison
to the difference between the habitats’ optima:

σ2

θ2 ≪ 1 H⇒ ε2 ≪ 1.

In this regime of small variance, the trait distributions are ex-
pected to converge to Dirac masses. Our focus is to give an ac-
curate description of the distribution near this limit. To do so, we
extend a small variance methodology introduced by Diekmann
et al. (2005) for asexual populations and adapted recently to
sexual populations with the standard infinitesimal model (Calvez
et al., 2019; Patout, 2020; Garnier et al., 2022) and develop new
convex analysis arguments. Throughout this section, the time
dependency will be omitted for the sake of clarity.

Presentation of the methodology. Almost two decades ago, Diek-
mann et al. (2005) introduced a methodology to determine the
dynamics of the trait values around which trait distributions
get concentrated as Dirac masses under the regime of small
variance. This methodology has since been used successfully to
study several evolutionary questions, initially for asexual models,
where the diversity generated by mutations of small variance
is modelled by a linear operator translating the distribution of
mutational effects (Perthame and Barles, 2008; Barles et al., 2009;
Mirrahimi, 2017; Mirrahimi and Gandon, 2020). It has recently
been adapted to study sexually reproducing populations with
the infinitesimal model operator in homogeneous spaces (Garnier
et al., 2022; Calvez et al., 2019; Patout, 2020; Dekens, 2022).

As the analytical crux heavily relates to the singular nature of
the trait distributions nε as Dirac masses, the method consists in
defining proxies Uε from nε through a suitable transformation so
that such proxies are regular functions (by comparison to Dirac
masses) and their asymptotic analysis is easier. Studying them
often induces a reduction in the complexity of the system while
still retaining fundamental quantitative information about the
distributions, such as around which traits they are concentrated.
Here, we follow quantitative genetic studies that use the infinites-
imal model according to the same methodology (Garnier et al.,
2022; Calvez et al., 2019; Patout, 2020; Dekens, 2022) and define
the proxies UA

ε,i (resp. U
a
ε,i):

A
ε,i =

1
√
2πε

e−
UA
ε,i
ε2 , na

ε,i =
1

√
2πε

e−
Ua
ε,i
ε2 . (5)

A helpful analogy is to take the example of a spiky Gaussian
distribution with small variance ε2 for nA

ε,i. Then UA
ε,i is a smooth

quadratic function (even when ε ≪ 1). Fig. 1 displays an exam-
ple of this kind of exponential transformation (called Hopf–Cole
transformation in scalar conservation laws). A key observation to
deduce the traits around which the distribution concentrates is
that it does so at the minima (zero) of Uε . As the proxies UA

ε

and Ua
ε are expected to be more regular in the regime of small

variance, they are thought to be the right object on which to
perform a Taylor expansion series to gain information on the
asymptotic distributions in the limit of small variance (see Calvez
et al., 2019). We therefore define uA

0,i (resp. u
a
0,i) as the leading

term in the Taylor expansion of UA
ε,i (resp. U

a
ε,i) :

A
ε,i = uA

0,i + ε2 uA
1,i + ε4 vAε,i, Ua

ε,i = ua
0,i + ε2 ua

1,i + ε4 vaε,i (6)

where uA
1,i and ua

1,i are the next term in the Taylor expansion, and
ε4vAε,i and ε

4vaε,i are the residues. Calvez et al. (2019) provide the
ools to control these residues and thus rigorously justify that (6)
s an admissible Taylor expansion; adapting them is left for future
ork.
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Fig. 1. Illustration of the Hopf–Cole transform to study concentration phe-
nomena. This transformation unfolds singular distributions nε close to a Dirac
ass (in purple), by defining more regular proxies: Uε (in green) such that

ε =
1

√
2πε

e−
Uε
ε2 . This figure suggests that, when ε vanishes, the limit U is regular

and positive and cancels at the support of the limit measure n.

Characterization of the main terms uA
0,i and ua

0,i to justify Gaussian
approximations. The first step of the analysis in the regime of
small variance is the characterization of the main terms uA

0,i and
ua
0,i. Indeed, in the regime of small variance, these have to satisfy

a strong constraint that arises naturally for the contribution of the
infinitesimal model reproduction operator term to remain well-
balanced within (3). In Garnier et al. (2022) and Dekens (2022),
where the standard infinitesimal model operator is used, this
constraint yields the analogous main term to be quadratic, which
implies that the trait distribution is approximately Gaussian, with
a small variance ε2. However, here, the arguments given in Gar-
nier et al. (2022) and used in Dekens (2022) are not sufficient,
due to the mixing of alleles between patches and the discrete
nature of Mendelian inheritance. However, we extend the convex
analysis to circumvent this limitation Proposition 2.1 and identify
uA
0,i and ua

0,i as the same quadratic function z ↦→
(z−z∗i )

2

2 , where
z∗

i ∈ R is to be determined later in the analysis. Assuming that
(6) is an admissible Taylor expansion (which is suggested by the
analysis of Calvez et al., 2019), this result is crucial as it justifies
the following formal Gaussian approximations of nA

ε,i and na
ε,i (i ∈

{1, 2}):

nA
ε,i(z) =

e−
−(z−z∗i )2

2ε2

√
2πε

e−uA1,i(z)+O(ε2)
,

na
ε,i(z) =

e−
−(z−z∗i )2

2ε2

√
2πε

e−ua1,i(z)+O(ε2)
. (7)

Hence, to the leading order, nA
ε,i and na

ε,i are formally Gaussian, cen-
red at the same quantitative contribution z∗

i , with the same variance
ε2. However, they differ in the next-order, which involves the
corrector terms uA

1,i and ua
1,i, which generate asymmetries in the

distributions.
To support (7), we first derive the following constraints (C) on

the main terms uA
0,i and ua

0,i. In order for the contribution of both
reproduction operators BA

ε and Ba
ε to remain well-balanced with

the other biological phenomena in the regime of small variance
in (3), uA and ua formally need to satisfy the following (see
0,i 0,i
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Appendix C for the details):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀z ∈ R, max
[
sup
z1,z2

uA
0,i(z) −

(
z −

z1+z2
2

)2
− uA

0,i(z1) − uA
0,i(z2),

sup
z1,z2

uA
0,i(z) −

(
z −

z1+z2
2

)2
− uA

0,i(z1) − ua
0,i(z2)

]
= 0,

∀z ∈ R, max
[
sup
z1,z2

ua
0,i(z) −

(
z −

z1+z2
2

)2
− ua

0,i(z1) − ua
0,i(z2),

sup
z1,z2

ua
0,i(z) −

(
z −

z1+z2
2

)2
− uA

0,i(z1) − ua
0,i(z2)

]
= 0.

(C)

e next state the following proposition, which characterizes the
ain terms uA

0,i and ua
0,i as aforementioned.

roposition 2.1. Let uA
0 and ua

0 satisfying Eq. (C) positive almost
verywhere and cancelling somewhere. Then, there exists z∗

∈ R
such that:

∀z ∈ R, uA
0(z) = ua

0(z) =
(z − z∗)2

2
. (8)

The conditions on uA
0,i and ua

0,i in Proposition 2.1 (positive
verywhere and cancelling somewhere) are explained in Ap-
endix C. In Appendix B, we actually state and prove a stronger
esult Proposition B.1, which generalizes Proposition 2.1 to more
omplex genetic architectures.
Consequently, assuming that (6) is the correct ansatz so that

e can control the residues in (7) (which the analysis of Calvez
t al., 2019 suggests and provides a framework to show), using
he result of Proposition 2.1 in (5) and (6) leads to (7).

.2.2. Moment-based system in the regime of small variance
This section follows directly the results of the previous one,

here we showed formally that, in each habitat, the two allelic
rait distributions nA

ε,i and na
ε,i can be approximated by the same

aussian distribution. We present here how the latter allows us
o close the moment-based system obtained from integrating (3).

First, we derive formal expansions of the first moments (pop-
lation size, mean trait, variance and skew) of nA

ε,i and na
ε,i when

2
≪ 1, thanks to (6) and (7) (as in Dekens, 2022):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NA
ε,i :=

∫
R
nA
ε,i(z) dz = e−uA1,i(z

∗
i )[

1 + ε2

( (
∂zuA1,i(z

∗
i )
)2

2 −
∂zzuA1,i(z

∗
i )

2 − vAi,ε(z
∗

i )

)]
+ O(ε4),

zAε,i :=

∫
R
z
nA
ε,i(z)

NA
ε,i

dz = z∗

i − ε2∂zuA
1,i(z

∗

i ) + O(ε4),

(
σ A
ε,i

)2
:=

∫
R
(z − zAε,i)

2 nA
ε,i(z)

NA
ε,i

dz = ε2 + O(ε4),

(
ψA
ε,i

)3
:=

∫
R
(z − zAε,i)

3 nA
ε,i(z)

NA
ε,i

dz = O(ε4).

(9)

Using (9) when integrating (3), we can close the infinite sys-
tem of moments in the regime of small variance, producing a
system of eight ODEs governing the dynamics of the four allelic
subpopulation sizes Na ,NA ,Na ,NA and the four allelic local
ε,1 ε,1 ε,2 ε,2
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ean quantitative traits zaε,1, z
A
ε,1, z

a
ε,2, z

A
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ε2
dNa

ε,1
dt = Na

ε,1 −
(
NA
ε,1 + Na

ε,1

)
Na
ε,1 − g1

[
zaε,1 + ηa + 1

]2
Na
ε,1

+αm2 Na
ε,2 − m1 Na

ε,1,+O(ε2),

ε2
dNA

ε,1
dt = NA

ε,1 −
(
NA
ε,1 + Na

ε,1

)
NA
ε,1 − g1

[
zAε,1 + ηA + 1

]2
NA
ε,1

+αm2 NA
ε,2 − m1 NA

ε,1 + O(ε2),

ε2
dNa

ε,2
dt = λNa

ε,2 −
(
NA
ε,2 + Na

ε,2

)
Na
ε,2 − g2

[
zaε,2 + ηa − 1

]2
Na
ε,2

+
m1
α

Na
ε,1 − m2 Na

ε,2 + O(ε2),

ε2
dNA

ε,2
dt = λNA

ε,2 −
(
NA
ε,2 + Na

ε,2

)
NA
ε,2 − g2

[
zAε,2 + ηA − 1

]2
NA
ε,2

+
m1
α

Na
ε,1 − m2 Na

ε,2 + O(ε2),

ε2
d za
ε,1
dt = ε22g1

[
−1 − ηa − zaε,1

]
+

(
zA
ε,1−za

ε,1
2

)
NA
ε,1

Nε,1

+αm2
Na
ε,2

Na
ε,1

(
zaε,2 − zaε,1

)
+ O(ε4),

ε2
d zA
ε,1
dt = ε22g1

[
−1 − ηA − zAε,1

]
+

(
za
ε,1−zA

ε,1
2

)
Na
ε,1

Nε,1

+αm2
NA
ε,2

NA
ε,1

(
zAε,2 − zAε,1

)
+ O(ε4),

ε2
d za
ε,2
dt = ε22g2

[
1 − ηa − zaε,2

]
+

(
zA
ε,2−za

ε,2
2

)
NA
ε,2

Nε,2

+
m1
α

Na
ε,1

Na
ε,2

(
zaε,1 − zaε,2

)
+ O(ε4),

ε2
d zA
ε,2
dt = ε22g2

[
1 − ηA − zAε,2

]
+

(
za
ε,2−zA

ε,2
2

)
Na
ε,2

Nε,2

+
m1
α

NA
ε,1

NA
ε,2

(
zAε,1 − zAε,2

)
+ O(ε4).

(10)

iological description of the equations of the moment-based system
10). The first four equations encoding the dynamics of the allelic
ubpopulations sizes involve four terms, that we describe using
he first equation for Na

ε,1. The first term Na
ε,1 is a growth term,

he second one −(NA
ε,1 + Na

ε,1)N
a
ε,1 is a non-linear negative death

term by competition, proportional to the total subpopulation size.

The third one −g1
[
zaε,1 + ηa + 1

]2
Na
ε,1 is a negative death term

by selection (with strength g1), which is more lethal when the
allelic local mean trait zaε,1 + ηa is far from the local optimum
−1. The last migration term αm2 Na

ε,2 − m1 Na
ε,1 represents the

asymmetrical transfer of populations between the two patches.
The last four equations encoding the dynamics of the allelic

local mean quantitative traits involve three different terms that
we describe, taking for reference the first of these equations for
zaε,1. The first term is the selection gradient that pushes the total
mean trait zaε,1 + ηa towards the local optimum −1, with an
ntensity 2ε2g1, proportional to the intensity of selection gi and
he small variance of the quantitative trait ε2 (in agreement with

the Gaussian approximation (7)). The second term
(

zA
ε,1−za

ε,1
2

)
NA
ε,1

Nε,1

oes not exist in the analogous moment-based system in Dekens
2022) (without the major-effect locus), as it originates from
he segregation of A/a at the major-effect locus. It describes a
orce which pushes each allelic mean quantitative component
owards one another within the same habitat due to the mixing
ffect of the infinitesimal model. It is consistent with the result
rovided by Proposition 2.1 and the Gaussian approximations
7), which are centred at the same quantitative component z∗

i ,
close to both zA and za according to the second line of the
ε,i ε,i
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expansions (9). The last term αm2
Na
ε,2

Na
ε,1

(
zaε,2 − zaε,1

)
relates to the

effect of the transfer of population by migration onto the mean
quantitative component: it pushes the local mean quantitative
components corresponding to the same major-effect allele zaε,2
nd zaε,1 towards one another.

Remark 2 (Selection Shifts the Allelic Local Mean Quantitative Trait
lowly). In the last four equations of (10), there is a noticeable
ifference between the first term, proportional to ε2, and the
ther two terms, which are of order 1. This demonstrates the
act that, in the regime of small variance, selection shifts the
ocal mean quantitative traits very slowly toward the local optima
ompared to how fast the other two terms intervene in the
quation (describing selection on the major-effects alleles and
igration). Notice also that the time scale in which the differ-
ntial system (10) is written (ε2 d·

dt ) is the correct one to capture
this slow shift.

Remark 3 (Magnitude of the Residues in (10)). In the system (10),
the difference in the system between the residues in the first
four equations on the local sizes of population of order O(ε2)
nd the ones in the last four equations on the mean quantitative
omponents of order O(ε4) is consistent with the analysis of
atout (2020) (see in particular Theorem 1.4).

.3. Separation of time scales: slow–fast analysis

As highlighted by Remark 2, the shift of allelic local mean
uantitative components zAε,i and zaε,i occurs on a slower time

scale than growth, death and transfer of populations for the allelic
subpopulation sizes (first four equations of (10)) and than the
two relaxing forces of gene flow and segregation for the allelic
local mean quantitative traits (last two terms of the last four
equations of (10)). Therefore, in this subsection, we show that
the moment-based system (10) has a particular structure (up to
a change in variables) that allows the possibility to separate two
different time scales, which can be interpreted as fast ecological
time scale (including selection on the major-effects locus) and
slow quantitative evolutionary time scales.

First, we need to transform (10) into an equivalent system
which has a suitable form to prove the separation of time scales.
This requires the following change of variables, which is moti-
vated by the formal analysis of Section 2.2 (especially the results
of Proposition 2.1):

δaε =
zaε,2 − zaε,1

2ε2
, δAε =

zAε,2 − zAε,1
2ε2

,

δε =
zAε,1 + zAε,2 − zaε,1 − zaε,2

4ε2
, Zε =

zAε,1 + zAε,2 + zaε,1 + zaε,2
4

.

(11)

ε can be interpreted as the mean infinitesimal part of the
etapopulation, δε the spatial average of the local difference
etween the two allelic mean infinitesimal parts, δAε and δaε the
quivalent term among bearers of A and a, respectively (see
n illustration of those new variables in Fig. 2). The quantities
efining δε, δAε , δ

a
ε are divided by ε2 because Remark 2 suggests

hat zAε,1, z
a
ε,1, z

A
ε,2 and zaε,2 all relax quickly towards the same value

due to the fast action of gene flow and segregation, with an error
of order ε2.

After the change in variables (11), we obtain a new system
(shown in its explicit form Eq. (28) in Appendix D) which can be
written compactly as follows{
ε2 dȲε

dt = G(Ȳε, Zε) + ε2 νGε (t),
dZε = −(g + g ) Z + F (Ȳ ) + ε2 νF (t),

(Pε)

dt 1 2 ε ε ε
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Fig. 2. Illustration of the slow–fast variables Zε , δε , δAε and δaε (in red), introduced in (11). This figure displays a situation where the two major-effect alleles are
egregating in both habitats in a symmetrical fashion. The graph represents the two local trait densities for each of the two alleles: ñA

1,ε , ñ
A
2,ε , ñ

a
1,ε , ñ

a
2,ε (the same

olour is for the same deme, and the same linestyle is for the same major-effect allele), as a function of the trait ζ = z + ηA (resp. z + ηa), where z is the
infinitesimal contribution and ηA (resp ηa) is the effect of the major-effect allele. In red, we indicate a visualization of the new variables introduced in (11). Zε is the
mean infinitesimal part of the metapopulation, δε the spatial average of the local difference between the two allelic mean infinitesimal parts, δAε and δaε the spatial
discrepancies in the mean infinitesimal parts per allele. Note the difference in notation between the trait densities ñA

i,ε and the infinitesimal contribution densities
nA
i,ε (which are the ones used in the analysis), which are linked by nA

i,ε(z) = ñA
i,ε(z + ηA) (respectively z + ηa for ña

i,ε).
f

T

where Ȳε :=
(
Na

1,ε,N
a
1,ε,N

A
1,ε,N

A
2,ε, δ

a
ε , δ

A
ε , δε

)
denotes the vector

of fast variables, located in a set denoted Ω :=
(
R∗

+

)4
× R3. The

two smooth functions G ∈ C∞(Ω × R) and F ∈ C∞(Ω) encode
respectively the fast and slow dynamics. Moreover, the functions
νGε and νFε are residues that are uniformly bounded w.r.t ε.

Biological interpretation of the different timescales in (Pε). As the
first four coordinates of the fast variable Ȳε are the allelic sub-
population sizes, the function G(·, Zε) describes the fast dynamics
of growth, death and transfer of populations occurring when
the mean quantitative component is at the value Zε . The fast
timescale of the dynamics of Ȳε can be interpreted as the ecologi-
cal time scale (including selection on the major-effects locus). On
the contrary, the dynamics of the slow variable Zε , which is the
mean quantitative component, are driven by the shift by selection
−(g1 + g2)Zε and the demographic feedback F (Ȳε), on a slower
timescale, which we interpret as the quantitative evolutionary
time scale. Indeed, notice that the time derivatives are different
between the two lines of (Pε): the first line involves ε2 d·

dt , whereas
he small factor ε2 is absent in the second line.

Convergence to a simplified limit system. The slow–fast analysis
developed in Appendix D is dedicated to show that, when ε goes
to 0, the solutions of (Pε) converge to the solutions of the follow-
ing limit system which separates the ecological and evolutionary
time scales{
G(Ȳ , Z) = 0,
dZ
dt = −(g1 + g2) Z + F (Ȳ ).

(P0)

The first line of (P0) is an algebraic system defining the slow
manifold, constituted by the fast ecological equilibria Ȳ corre-
sponding to a value Z of the evolutionary variable (these are
formally defined by {Ȳ ∈ Ω, such that G(Ȳ , Z) = 0}). The second
ine describes the dynamics of the slow variable Z constrained to
ccur on the slow manifold.
55
The convergence result linking (Pε) to (P0) is stated by the
ollowing:

heorem 2.1. For (Ȳ , Z) a solution of (P0), there exists T ∗ > 0 such
that, for 0 < ε < 1, any solution (Ȳε, Zε) of (Pε) on [0, T ∗

] converges
to (Ȳ , Z) uniformly on [0, T ∗

], as ε goes to 0 and (Ȳε(0), Zε(0)) goes
to (Ȳ (0), Z(0)).

The proof Theorem 2.1 is detailed in Appendix D. The main
argument relies crucially on the stability of the fast equilibria at
any level defined by a value of the slow variable Z ∈ ] − 1, 1[
(Propositions D.3, D.4), ensuring that, at the limit, the fast dy-
namics converge quickly toward the slow manifold and not away
from it. The stability argument is completed by the algebraic
description of the slow manifold: we show that, for every level
Z ∈ ] − 1, 1[, there exists a single ecological equilibrium Ȳ
satisfying G(Ȳ , Z) = 0 (Propositions D.1, D.2). We also summarize
in Fig. 7 the links between the different systems, propositions and
theorem involved in the slow–fast analysis.

Remark 4 (The One-Locus Haploid Model’s Equilibrium is Part of
the Fast Equilibrium Corresponding to the Level Z = 0). The
one-locus haploid model is equivalent to the first four differen-
tial equations of (10) on the allelic sizes of each subpopulation,
with (zaε,1, z

a
ε,1, z

a
ε,1, z

a
ε,1) = (0, 0, 0, 0) (no infinitesimal part —

we can obtain from these equations a system describing the
allelic frequencies and local population sizes (p1, p2,N1,N2) :=(

NA
1

NA
1+Na

1
,

NA
2

NA
2+Na

2
,NA

1 + Na
1 ,N

A
2 + Na

2

)
, dropping the ε that is a pa-

rameter of the infinitesimal part). Applying Proposition D.1 with
Z = 0 gives a unique equilibrium satisfying the first four equa-
tions, which is the one found with the one-locus haploid model.
One can thus interpret the symmetrical polymorphic equilibrium
of the one-locus haploid model as a fast equilibrium in the model
presented in this article. It is therefore stable Proposition D.3
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N
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henever it entails positive population sizes (same condition as
n Proposition D.1).

emark 5 (Degrees of Freedom of the Slow Manifold Compared
to Dekens, 2022). Proposition D.1 states that for every level
Z ∈ ] − 1, 1[, there exists a single fast equilibrium Ȳ such that
(Ȳ , Z) = 0. This implies that there are fewer degrees of freedom
n the subsystem (S0(Z)) defining the four allelic subpopulations
izes (see the details in Appendix D) than in the analogous system
f two equations from the analysis done in Dekens (2022), that
an be obtained in the case where one allele has fixed (up to
translation). Indeed, Dekens (2022) shows that the analogous
ystem can have up to three algebraic solutions depending on
he parameters. The result of Proposition D.1 is thus unexpected,
ince (S0(Z)) has twice the number of equations and variables.

. Results: stability of polymorphism at the major-effect locus
n the limit system

This section follows naturally the separation of timescales
hown in Section 2.3 and focuses on the study of the stability
f polymorphism at the major-effect locus in the limit system
P0), in the presence of a quantitative background contribut-
ng additively to the trait under selection. To be able to derive
nalytical conditions, we assume henceforth a symmetrical envi-
onment setting (in migration rates, selection strengths, carrying
apacities, reproduction rates and major-effect allelic effects):

:= m1 = m2, g := g1 = g2, α = 1,

λ = 1, η := ηA = −ηa > 0.

Under these symmetrical conditions, and in the absence of any
uantitative background, we recall that there exists a symmet-
ical polymorphic equilibrium in the one-locus haploid model,
hich is always stable (see Proposition D.3 for a proof). This sym-
etrical polymorphic equilibrium in the one-locus model corre-
ponds, in our model which considers additionally the additive
ontribution of a quantitative background on the trait, to the fast
quilibrium Y ∗ associated to the level Z∗

= 0 (Z∗
= 0 corresponds

o the average quantitative trait between patches cancelling).
ecause the property of the fast equilibrium does not necessarily
ranspose to a global equilibrium over multiple timescales, we are
herefore interested in the following questions:

1. Does a symmetrical polymorphic equilibrium for the global
limit system (P0) exist at the level Z∗

= 0, i.e.: does the pair
of variables (Z∗, Ȳ ∗) defined above cancel both the first line
and the right-hand side of the second line of (P0)?

2. When the symmetrical polymorphic equilibrium exists, is
it always stable ? Or, in the long-run, can the slowly evolving
infinitesimal background undermine the rapidly established
polymorphism at the major-effect locus, even though the
latter is appears favoured for local adaptation?

3. If so, can our analysis predict in which range of parameters
of migration rate m, selection strength g and major-effect
η does that phenomenon occur?

In a first part, we present the results of our analysis to an-
wer these questions. We also provide illustrations of the com-
lex patterns that can emerge in terms of parameters range, as
he studied phenomenon of disturbance of the polymorphism at
he major-effect locus by the infinitesimal background exhibits
on-monotonic behaviours with regard to each parameter.
In a second part, we confirm the results of the first part thanks

o individual-based simulations.
 n

56
3.1. Analytical predictions

The results of this section indicate that the unconditional
stability of the polymorphism in the OLM can be disturbed by
the presence of a quantitative background, for a substantial range
of parameters, including, surprisingly, at the strongest selection
levels. The interpretation of Remark 4 offers the idea that the
infinitesimal background slowly disrupts the rapidly established
symmetrical polymorphism at the major-effect locus.

Existence of a symmetrical polymorphic equilibrium. We first show
that a symmetrical polymorphic equilibrium can exist under a
range of parameters specified in Proposition 3.1, as a stationary
state of the limit system (P0), hence a solution of the explicit
ersion of the latter:

Na
1 −

[
NA

1 + Na
1

]
Na

1 − g [Z − η + 1]2 Na
1 + m(Na

2 − Na
1 ) = 0,

NA
1 −

[
NA

1 + Na
1

]
NA

1 − g [Z + η + 1]2 NA
i + m(NA

2 − NA
1 ) = 0,

Na
2 −

[
NA

2 + Na
2

]
Na

2 − g [Z − η − 1]2 Na
2 + m(Na

1 − Na
2 ) = 0,

NA
2 −

[
NA

2 + Na
2

]
NA

2 − g [Z + η − 1]2 NA
2 + m(NA

1 − NA
2 ) = 0,

2 g − m δa
[
Na
2

Na
1

+
Na
1

Na
2

]
+

δA−δa

4

[
NA
2

Na
2+NA

2
+

NA
1

Na
1+NA

1

]
+

δ
2

[
NA
2

Na
2+NA

2
−

NA
1

Na
1+NA

1

]
= 0,

2 g − m δA
[
NA
2

NA
1

+
NA
1

NA
2

]
+

δa−δA

4

[
Na
2

Na
2+NA

2
+

Na
1

Na
1+NA

1

]
+

δ
2

[
NA
1

Na
2+NA

2
−

Na
2

Na
1+NA

1

]
= 0,

−
δ
2 − 2 g η + m

(
δA

2

[
NA
2

NA
1

−
NA
1

NA
2

]
−

δa

2

[
Na
2

Na
1

−
Na
1

Na
2

])
= 0,

−2 g Z + m
(
δa

2

[
Na
2

Na
1

−
Na
1

Na
2

]
+

δA

2

[
NA
2

NA
1

−
NA
1

NA
2

])
+

δA−δa

4

[
NA
2

NA
2+Na

2
−

NA
1

NA
1+Na

1

]
δ
2

[
NA
1

NA
1+Na

1
+

NA
2

NA
2+Na

2
− 1

]
= 0.

(12)

Proposition 3.1. There exists a unique polymorphic equilibrium
corresponding to the infinitesimal average Z = 0 under the condi-
tion:[
g(η2 + 1) < 1

]
∨

[
m <

2 g2 η2

g(η2 + 1) − 1
− g(η2 + 1) + 1

]
. (13)

he allelic local population sizes corresponding to this equilibrium
atisfy the property:
a,∗
1 = NA,∗

2 , Na,∗
2 = NA,∗

1 ,

and for both alleles, the spatial discrepancies between the mean
infinitesimal parts of the two patches per allele are the same:

δA,∗ = δa,∗.

Therefore, this polymorphic equilibrium at Z∗
= 0 is called symmet-

rical.

The proof uses the results of Propositions D.1 and D.2 and is
shown in Appendix E.

Stability of the symmetrical polymorphic equilibrium. Let us recall
the limit system (P0):{
G(Ȳ , Z) = 0,
dZ
dt = −2 g Z + F (Ȳ ).

(14)

he stability of the symmetrical polymorphic equilibrium de-
oted (0, Ȳ ∗) described above in Proposition 3.1 is studied in
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Fig. 3. Stability region of the symmetrical polymorphic equilibrium (in yellow), for four major effects η ∈ {0.5, 0.7, 1, 1.3} (recalling that θ = 1), when m (y-axis)
nd g (x-axis) vary in [0, 3]. This figure highlights the gain and loss of polymorphism with regard to increasing selection, which is not predicted by the one-locus
odel (abbreviated as OLM in the legend), according to which polymorphism is maintained below the extinction threshold represented by the dashed yellow line.
he stable region (in yellow) becomes larger as η grows closer to 1, as the major-effect allele effects can then allow local adaptation to the two patches on their
wn, then shrinks again. The red crosses in Fig. 3(a) indicate the parameters used for the individual-based simulations (see Section 3.2 and Figs. 5 and 9).
he same manner as in Dekens (2022). Because the differential
quation on Z in the second line of (P0) involves both Z and Ȳ ,
t is not sufficient to do a standard linear analysis. The first step
s to express the solution to G(·, Z) = 0 as a function of Z: Ȳ (Z).
his is possible thanks to the implicit function theorem used in
he vicinity of the symmetrical polymorphic equilibrium, because
∂ȲG

]
|Z=0,Ȳ=Ȳ∗ is invertible (thanks to Propositions D.3 and D.4).

his step allows us to recast (P0) as
dZ
dt

= F(Z) := −2 g Z + F
(
Ȳ (Z)

)
, Z ∈] − 1, 1[. (15)

he stability of the symmetrical polymorphic equilibrium (0, Ȳ ∗)
can now be analysed by using the chain rule of differentiation
on the right-hand side of (15). We obtain that the symmetrical
polymorphic equilibrium is asymptotically locally stable if and
only if

0 < 2 g + ∂Ȳ F ·

([
∂ȲG

]−1
∂ZG

)⏐⏐⏐
Z=0,Ȳ=Ȳ∗

.

Due to the large number of dimensions involved, the explicit
formula of the latter is too long to be given here.

The patterns resulting from the numerical analysis of the
stability of the symmetrical polymorphic equilibrium for four
values of the effect of the major-effect locus η ∈ {0.5, 0.7, 1, 1.3}
57
are computed in Fig. 3. For each value of η, the region of the
stability of the polymorphism is indicated in yellow with selec-
tion strength (g , x-axis) and migration rate (m, y-axis) varying
in [0, 3]. We can first observe that these yellow regions have
complex boundaries, and exhibit non-monotonic behaviours with
regard to both migration rate m and selection strength g . These are
not predicted by the one-locus symmetric model (OLM), which
states that polymorphism is maintained everywhere under the
dashed yellow line, which represents the extinction threshold
without the quantitative component (computed thanks to the
viability condition (13) stated in Proposition D.1 for Z = 0). The
latter leads to the conclusion that, when it occurs, the instability
of polymorphism at the major-effect locus shown by our analysis
results stems from the presence of the quantitative background due
to small-effect loci.

To describe the non-monotonic behaviour with respect to in-
creasing selection strengths, one can consider holding a constant
intermediate migration rate and increase selection (going left to
right on a horizontal line in Figs. 3(a), 3(b), 3(c) and 3(d)). While
the polymorphism at the major-effect locus is not stable with
weak selection, stability is gained at an intermediate level of se-
lection that depends on the migration rate and subsequently lost
at a higher level of selection. This non-monotonic behaviour when

increasing selection levels is quite robust with regard to different
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Fig. 4. Phase lines of the limit equation (15), when the migration rate and the strong allelic effect are held constant (m = 0.1, η =
1
2 ) and the selection strength

aries (the lighter the colour, the stronger the selection). Solid curves indicate that the system is polymorphic, whereas dashed curves indicate that one major-effect
llele has fixed. Every intersection of the horizontal black line and a solid coloured curve with a negative (resp. positive) slope indicates a locally stable (resp.
nstable) polymorphic equilibrium. The darker curve with weak selection g = 0.01 has a positive slope at Z = 0 (unstable), the following curves have a negative
lope at Z = 0 (stable for selection between g = 0.18 and g = 0.86), and finally the lightest curves have a positive slope at Z = 0 (unstable for g ≥ 1.03), which
s consistent with Fig. 3(a). Note that there exist additionally two mirrored asymmetrical polymorphic equilibria for g = 0.86, for Z ≈ ±0.5 (indicated by the red
rrows), which were unsuspected prior to this numerical analysis.
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alues of η, as shown by the different panels in Fig. 3 (even if the
ffect is attenuated when η = 1 in Fig. 3(c), which means that the
ajor-effects coincide with the local optima). When selection is
eak compared to migration (left sides of Figs. 3(a), 3(b), 3(c) and
(d)), it is expected that the relative blending by migration, which
s strong compared to the divergent forces of local selection,
rovokes the loss of polymorphism. The loss of polymorphism
t the major-effect locus is more surprising and counter-intuitive
s one would expect that the bonus provided by polymorphism at
he major-effect locus, which helps subpopulations to be locally
dapted, would be even more important at stronger selection levels,
nd therefore maintained. Unfortunately, the explicit mathemati-
al expression of (15) is too involved to be truly informative about
hat is the cause of the loss of polymorphism at the major-effect

ocus with strong selection. We recommend the reader inter-
sted in this to consult the next section presenting the results
f individual-based simulations, which provide insights on the
rigin of this phenomenon.

ushing further the numerical analysis of polymorphic equilibria.
ere, we show a numerical analysis of all the equilibria of the
imit system (P0) in Fig. 4. To do so, we use the autonomous dif-
erential equation (15) derived previously thanks to the implicit
unction theorem (used on the whole interval Z ∈ ]−1, 1[ thanks
o Propositions D.3 and D.4). From (15), (Z, Ȳ (Z)) is a polymorphic
quilibrium if F(Z) = 0, and this equilibrium is locally stable if
′(Z) < 0.
Even if the complexity of the limit system is still too great to

e analytically solved (due to the implicit nature of the function
¯ defined by the relation G(Ȳ (Z), Z) = 0), we show in Fig. 4 the
hase lines corresponding to the limit equation (15), when the
igration rate and the effect size of the major-effect locus are
eld constant (m = 0.1, η = 0.5) and the selection strength
aries (the lighter the colour, the stronger the selection). Solid
ines indicate that the system is polymorphic, whereas dotted
ines indicate that one major-effect allele has fixed. Every inter-

ection of the zero horizontal line and a solid coloured line with a p

58
egative slope indicates a locally stable polymorphic equilibrium
conversely, a positive slope indicates an unstable equilibrium).

This figure is consistent with the analysis of Section 3.1 and
ig. 3(a): at Z = 0, all the curves return to 0 (F (Z)), confirming
hat a polymorphic equilibrium exists when the mean contri-
ution of the small-effect loci is 0. Their local slope indicates
he stability of this equilibrium (stable if negative, unstable if
ositive). Furthermore, Fig. 4 gives insights on the existence of
symmetrical polymorphic equilibria. Particularly, it seems that
uch equilibria exist for a narrow window of intermediate se-
ection strength: the green curve corresponding to g = 0.86
isplays two mirrored stable asymmetrical polymorphic equilib-
ia at Z ≈ ±0.5 (indicated by the red arrows), which is hard
o predict analytically due to the high orders of polynomials
nvolved. Moreover, such equilibria are presumably quite subtle
o catch in individual-based simulations, because the window of
election and the basin of attraction are both narrow. However,
his illustrates the new and unsuspected insights that can be
btained from this composite model.

.2. Individual-based simulations

In this part, we confirm the results given by our analysis
n the stability of the symmetrical polymorphic equilibrium,
sing individual-based simulations conducted with the software
LiM (Haller and Messer, 2019). We focus on the gain and loss of
olymorphism with regard to increasing selection, when η ̸= 1,
or symmetrical and asymmetrical initial conditions. For each set
f parameters, we ran 20 replicate simulations. The results for
he major-effect locus are displayed in Figs. 5 and 9, both with
quantitative background (left panel) and without (right panel).
he simulations confirm that variation is maintained only for
ntermediate levels of selection (as measured by p(1 − p), where
is the local frequency of allele A). They also provide some in-

ights regarding the cause of the surprising loss of polymorphism
t the major-effect locus with strong selection. The simulation
rocedure is detailed as follows.
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opulations and habitats. The species is split in two subpopula-
tions living in two different habitats, with local carrying capacity
K = 104. In each habitat, individuals experience selection toward
a local trait optimum θi = (−1)i (for habitat i). Initially, the two
subpopulations are at 4

5 of the local carrying capacity. The genetic
nformation of the individuals of the initial population is set as
ollows. In each subpopulation, all the individuals have, at the
ajor-effect locus, the allele whose effect is the closest to the
ptimum of the habitat they are in (η in habitat 2 and −η in

habitat 1). The polygenic background is then set randomly and
uniformly.

Genetic architecture. We consider L = 200 unlinked loci con-
stituting the polygenic background. At each of these loci, two
alleles segregate, having an additive effect on the trait of the
individual of value σLE√

L
or −

σLE√
L
, where σ2

LE is the variance at
inkage equilibrium of the quantitative background. No mutation
ccurs at those loci. We set the variance at linkage equilibrium
o σLE = 0.1 small, so that our analysis in a small variance
egime is a good approximation. (In Appendix G, we consider the
ame framework with a smaller number of loci involved in the
uantitative background L = 50).
There is an additional locus of interest, which carries the

major-effect alleles +η or −η. This locus is also unlinked to all the
thers and no mutation occurs at this site. Note also that the trait
ange, given by [−η − σLE

√
L, η + σLE

√
L] = [−η −

√
2, η +

√
2]

extends beyond the local optima (−1,1), even in the absence of
major-effects.

Life cycle. The life cycle involves overlapping generations of small
time length ∆t = 0.1. The life cycle proceeds as follows:

1. reproduction: each individual of the metapopulation
chooses at random one mate within its subpopulation, and
their mating produces an offspring with probability ∆t .

2. selection–competition: each individual (including offspring
generated in the previous step) faces a selection–
competition trial according to its trait ζ and habitat i in
which they are currently living. They survive with probabil-
ity exp

(
−g∆t(ζ − θi)2 − ∆t N i

K

)
and are removed other-

wise (here N i denotes the size of the subpopulation i after
reproduction).

3. migration: at each migration event, within each subpop-
ulation i, a number of migrants is drawn, according to a
Poisson law with parameter m∆t N i (with a hard cap
of N i, which is the number of individuals currently in
the subpopulation after the selection–competition step).
Migrants are uniformly sampled accordingly within the
subpopulation and are moved to the other deme. We stress
that a given value of the migration rate m = 0.8 means
that, on average, a fraction m∆t = 0.08 of the population
will change deme at each generation.

Each simulation repeats this life cycle, first without migration
for 100 generations of burn in (10 time units) and next with
migration for N gen = 104 generations (103 time units). We model
two types of initial events when migration starts: either nothing
happens, and the initial state is symmetrical, or we model a
sudden catastrophic loss of population in only one of the habitat
during the first generation with migration, so that the initial
state is asymmetrical (results shown in Appendix G). Precisely,
we change the mortality of the uniform competition term only
in the habitat 1, by replacing exp

(
−∆t n1

K

)
by exp

(
−

n1
K

)
(which

s consistent with the interpretation that this catastrophic loss
f population is very abrupt). This leads to asymmetrical initial
ubpopulation sizes.
59
Qualitative results of the IBS on the stability of polymorphism with
regard to increasing selection. The solid lines in the subfigures of
Fig. 5 (symmetrical initial population sizes) and Fig. 9 (asymmet-
rical initial populations sizes) represent the median trajectories of
the variance at the major-effect locus (p(1−p), where p is the local
frequency of allele A) in each habitat (gold lines for habitat 1 and
navy ones for habitat 2). When the variance p(1 − p) is positive,
the A/a polymorphism is maintained. In both Figs. 5 and 9, selec-
tion increases from top to bottom and the polygenic background
is present in the left panel and absent in the right one. When there
exists a polygenic component contributing to the trait, polymorphism
at the major-effect locus is lost after some time with weak selection
(g = 0.1, Figs. 5(a) and 9(a)), is maintained with intermediate
selection (g = 0.5, Figs. 5(c) and 9(c)) and lost again even more
quickly with strong selection (g = 1, Figs. 5(e) and 9(e)). This
s qualitatively consistent with the analytical predictions displayed
n Fig. 3(a), where the red crosses indicate the three selection–
igration set of parameters chosen for the IBS. Moreover, this
henomenon is robust with regard to initial conditions (Figs. 5
nd 9), although the loss of polymorphism at the major-effect
ocus at weak and strong selection is faster when subpopulations
izes are initially asymmetrical (Fig. 9).

ontrol case without polygenic background. To confirm that the
oss of polymorphism at weak and strong selections is due to
he polygenic background and not to genetic drift (although drift
s unlikely to have an effect under this time range of 103 time
nits with a population of order 104), we additionally run an
qual number of replicates for each set of parameters without
ny polygenic background (L = 0, σLE = 0). Only the major-
ffect alleles segregates, and this corresponds to the one-locus
aploid model. Results shown in the right panel of Figs. 5 and 9 are
onsistent with the one-locus haploid model analysis, which states
hat the polymorphism at this major-effect locus is stable at all
evel of selection (the variance at the major-effect locus remains
ositive and stable).

xplanation behind the loss of polymorphism with strong and weak
election. The IBS allow us to gain some insights about the cause
f the major locus polymorphism’s collapse. We first consider
trong selection. In particular, the dynamics of the subpopulations
izes and the local mean traits reveal that, at one point, stochas-
icity creates a small shift in the local mean traits. This shift is the
ame between bearers of A and a and in both patches, because
he small segregational variance of the quantitative background
inds the quantitative background values to be approximately
he same for everyone (in the analysis, this is reflected by the
hange in variables (11) introducing δaε , δ

A
ε and δε). Therefore,

his shift, which is toward one of the local optima improves the
daptation of one subpopulation and is deleterious in the other
ne, which causes an asymmetry in subpopulation sizes, which is
articularly pronounced when selection is strong (see the small
igure embedded in Fig. 5(e), built by selecting one of the two
symmetries for the sake of clarity). Because of this asymmetry,
he migrants’ flow is also asymmetrical and the larger population
hen undermines even more the small population by gene flow,
hich in turn raises the frequency of the major-effect allele

avoured in the larger patch, which then further increases the
isparity in population sizes among the two patches. This positive
eedback loop creates a vortex related to the phenomenon of
igrational meltdown identified in the quantitative genetic model
f Ronce and Kirkpatrick (2001), which eventually leads to the
oss of one of the major-effect alleles.

One crucial feature of this explanation is the dynamics of the
varying) subpopulation sizes, which our eco-evo model allows
s to track. To confirm this intuition, we conducted the same IBS,
ut with adjusting the birth rate to compensate for the deaths
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Fig. 5. Variance at the major-effect locus across time for increasing selection (top to bottom: g = 0.1, 0.5, 1) at a fixed rate of migration (m = 0.8), with symmetrical
nitial subpopulation sizes. p denotes the local frequency of the major-effect allele A. The left panel is obtained with both a major-effect locus (η = 1/2) and a
olygenic background of 200 loci, whereas only the major-effect locus is present in the right panel. For each subfigure, 20 replicates simulations were run per set
f parameters, according to the setting explained in Section 3.2. In each subfigure, the solid line represents the median trajectory and the shaded area indicates
he 0.2 and 0.8 quantiles. The dashed lines represent the median trajectories of the numerical resolutions of the deterministic model (1). This figure confirms that
olymorphism of the major-effect locus is maintained only when selection is intermediate in strength (panel c) in presence of a polygenic background (left panel).
he small figures embedded in each figure of the left panel represent the dynamics of the subpopulation sizes (N1 and N2). They highlight the qualitative difference
etween the loss of polymorphism at the major-effect locus with weak or strong selection, as fixation occurs without change in subpopulation size with weak
election (Fig. 5(a)) and as subpopulations sizes become asymmetrical with strong selection (Fig. 5(e)).
t every generation, effectively keeping both subpopulations at a
onstant size. With constant subpopulations sizes, the polymor-
hism at the major-effect locus is not lost with strong selection
see Fig. 8(c) in Appendix F). This truly highlights the role of the
co-evo framework in which subpopulations sizes are variables
hat are allowed to vary.

We next consider weak selection, where one might wonder
f the loss of polymorphism at the major-effect locus relies on
he same mechanism. In this case, random fluctuations at the
ajor-effect locus cause the quantitative trait to shift in the op-
osite direction, ensuring that the mean trait remains near 0 (the
idpoint between the two optima). This is because migration is
60
so high relative to selection that selection favours lineages that
survive well in both patches. However, here, the small figure
embedded in Fig. 5(a) suggests the role of varying subpopulations
sizes in this phenomenon is not as important. This is confirmed
by the fact that the loss of polymorphism also occurs in IBS
where subpopulations sizes are kept at a constant level (Fig. 8(a)).
This implies that the loss of polymorphism at the major-effect
locus with weak and with strong selection fundamentally differ.
With strong selection, randomly generated asymmetries drive the
system toward specialization in one patch and fixation of the
major allele in that patch, whereas with weak selection, randomly
generated asymmetries drive one major allele to fix and the



L. Dekens, S.P. Otto and V. Calvez Theoretical Population Biology 148 (2022) 49–75

q
a
p

Q
i
o
I
f
i
t
p
l
t
t
d
s
u
s
b
o
a
r
r
d
f
i
t
r
u
t
c
h
i
i

t
a

uantitative trait to compensate in such a way that individuals
re generalist with a mean trait near the midpoint between the
atch optima.

uantitative comparison of IBS with the continuous-time determin-
stic model (1). We also ran deterministic numerical iterations
f (1) to check the quantitative consistency of the stochastic
BS with the deterministic model (1). Two series were run, one
or each type of initial condition (symmetrical or asymmetrical
nitial subpopulations sizes). The median trajectory obtained from
hese deterministic numerical resolutions of (1) for each set of
arameters and initial conditions are displayed by the dashed
ines in all the subfigures of Figs. 5 and 9. These deterministic
rajectories are in excellent agreement with the ones obtained from
he stochastic IBS and provide good approximations. We choose to
istinguish the two types of initial conditions (asymmetrical or
ymmetrical) because the deterministic numerical resolutions are
nequally sensitive to them. Indeed, since the environment is
ymmetrical, the symmetrical initial state is at an unstable edge
etween two symmetrical stable valleys for the interesting range
f parameters and thus wanders for some time before choosing
valley to fall into. Therefore, we initialized the deterministic

esolutions with the symmetrical initial state according to their
espective IBS replicate states at 20% of the time before the me-
ian fixation time (140 times units for Fig. 5(a) and 40 time units
or Fig. 5(e)). With the asymmetrical initial conditions (shown
n Fig. 9 in Appendix G), this sensitivity is greatly reduced, and
he deterministic resolutions are initialized according to their
espective IBS replicate states when migration starts (0 time
nits). Furthermore, the numerical scheme for the resolution of
he deterministic model (1) uses a splitting scheme to handle suc-
essively migration and the ecological dynamics internal to each
abitat. For the latter, we use a discretization of the Duhamel’
ntegral formula on time step of lengths ∆t for the asymmetrical
nitial state series and ∆t

4 for the symmetrical initial state series
(with an accordingly increased number of time steps).

4. Discussion

Summary. In this work, we present a new eco-evo model for
selection in a heterogeneous environment that combines a major-
effect locus with a quantitative genetic background, without as-
suming that the latter is normally distributed. With this model,
we aim to examine how the presence of a small quantitative
background can disturb the polymorphism at the major-effect
locus, which on its own would be favoured in the type of setting
we consider. This model bridges a population genetic model (one-
locus haploid model) with a quantitative genetic model recently
studied in a heterogeneous environment (Dekens, 2022). To do
so, it introduces a new reproduction operator, inspired by the
infinitesimal model, that encodes the inheritance of a major-
effect and a quantitative background. The analysis goes deeper
than previous studies, by formally justifying that the polygenic
component of the trait is normally distributed around the major-
effect allelic effects in a regime of small variance and hence
justifying the Gaussian assumption made in Lande (1983) and
Chevin and Hospital (2008). To show this, we find new convex
analysis arguments that leads to a separation of time scales,
which allows us to study the stability of the polymorphism at
the major-effect locus. We show that this polymorphism, which is
maintained at intermediate selection, is subsequently lost when
selection increases beyond a certain threshold, a phenomenon
qualitatively confirmed by individual-based simulations. The sep-
aration of time scales’ point of view offers the interpretation
that the infinitesimal background slowly disrupts the rapidly
established symmetrical polymorphism at the major-effect locus.
Therefore, this phenomenon cannot be predicted by the one-
locus haploid model (without the quantitative background). To
our knowledge, this phenomenon has not yet been documented.
61
The importance of the eco-evo framework and the influence of small
segregational variance. In the last section, we provided an expla-
nation for our main biological result, which is the unexpected loss
of polymorphism at the major-effect locus with both strong and
weak selection. With strong selection, the explanation relies on
two factors. First, the mean quantitative background is constrained
to move similarly in both patches and for bearers of A and a because
of the small segregational variance. This implies that any slight
shift of the mean quantitative background necessarily increases
local adaptation to one patch and decreases local adaptation
to the other. Consequently, the latter creates an asymmetry in
subpopulation sizes, one being better adapted than the other.
This asymmetry is significant when local selection is strong. The
larger subpopulation then sends relatively more migrants to the
other patch, undermining the local adaptation there even more,
which contributes to raise the frequency of the allele favoured
in the now larger patch everywhere. In turn, the combination of
increasing specialization and increasing disparity in population
sizes (and therefore migrant production) results in a vortex that
can be identified as a migrational meltdown (coined in Ronce and
Kirkpatrick, 2001).

Therefore, one can observe that this phenomenon specifi-
cally relies first on our eco-evo framework, which allows us to
track the dynamics of subpopulation sizes. This highlights the
importance of considering eco-evo dynamics when dealing with
strong selection (which can heavily impact population sizes), as
this loss of polymorphism at the major-effect locus with strong
selection would not be captured by a more traditional approach in
population genetics that considers the population sizes constant.
Second, this phenomenon of loss of polymorphism at the major-
effect locus also relies crucially on the small segregational variance
of the quantitative background, which is linked to the very small
effect sizes of sufficiently many alleles. It is indeed worth noting
that, if the segregational variance of the quantitative background
is relatively large, then the first step of our explanation (‘‘the
mean quantitative background is constrained to move similarly
in both patches and between bearers of A and a’’) does not
hold and the mean quantitative background can shift in opposite
directions in the two patches, improving local adaptation in both
patches. The impact of bimodality in the quantitative trait, with
mean trait values in each patch near the local optimum, on the
stability of polymorphism at the major-effects locus deserves
further attention.

Robustness. To assess the robustness of the phenomenon that we
identified, we performed various individual-based simulations.
We found that these are in excellent quantitative agreement with
our analysis. They also connect our framework to the evolution of
an explicit genetic architecture, which provides a practical trans-
lation of the small variance regime that underlies our study. This
is important, because we have only shown that our results hold in
this small variance regime. In particular, they might be different
under parameter ranges that violate this regime, for example
under low or no migration (meaning, at a level of comparable
order as the small variance). Moreover, because the trajectories
of the individual-based simulations are consistent with the de-
terministic trajectories produced by our model, we can validate
essential assumptions underlying our model, mostly the con-
stancy of the small segregational variance for the quantitative
background. The latter requires enough loci (L) with relatively
small effects (± σLE√

L
), so that the segregational variance of the

quantitative background (lower than σ2
LE ) remains small while

he phenotypic range produced by the polygenic background
lone

[
−σLE

√
L, σLE

√
L
]

spans well beyond the local optimal
traits. The last condition is necessary to ensure genotypic redun-
dancy (see also Yeaman, 2022), so that well adapted mates with
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imilar phenotypes have on average relatively different geno-
ypes, which in turn ensures that the variance of their offspring
oes not depend too much on their traits. In our simulations
resented in Section 3.2, we showed that L = 200 and σLE = 0.1

produced very similar trajectories to our deterministic model.
Furthermore, in Appendix G, we even lowered the number of loci
to L = 50 and increased the segregational variance parameter
σLE = 0.2 to assess the robustness of our conclusions with regard
to less favourable parameters, with the same conclusions.

Complete analytical outcomes. The analysis performed in Sec-
tion 3.1 is centred on the persistence of polymorphism at the
major-effect locus. As stated in Remark 1, the loss of polymor-
phism by fixation would lead to the dynamics of the quantitative
background alone, as covered in Dekens (2022). Hence, Fig. 6
complements Fig. 3 (for η = 0.5 and varying migration and
selection), by displaying both the region of parameters where the
system would go to the symmetrical polymorphic equilibrium
(in yellow, corresponding to the region where polymorphism is
stable), and the region of parameters corresponding to the two
types of monomorphic equilibria for a quantitative trait in the
regime of small variance described in Dekens (2022).

For bounded selection, there exists a critical threshold in the
migration rate under which the polymorphism at the major-effect
locus is stable (yellow region) and above which it is lost due to the
strong blending effect of migration. In that case, the population
trait distribution is concentrated on the trait at the midpoint
between the two habitats’ optima, and occupies equally the two
habitats. this corresponds to the symmetrical monomorphic equi-
librium (see Ronce and Kirkpatrick, 2001; Dekens, 2022), where
the population can be qualified as generalist (green region). One
can notice that there exists an interval of selection strengths g ∈

[0.7, 1] in which the major polymorphism might not be stable for
all migration rates under the critical threshold. This phenomenon
does not hold for greater major-effect allelic effects (see Figs. 3(b),
3(c), 3(d)).

For bounded migration rates, and with weak selection, the
major polymorphism is unstable, as the diverging selection is too
weak compared to the blending migration to maintain differen-
tiation at the major-effect locus (green region). When selection
strength increases, the polymorphism at the major-effect locus
is first stable (yellow region), but eventually lost above a certain
selection strength. The population becomes adapted to one of the
two habitats that it mostly inhabits (blue region). This asymmet-
rical equilibrium, highlighted as a source–sink scenario in Ronce
and Kirkpatrick (2001), was analytically derived in Dekens (2022).

Filling a methodological gap. In population genetics, one-locus or
two-locus models in heterogeneous environments have been well
studied (Nagylaki and Lou, 2001; Bürger and Akerman, 2011),
with a nuanced picture when including the effect of drift (Yea-
man and Otto, 2011). A two-deme two-locus model is analysed
in Geroldinger and Bürger (2014), which in particular shows
that a concentrated genetic architecture (a major-effect locus
and a tightly linked minor one) maintains polymorphism (full
or single-locus) even under high migration rates when selec-
tion acts in opposite directions in the two patches. Increasing
the number of loci quickly leads to analytical complexity too
great for general study. There also exist multi-loci models in
heterogeneous environments (Lythgoe, 1997; Szép et al., 2021),
but they focus on equal allelic effects. On the other end of the
spectrum, quantitative genetic models do not typically account
for additional discrete major-effect allelic effects on the focal
quantitative trait (for sexually reproducing populations in hetero-
geneous environment, see Ronce and Kirkpatrick 2001; Hendry,
Day, and Taylor 2001; Dekens 2022 and for asexually reproducing
populations, see Débarre, Ronce, and Gandon 2013; Mirrahimi
62
Fig. 6. Summary of the complete analytical outcomes of the model, for η = 0.5
and varying migration (y-axis) and selection (x-axis). The figure combines the
results obtained in Section 3.1 on the stability of the symmetrical polymorphic
equilibrium with the results of the model of Dekens (2022) (equivalent to this
model upon loss of polymorphism). For bounded selection, when migration
increases, there is a threshold over which the polymorphism at the major-effect
locus is lost due to the blending effect of migration (consistent with Yeaman
and Whitlock, 2011). The population then becomes equally maladapted to both
habitats (generalist — symmetrical monomorphism, in the green region). For
this specific major-effect allelic effect η = 0.5, there exists additionally an
interval of selection strength (≈[0.7, 1]) for which the major polymorphism
might not be stable at all migration rates below the critical threshold. This
phenomenon does not seem to hold when the major effect is larger (see
Fig. 3(b)). For bounded migration (below the threshold rate over which the
strong migration blending hampers the major polymorphism), when selection
strength increases, the polymorphism at the major-effect locus (yellow region) is
lost, and the population becomes adapted to one of the two habitats (specialist
— asymmetrical monomorphism, in the blue region). As this figure is obtained
in the small segregational variance regime (which should remain smaller than
the other parameters of the system for the analysis to be valid), we warn that
the outcomes displayed in the vicinity of the x-axis (very small migration rates)
might not correspond to the limit when the migration rate is 0 (no migration).

2017; Mirrahimi and Gandon 2020; Hamel, Lavigne, and Roques
2021).

To our knowledge, the first model that bridges this gap be-
tween quantitative traits anddiscrete loci appears in Lande (1983).
In this work, the author considers the dynamics of a single major-
effect locus where two alleles segregate along with a polygenic
background, in a diploid panmictic population subjected to a
sudden change of environment. He models the influence of the
polygenic background on the trait by assuming that, among bear-
ers of the same major-effect allele, the trait distribution is Gaus-
sian, centred around the effect of the major-effect allele on the
trait. This study opened the way for more recent work on the
genetic architecture of adaptation of panmictic populations in
a suddenly changing environment, where the central question
is whether this adaptation is due to major-effect allelic sweeps
or to subtle shifts in the frequency of many small effect alleles.
In Chevin and Hospital (2008), the authors extend the frame-
work of Lande (1983) to include less specific selection functions
than exponential ones. Subsequent studies (de Vladar and Barton,
2014; Jain and Stephan, 2017) explicitly model the short-term
dynamics of a polygenic trait at mutation–selection balance, fol-
lowing a sudden change of environment. They show that there



L. Dekens, S.P. Otto and V. Calvez Theoretical Population Biology 148 (2022) 49–75

o
r

e
p
s
t
w
H
(
e
f
a
d
f
s

p
t
a
u
r
a
e
p
b
d
p
s
m
t
o

T
o
(
p
p
o
m
q
p
t
s
a

Fig. 7. Layout of the slow–fast analysis in Appendix D. This figure presents the key elements of the separation of time scales leading from (Pε) to (P0). The stability
f the fast equilibria (studied in the two subsystems (S0(Z)) and (SL(Z))) is the crucial argument underlying the convergence result stated in Theorem 2.1. The
esolution of (S0(Z)) leads to a uniqueness result that is unexpected with regard to the analogous resolution in Dekens (2022) (see Remark 5).
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xists a sharp threshold in allelic sizes below which polymor-
hism remains and above which fixation occurs. Lately, in a
imilar context, Höllinger et al. (2019) propose an extension to
ake genetic drift into account on the dynamics of adaptation
ith a polygenic binary trait under mutation–selection balance.
owever, all those works from Lande (1983) to Höllinger et al.
2019) study panmictic populations, without spatial structure,
ven though spatial heterogeneities are known to generate gene
low, which indirectly shapes genetic architecture through local
daptation (see Yeaman and Whitlock, 2011, or below for more
etails). Moreover, they focus solely on the dynamics of the allelic
requencies without considering their coupling with population
ize dynamics, assuming it to be constant.
In this paper, we presented a composite framework between

opulation and quantitative genetics aiming at going beyond
hese methodological limitations. Our model and methodology
llows us to study analytically the eco-evo dynamics of a sex-
ally reproducing population characterized by a composite trait
esulting from the interplay between a few major-effect loci and
quantitative polygenic background, in spatially heterogeneous
nvironments (migration–selection balance). We want to em-
hasize that, by ‘‘eco-evo dynamics’’, we mean that we study
oth the ecological and evolutionary dynamics of the local trait
istributions and therefore do not assume that the sizes of the
opulations remain constant; rather, they are variables of the
ystem. This modelling choice is crucial, because the migrational
eltdown phenomenon provoking the loss of polymorphism at

he major-effect locus with strong selection relies on the building
f asymmetrical subpopulation sizes.

he role of the Gaussian assumption of quantitative trait values. In
ur work, we justify the Gaussian assumption made by Lande
1983) and Chevin and Hospital (2008) to model the background
olygenic effect on the trait via a framework that does not make a
riori assumptions on the within-population distribution. Instead,
ur model relies on an extension of the standard infinitesimal
odel (Fisher, 1919) that encodes both the inheritance of the
uantitative background and the major-effect alleles. Analytical
rogress is possible in a regime of small segregational variance for
he quantitative component of the trait, despite not specifying the
hape of the trait distribution. It relies on the fact that the vari-
nce introduced at each event of reproduction by the quantitative
63
ackground is small compared to the discrete allelic effects at the
ajor-effect locus. This allows us to use a methodology devel-
ped by Diekmann et al. (2005), meant to study trait distributions
oncentrated as Dirac masses, to justify that assuming Gaussian
istributions of quantitative trait values is valid (Section 2.1).
oreover, this Gaussian approximation appears here sufficient

o capture the phenomenon of migration meltdown with strong
election that we identify through the rest of our analysis, as
igher order moments do not seem to have a significant influence
n it.

xtensions to more complex population genetic models. The model
nd the line of methods that we use in this paper are quite robust.
e thus provide a comprehensive toolbox at the end of this
anuscript (Appendix A), to describe how to apply the method
ore broadly. In particular, the toolbox is meant to indicate
ow to extend the method to more complex population genetic
odels by adding a quantitative background. It relies on Propo-
ition B.1, which justifies that carrying the analysis under the
aussian assumption of quantitative trait distribution is valid (in
he regime of small variance indicated). In Appendix A, we detail
he hypotheses that the population genetic models must satisfy
n order to use it (see Appendix B for details and examples).

urther prospects. The loss of the polymorphism at the major-
ffect locus with strong selection in a symmetrical heterogeneous
nvironment, where one might think that it is most favoured,
llustrates the value of our method. However, two natural ques-
ions stem from our work:

1. Would the stability region of polymorphism at the major-
effect locus shrink as much in the presence of a quantita-
tive background when considering asymmetrical levels of
selection/migration between the two patches? Our analysis
suggest that it should, and this can be investigated through
an extension of the last step of our analysis.

2. Would this phenomenon hold if mutations can accumulate
at the major-effect locus? Fig. 3 for example suggests that
polymorphism at the major-effect locus would persist over
a wider range of parameters if the alleles at the major-
effect locus evolve to match the difference in optima. This
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possibility was indicated by the numerical findings of Yea-
man and Whitlock (2011), who found the emergence of
tightly linked clusters of major-effect loci underlying local
adaptation for intermediate migration rates.
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ppendix A. Toolbox: How to study the interplay between a
uantitative background and a finite number of major-effect
oci

The aim is to study the interplay between a quantitative
ackground and a finite number of major-effect loci.
We start with a population genetic model. Let us consider
different genotypes A(k) which have genotypic effects on the

henotype a(k) (we use the index k to indicate genotypes). For our
ethod to be applied, the genotypes should verify two hypothe-
es H1 and H2 described in Appendix B. The metapopulation lives
n a heterogeneous environment of I patches (we use the index i
o indicate location). We denote the population of patch i carrying
enotype k by N (k)

i . Let us denote the system of equations that
escribes the dynamics of the genotypic local population sizes:

dN̄
dT = G̃ā

(
N̄(T )

)
and of a viable stable equilibrium N̄∗. We recall

hat N̄∗ is an equilibrium of the system if G̃ā(N̄∗). This equilibrium is
iable if all the population sizes are non-negative, and at least one is
ositive. Its local stability is determined by standard linear analysis
sign of the real parts of the eigenvalues of the system’s Jacobian).

Let us modify the previous population genetic framework
o include the effect of a quantitative background on the trait,
enerically denoted z. While previously, all individuals carrying
he same genotype A(k) shared the same phenotype, now their
phenotypes can differ due to the quantitative background they
present. Consequently, among individuals of the same patch k
arrying the same major genotype A(k), we distinguish those
haring the same quantitative background z, and denote their
umber n(k)

i (z):
(k) ⇝ (A(k), z)
(k) ⇝ a(k) + z
(k)
i ⇝ n(k)

i (z).

he PDE system that we obtain on the trait distributions n(k)
i is

ot easily analysed. That is why we provide a five steps plan in
rder to guide the analysis when the diversity introduced by the
egregation of the quantitative component of the trait is small
ompared to the variance generated by the major-effect loci (H6
64
— regime of small variance):

1. First, we operate a scaling of time according to the regime
of small variance. It anticipates on the separation of time
scales such that the major-effect allelic frequencies change
rapidly, followed by the slow changes of the quantitative
components (see step 3).

2. In this regime of small variance, we can justify the Gaus-
sian approximation of the local genotypic distributions n(k)

i
centred at the same mean and the same variance ε2, thanks
to Proposition B.1, as soon as the assumptions (H1) and
(H2) are satisfied (see Appendix B) and every genotypic
population randomly mates with themselves and every
other genotypic population (H3) (the latter excludes for
example models that differentiate sexes). This guides the
intuition toward which change of variables to perform in
order to get a system separating time scales explicitly (see
Step 3). We emphasize that Proposition B.1 is crucial to be
able to apply this method.

3. From the PDE system on the distributions n(k)
i , we can

deduce the ODE system of their moments. Since we have
justified the Gaussian approximation for all local genotypic
distributions n(k)

i , the new system is closed in the regime
of small variance ε2 ≪ 1, and only involves the dynamics
of the genotypic local sizes of populations N (k)

i and the
genotypic local mean quantitative components z(k)i .

4. This step aims at obtaining a system that explicitly sepa-
rates time scales, in order to ultimately reduce the com-
plexity of the analysis. It requires a technical change of
variables, which is guided by the formal analysis of the
step 1 (mean quantitative components roughly the same
within patches), and the intuition that migration has a
strong blending effect between patches in the small vari-
ance regime (which would result in the mean quantitative
components roughly being equal between patches). These
considerations bring the following new variables replacing
the genotypic local mean quantitative component z(k)i :

⋄ for each genotype 1 ≤ k ≤ K , δ(k)i,ε is the difference
in the mean quantitative component of the genotypic
population k between the patch i + 1 and patch i
(1 ≤ i ≤ I − 1). Dividing by ε2 comes from the
intuition given above.

⋄ for each genotype 1 ≤ k ≤ K −1, δ(k)ε is the difference
between the mean quantitative component averaged
across patches of genotypic population k + 1 and k.
Dividing by ε2 comes from the intuition given in Step
1.

⋄ Zε is the overall mean quantitative component across
patches and major genotypes. It is the slow evolving
variable.

Rewriting the dynamics of the genotypic local population
sizes N̄ε along these new variables δ̄ε and Zε delivers a sys-
tem in which all the differential equations are multiplied by
ε2 (fast dynamics of N̄ε and δ̄ε) except the one governing
the dynamics of Zε (slow dynamics).
To finally complete the separation of time scales and obtain
the limit system by letting ε2 vanish, it is sufficient to show
that at each value Z of the slow variable, the fast time-
scale equilibria

(
N̄, δ̄

)
are stable, for example by using the

Routh Hurwitz criterion for linear analysis on the Jacobian
JacGā

(
N̄, δ̄

)
.

5. The last step to determine the stability of the global equi-
libria of the full system of the genotypic population with
the influence of the quantitative background

(
N̄∗, δ̄∗, Z∗

)
,

consists in applying the formula given in the last box (see

the next page).

https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models
https://github.com/ldekens/The-best-of-both-worlds-combining-population-genetic-and-quantitative-genetic-models


L. Dekens, S.P. Otto and V. Calvez Theoretical Population Biology 148 (2022) 49–75

s
c

Toolbox: How to study the interplay
between a quantitative background

and a finite number ofmajor-effect loci dynamics.

The stadium:
I patches Pi (1 ≤ i ≤ I)

The teams:
K different genotypes A(k) (1 ≤ k ≤ K )
Vector of genotypic effects on phenotype: ā = (a(1), ..., a(k))
Matrix of local genotypic population sizes: N̄ =

(
N (k)

i

)

Pop. gen. model:
dN̄
dT = G̃ā

(
N̄(T )

) Pop gen. analysis:

(i) Viable equilibria: Gā
(
N̄∗
)

= 0 and N̄∗ > 0̄.
(ii) Stability: eigenvalues of JacGā

(
N̄∗
)
in open left plane.

Population genetic model

The new players:

(i) Quantitative background z
(ii) Individuals carrying genotype i

and a quantitative background z
have a phenotype z + a(k).

(iii) Distribution in patch k : n(k)
i (z)

Work hypotheses:

H1 - H2 (reflexivity and irreducible graph - see Appendix B)
H3 every genotypic population reproduces randomly with themselves

and every other in the same patch
H4 inheritance of the quantitative background in accordance with the

infinitesimal model with segregational variance σ 2.
H5 the quantitative background is unlinked to A(k)

H6 σ 2
≪ min

⏐⏐a(k)⏐⏐2: small variance regime.

Composite model combining population and quantitative genetics

(0) Scaling of time t := ε2 T
(ε2 :=

σ2

min|a(k)|
2 ≪ 1 ⇝ few diversity via inf.

model of reproduction)

(1) Formal analysis (justify Gaussian
distributions - Proposition B.1):

(i) n(k)
i,ε (z) ≈ N (k)

i,ε × Gauss
(
z(k)i,ε , ε

2
)

(ii) z(k)i,ε ≈ z(l)i,ε

2) ODE system of moments (z̄ε := (z(k)i,ε )):{
ε2 dN̄ε

dt = Gā
(
N̄ε(t), z̄ε(t)

)
,

ε2 dz̄ε
dt = Fā

(
N̄ε(t), z̄ε(t)

)
.

(3) Slow-fast analysis:

(i) Change in variables: δ(k)i,ε =
z(k)i+1,ε−z(k)i,ε

2ε2
[K (I − 1)] ; δ(k)ε =

∑
i z

(k+1)
i,ε −z(k)i,ε
2Iε2

[(K − 1)] ; Zε =

∑
k,i z

(k)
i,ε

K×I

(ii) Slow-fast system:{
ε2

d[N̄ε ,δ̄ε]
dt = Gā

(
N̄ε(t), δ̄ε(t), Zε

)
,

dZε
dt = Fā

(
Zε, N̄ε, δ̄ε

)
.

(iii) Separation of time scales (via stability of zeros of Gā by
Routh-Hurwitz criterion on JacGā

(N̄, δ̄)){
0 = Gā

(
N̄, δ̄, Z

)
,

dZ
dt = Fā

(
Z, N̄, δ̄

)
.

(4) Analysis of the limit system:

(i) Viable equilibria: Gā
(
N̄∗, δ̄∗, Z∗

)
= Fā

(
Z∗, N̄∗, δ̄∗

)
= 0, N̄∗ > 0

(ii) Stability:∇N̄,δ̄Fā ·

([
JacGā

(
N̄, δ̄

)]−1
∂ZGā

)⏐⏐⏐
Z∗,N̄∗,δ̄∗

> 0.

Steps to apply the analysis
Appendix B. Generalization of Proposition 2.1 for more com-
plex genotypes

To state a generalization of Proposition 2.1, we first need to
pecify the targeted scope of population genetic models. Let us
onsider K different genotypes A(k) that satisfies the following
65
hypotheses relating to how they interact with each other regard-
ing the genotypes of their offspring:

H1 Reflexivity: For all k ∈ (1, K ), the offspring of two parents
with the same genotype A(k) has a positive probability to
be of genotype A(k).
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1 is a natural hypothesis when considering either haploid or
iploid populations, even with non-Mendelian processes (genetic
inkage/recombination, gene drives), provided that they are not
oo extreme (lowering the probability of inheriting a certain
enotype is fine as long as it does not cancel it). The second
ypothesis is more conveniently apprehendable by considering
he graph G whose nodes are the genotypes A(k). A vertex links
wo nodes A(k) and A(l) if and only if there exists a positive
robability that their offspring has genotype A(k) or A(l).

H2 Irreducible graph: For all (k, l) ∈ (1, K )2, there exists a
path of vertices of G connecting A(k) and A(l).

his last hypothesis is satisfied by any haploid models, regardless
f how many loci are considered, because an offspring can inherit
ll their alleles from only one parent. Consequently, in that case,
very node of the graph is connected to every other. In diploid
odels, where an offspring can have a different genotype from
oth its parents, which vertices of the graph G exist is not clear.
owever, for example, we can show that the graph corresponding
o a diploid model, with L loci and two alleles at each locus,
s connected according to H2. Indeed, each genotype is directly
onnected to any other that differs from it from just one allele at
ne locus. Nevertheless, the interest of H2 is that it is very easy

to verify whether it is satisfied given any particular model.
To state the proposition that generalizes Proposition 2.1, we

first need to define the index set of couples that can yield an
offspring with a particular genotype. For k ≤ K , we denote it
by C (k), where (l, k) ∈ C (k) if and only if parents with genotypes
A(l) and A(k) can produce an offspring with genotype A(k). The
following proposition characterizes the genotypic functions uA(k)

hat respect the following constraints analogous to (C)

k ≤ K , ∀z ∈ R, max
(l,k)∈C (k)

[
sup
z1,z2

uA(k)
(z) −

(
z −

z1 + z2
2

)2

(C’)

− uA(l)
(z1) − uA(k)

(z2)
]

= 0.

roposition B.1. Suppose that H1 and H2 are satisfied. For k ≤ K ,
e consider uA(k)

a real valued non-negative function whose zero set
s non-empty and of measure 0 (for example, is finite). If {uA(k)

, k ≤

} respects , then there exists z∗
∈ R such that for all k ≤ K:

z ∈ R, uA(k)
(z) =

(z − z∗)2

2
.

roof. (0) uA(k) is continuous and has right and left derivatives

verywhere
For k ≤ K and z ∈ R, we have:

A(k)
(z) − z2 = min

(l,k)∈C (k)
inf
z1,z2

[
−z(z1 + z2) +

(
z1 + z2

2

)2

+ uA(l)
(z1) + uA(k)

(z2)
]
. (16)

Therefore, uA(k)
(z) − z2 is concave as infimum of affine func-

tions, and thus continuous and has right and left derivatives.

(1) uA(k) cancels only once
Let us fix k ≤ K . Let us suppose that uA(k)

has two zeros
z∗

1 ̸= z∗

2 . H1 implies that (k, k) ∈ C (k). Then, we deduce from that:

uA(k)
(z) ≤ inf

z1,z2

(
z −

z1 + z2
2

)2

+ uA(k)
(z1) + uA(k)

(z2).

n particular, for z =
z∗1+z∗2

2 , z1 = z∗

1 , z2 = z∗

2 , we obtain

A(k)
(
z∗

1 + z∗

2 ) ≤ 0. (17)

2
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As uA(k)
is non-negative, the midpoint between two zeros of uA(k)

is also a zero of uA(k)
. uA(k)

is also continuous from the previous
point, therefore, we deduce that uA(k)

cancels on [z∗

1 , z
∗

2 ]. The
latter violates the assumption that uA(k)

has a zero set of measure
0. Because it is also not empty, we get that uA(k)

cancels exactly
once, in a point that we denote z∗

k .

(2) The zero of uA(k) coincides with the zero of uA(l)
: z∗

k = z∗

l
First, let us consider the case where (k, l) ∈ (1, K )2 is such

hat A(k) and uA(l)
are linked by a vertex in the graph G. Then, we

educe that (k, l) ∈ C (k) or (k, l) ∈ C (l). We can assume the first
without loss of generality. Similarly as the first part of the proof,
we deduce that

uA(k)
(z) ≤ inf

z1,z2

(
z −

z1 + z2
2

)2

+ uA(k)
(z1) + uA(l)

(z2).

onsequently, the midpoint between z∗

k and z∗

l is a zero of uA(k)
,

which is necessarily z∗

k , which implies that z∗

k = z∗

l .
Let us now show the same for every couple (k, l) not neces-

sarily linked by a vertex in G. H2 implies that there exists a path
of vertices between uA(k)

and uA(l)
. As we showed that for every

pair of nodes connected by a vertex, the zeros of their function
are the same point, that property also holds for the extremities
of the path of vertices, hence z∗

k = z∗

l . We denote z∗ the common
zero.

(3) Convex Legendre conjugates ˆuA(k) (y) = sup
z

(z−z∗)y−uA(k)
(z)

Let us show that implies that the convex Legendre conjugate
satisfies

∀y ∈ R, ˆuA(k) (y) =
y2

4
+ max

(l,k)∈C (k)

[
ˆuA(l)
( y
2

)
+

ˆuA(k)
( y
2

)]
. (18)

sing (16) and commuting the sup, we obtain, for y ∈ R,

Â(k) (y) = sup
z

[
(z − z∗)y − min

(l,k)∈C (k)
inf
z1,z2

( (
z −

z1 + z2
2

)2

+ uA(l)
(z1) + uA(k)

(z2)
)]

= max
(l,k)∈C (k)

[
sup
z1,z2

(
−uA(l)

(z1) − uA(k)
(z2)

+ sup
z

(z − z∗)y −

(
z −

z1 + z2
2

)2
)]

.

(19)

oreover, a straight-forward calculus shows that the sup
z

is

reached at z =
y+z1+z2

2 , which leads to

sup
z

(z − z∗)y −

(
z −

z1 + z2
2

)2

=

(
y + z1 + z2

2
− z∗

)
y −

y2

4

=
y2

4
+
(
z1 − z∗

) y
2

+
(
z2 − z∗

) y
2
.

(20)

Combining (19) and (20) (the fact that zA = za = z∗ plays a crucial
part for the crossed term) leads to (18).

Moreover, we obtain classically that:

ˆuA(k) (y) ≥ (z∗
− z∗)y − uA(k)

(z∗) = 0 =
ˆuA(k) (0) (21)

4) max ˆuA(k)
: y ↦→

y2
k≤K 2



L. Dekens, S.P. Otto and V. Calvez Theoretical Population Biology 148 (2022) 49–75

F

H

C

∀

M

∀

T

l
i

∀

w

d

c

o

z

α

m

i

∀

l

∀

C

E

∀

∀

e
t
w
a
U
f

N

i
n

We obtain from (18) that:

∀y ∈ R, max
k≤K

ˆuA(k) (y) =
y2

4

+ max
k≤K

max
(l,k)∈C (k)

[
ˆuA(l)
( y
2

)
+

ˆuA(k)
( y
2

)]
. (22)

or y ∈ R, let k0 ≤ K be such that max
k≤K

ˆuA(k) ( y
2

)
= ˆuAk0

( y
2

)
.

1 implies in particular (k0, k0) ∈ C (k0) and therefore, the max-
imum of the right-hand side of (22) is reached in 2 ˆuAk0

( y
2

)
.

onsequently, we deduce that

y ∈ R, max
k≤K

ˆuA(k) (y) =
y2

4
+ 2max

k≤K

ˆuA(k)
( y
2

)
. (23)

oreover, one can notice that

y ∈ R, max
k≤K

ˆuA(k) (y) = max
k≤K

max
z∈R

(z − z∗)y − uA(k)
(z)

= max
z∈R

(z − z∗)y − min
k≤K

uA(k)
(z)

=

ˆ
(
min
k≤K

uA(k)

)
(y).

herefore, max
k≤K

ˆuA(k) is a convex continuous function that has

eft and right derivative everywhere, in particular in 0. Hence,
terating B.1 implies first that:

y > 0 (resp. < 0), max
k≤K

ˆuA(k) (y) =
y2

2
+ β y (resp. α y),

(24)

here (α, β) =

(
max
k≤K

ˆuA(k)
′

(0−),max
k≤K

ˆuA(k)
′

(0+)
)
. From (21), we

educe that the α ≤ 0 ≤ β . Since max
k≤K

ˆuA(k) is the convex

onjugate of min
k≤K

uA(k)
, we compute that the convex bi-conjugate

f min
k≤K

uA(k)
is

↦→

⎧⎪⎨⎪⎩
(z−z∗−α)2

2 if z < z∗
+ α

0 if z∗
+ α ≤ z ≤ z∗

+ β
(z−z∗−β)2

2 if z > z∗
+ β.

(25)

As the convex bi-conjugate of min
k≤K

uA(k)
is the lower convex

envelope of min
k≤K

uA(k)
, the two of them are equal at the extremal

points of its graph, namely for z = z∗
+ α and z = z∗

+ β . We
deduce from (25) that

min
k≤K

uA(k)
(z∗

+ α) = min
k≤K

uA(k)
(z∗

+ β) = 0.

Since all the uA(k)
, k ≤ K only cancels for z = z∗, we obtain that

= β = 0 and (24) yields that max
k≤K

ˆuA(k)
: y ↦→

y2
2 .

(5) max
k≤K

ˆuA(k)
= min

k≤K

ˆuA(k)

First let us state that min
k≤K

ˆuA(k) is continuous as minimum of a

finite number of continuous functions and that it is non-negative
and reaches its minimum in 0, with min

k≤K

ˆuA(k) (0) = 0 (from (21)).

Moreover, (18) implies that

∀y ∈ R, min ˆuA(k) (y) ≤
y2

+ 2max ˆuA(k)
( y)

=
y2
. (26)
k≤K 4 k≤K 2 2
67
Therefore min
k≤K

ˆuA(k) has left and right derivatives in 0, and

in
k≤K

ˆuA(k)
′ (
0+
)

= min
k≤K

ˆuA(k)
′ (
0−
)

= 0. Furthermore, (18) also

mplies that

y ∈ R, min
k≤K

ˆuA(k) (y) ≥
y2

4
+ 2min

k≤K

ˆuA(k)
( y
2

)
.

Iterating the last inequality, and knowing that

min
k≤K

ˆuA(k)
(0) = min

k≤K

ˆuA(k)
′ (
0+
)

= min
k≤K

ˆuA(k)
′ (
0−
)

= 0,

eads to

y ∈ R, min
k≤K

ˆuA(k) (y) ≥
y2

2
= max

k≤K

ˆuA(k) (y).

onsequently, we deduce that min
k≤K

ˆuA(k)
= max

k≤K

ˆuA(k) .

nd of proof. The last result implies that

k ≤ K , ∀y ∈ R, ˆuA(k) (y) = max
k≤K

ˆuA(k) (y) =
y2

2
.

From the latter we compute the bi-conjugates
ˆ̂

uA(k)
: z ↦→

(z−z∗)2
2 .

Since z ↦→
z−z∗
2 is strictly convex and it is the lower convex

envelope of uA(k)
, we obtain that

k ≤ K , ∀z ∈ R, uA(k)
(z) =

(z − z∗)2

2
. □

Appendix C. Formal justification of the constraints (C) on the
main terms uA

0 and ua
0

We drop the index i indicating the habitat and the time de-
pendence t for this appendix for the sake of simpler notations.

Let us first formally justify that UA
0 and Ua

0 are positive almost
verywhere and cancelling somewhere. As we are interested in
he maintenance of the polymorphism at the major-effect locus,
e consider that no major-effect allele has yet fixed. Hence, NA

ε

nd Na
ε need to remain positive and bounded when ε vanishes.

sing the Hopf–Cole transforms on nA
ε and na

ε (5) along with the
ormal Taylor expansions (6) on UA

ε and Ua
ε leads to

A
ε =

∫
R
nA
ε (z

′) dz ′
=

∫
R

1
√
2πε

e−
UA
ε (z

′)
ε2 dz ′

=

∫
R

1
√
2πε

e−
uA0(z

′)

ε2 e−uA1+ε2vAε dz ′. (27)

If we assume that the residues uA
1 and vAε stay bounded when

ε vanishes (as Calvez et al., 2019 suggests it), then (27) implies
that uA

0 must be non-negative for NA
ε to remain bounded when

ε vanishes. For NA
ε not to vanish asymptotically, uA

0 must cancel.
Moreover, for any interval I ⊂ R, uA

0 cannot cancel on I , or we
would have:

NA
ε >

∫
I

1
√
2πε

e
1
ε2 e−uA1+ε2vAε dz ′

→ +∞.

So uA
0 is positive almost everywhere, and cancelling somewhere.

The same holds for ua
0.

Now, for determining the constraints (C), let us notice that
f we divide the right-hand side of the first equality of (3) by
A
ε (z), the reproduction term BA

ε (nAε ,n
a
ε )(z)

nAε (z)
has to remain positive

and bounded for all z ∈ R when ε vanishes for the effect of
reproduction to remain well-balanced with selection, migration
and competition. We assume henceforth that (6) is the correct
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w
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e
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N

T
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nsatz (as suggested by Calvez et al., 2019). Using the Hopf–
ole transforms on nA

ε and na
ε (5) along with the formal Taylor

xpansions (6) on UA
ε and Ua

ε in (4) leads to

BA
ε (nA

ε , n
a
ε)(t, z)

nA
ε (z)

=
BA
ε (nA

ε , n
a
ε)(z)

1
√
2πε

e−
uA0(z)

ε2 e−uA1(z)+O(ε2)

=

√
2

NA
ε

×[∫
R2

exp

(
1
ε2

[
uA
0(z) −

(
z −

z1 + z2
2

)2

− uA
0(z1) − uA

0(z2)

])
exp

(
uA
1(z) − uA

1(z1) − uA
1(z2) + O(ε2)

)
dz1dz2

+

∫
R2

exp

(
1
ε2

[
uA
0(z) −

(
z −

z1 + z2
2

)2

− uA
0(z1) − ua

0(z2)

])
exp

(
uA
1(z) − uA

1(z1) − ua
1(z2) + O(ε2)

)
dz1dz2

]
.

s NA
ε remains bounded and does not vanish asymptotically, we

eed the maximum of the two integrals nor to vanish, nor to
iverge to infinity when ε vanishes, for all z ∈ R. Therefore the
aximum of the terms into brackets that are multiplied by 1

ε2
eeds to be null for all z ∈ R:

∀z ∈ R, max
[
sup
z1,z2

uA
0(z) −

(
z −

z1 + z2
2

)2

− uA
0(z1) − uA

0(z2),

sup
z1,z2

uA
0(z) −

(
z −

z1 + z2
2

)2

− uA
0(z1) − ua

0(z2)
]

= 0,

hich is the first constraint of (C). The same holds for BA
ε (naε ,n

A
ε )(z)

naε (z)
,

hich gives the second constraint of (C).

ppendix D. Slow–fast analysis underlying the separation of
ime scales

Under the change of variable (11), the system (10) is equiv-
lent to the system of equations in Box I. The system (28) can
e recasted more compactly into (Pε). The main slow–fast anal-
sis result is Theorem 2.1, which states the convergence of (Pε)
owards a limit system (P0) which separates ecological and evo-
utionary time scales. The arguments of the proof of Theorem 2.1
re similar to the analogous theorems proved in Levin and Levin-
on (1954), Dekens (2022). The proof requires some preliminaries
esults, particularly of stability, to which we dedicate the rest
f this section. The structure of this section is represented in
ig. 7. In the rest of this section, we first solve the slow manifold
lgebraic system G(Ȳ , Z) = 0, showing that there can only exist
ne instantaneous ecological equilibrium at a given Z ∈ ] − 1, 1[
Propositions D.1 and D.2). Surprisingly, this resolution is easier
han the analogous one in Dekens (2022) (see Remark 5). Next, in
ppendix D.1.2, we show a stability criterion of the slow manifold
Propositions D.3 and D.4), which justifies the separation of time
cales approach.

.1. Analysis of the fast equilibria

The fast equilibria, for Z ∈ ]−1, 1[, are defined as the solutions
¯ to the algebraic system G(Ȳ , Z) = 0, or equivalently seven

quations that we group in two subsystems (S0(Z)) and (SL(Z)):

68
αm2 Na
2 − m1Na

1 + Na
1

[
1 − (Na

1 + NA
1 ) − g1 (Z + ηa + 1)2

]
= 0,

αm2 NA
2 − m1NA

1 + NA
1

[
1 − (Na

1 + NA
1 ) − g1 (Z + ηA + 1)2

]
= 0,

m1
α

Na
1 − m2 Na

2 + Na
2

[
λ− (Na

2 + NA
2 ) − g2 (Z + ηa − 1)2

]
= 0,

m1
α

NA
1 − m2 NA

2 + NA
2

[
λ− (Na

2 + NA
2 ) − g2 (Z + ηA − 1)2

]
= 0.

(S0(Z))

JSL

⎛⎝ δδA
δa

⎞⎠ =

⎛⎝ (g1 + g2) η
A
−ηa

2
−(g1 + g2) + (g2 − g1)(Z + ηA)
−(g1 + g2) + (g2 − g1)(Z + ηa)

⎞⎠ , (SL(Z))

here JSL given in Box II.

.1.1. Resolution
Following Remark 1, we recall that we assume that no major-

ffect allele has fixed. Here, we show that there is at most one
nstantaneous ecological equilibrium at each Z-level (for Z ∈

− 1 −
ηA+ηa

2 , 1 −
ηA+ηa

2 [), thanks to Propositions D.1 and D.2.

Proposition D.1. Suppose that no major-effect allele has fixed. Then,
for Z ∈] − 1 −

ηA+ηa

2 , 1 −
ηA+ηa

2 [, (S0(Z)) has exactly one solution
Na

1 ,N
A
1 ,N

a
2 ,N

A
2 ) ∈ (R∗)4, given by:

a
1 =

Y A N1 − N2

Y A − Y a , Na
2 = Y a Y

A N1 − N2

Y A − Y a ,

NA
1 =

N2 − Y a N1

Y A − Y a ,NA
2 = Y AN2 − Y a N1

Y A − Y a ,

where the quantities (Y A, Y a,N1,N2) are defined by (29):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y A
=

g1
αm2

(
ηA + ηa + 2 (Z + 1)

)
ηA−ηa

2

×

⎡⎢⎣√1 +
m1 m2

4 g1 g2

(
ηA−ηa

2

)2
(
1−
(
ηA+ηa

2 +Z
)2
) + 1

⎤⎥⎦ ,
Y a

=
g1
αm2

(
ηA + ηa + 2 (Z + 1)

)
ηA−ηa

2

×

⎡⎢⎣√1 +
m1 m2

4 g1 g2

(
ηA−ηa

2

)2
(
1−
(
ηA+ηa

2 +Z
)2
) − 1

⎤⎥⎦ ,
N1 = 1 − g1 (Z + 1 + ηA)2 − m1 + αm2 Y A,

N2 = λ− g2 (Z − 1 + ηA)2 − m2 +
m1
α YA .

(29)

This solution (Na
1 ,N

A
1 ,N

a
2 ,N

A
2 ) defines viable numbers of each allele

in each sub-population if and only if:

[Y A N1 > N2] and [N2 > Y a N1]. (30)

Proof. Let us introduce the following change of variables, valid
under the assumption that no major-effect allele has fixed:

N1 := NA
1 + Na

1 , N2 := NA
2 + Na

2 , Y A
:=

NA
2

NA
1
, Y a

:=
Na

2

Na
1
.

hen, under the assumptions made in Remark 1, the system
S0(Z)) is equivalent to:

αm2 Y a
− m1 +

[
1 − N1 − g1 (Z + ηa + 1)2

]
= 0,

αm2 Y A
− m1 +

[
1 − N1 − g1 (Z + ηA + 1)2

]
= 0,

m1
α

1
Y a − m2 +

[
λ− N2 − g2 (Z + ηa − 1)2

]
= 0,

m1 1 [
A 2

] (31)
α YA − m2 + λ− N2 − g2 (Z + η − 1) = 0.
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ε2
dNa

ε,i
dt = λi−1Na

ε,i −
[
NA
ε,i + Na

ε,i

]
Na
ε,i − gi

[
Zε + ηa − (−1)i

]2 Na
ε,i

+α(−1)jmj Na
ε,j − mi Na

ε,i + O(ε2),

ε2
dNA

ε,i
dt = λi−1 NA

ε,i −
[
NA
ε,i + Na

ε,i

]
NA
ε,i − gi

[
Zε + ηA − (−1)i

]2 NA
ε,i

+α(−1)jmj NA
ε,j − mi NA

ε,i + O(ε2),

ε2
d δaε
dt = g1 + g2 + (g1 − g2) (Zε + ηa) +

δε
2

[
NA
ε,2

Na
ε,2+NA

ε,2
−

NA
ε,1

Na
ε,1+NA

ε,1

]
−δaε

[
m2α Na

ε,2
Na
ε,1

+
m1Na

ε,1
α Na

ε,2

]
+

δAε−δaε
4

[
NA
ε,2

Na
ε,2+NA

ε,1
+

NA
ε,1

Na
ε,1+NA

ε,1

]
+ O(ε2),

ε2
d δAε
dt = g1 + g2 + (g1 − g2) (Zε + ηA) +

δε
2

[
Na
ε,1

Na
ε,1+NA

ε,1
−

Na
ε,2

Na
ε,2+NA

ε,2

]
−δAε

[
m2αNA

ε,2
NA
ε,1

+
m1NA

ε,1
αNA

ε,2

]
+

δaε−δ
A
ε

4

[
Na
ε,2

Na
ε,2+NA

ε,2
+

Na
ε,1

Na
ε,1+NA

ε,1

]
+ O(ε2),

ε2 d δε
dt = −

δε
2 − (g1 + g2) η

A
−ηa

2 +

(
δAε
2

[
αm2NA

ε,2
NA
ε,1

−
m1NA

ε,1
αNA

ε,2

]
−

δaε
2

[
αm2Na

ε,2
Na
ε,1

−
m1Na

ε,1
αNa

ε,2

])
+O(ε2),

dZε
dt = (g2 − g1) − (g1 + g2)

(
Zε +

ηA+ηa

2

)
+

δε
2

[
NA
1,ε

NA
1,ε+Na

1,ε
+

NA
2,ε

NA
2,ε+Na

2,ε
− 1

]
+

(
δaε
2

[
αm2Na

ε,2
Na
ε,1

−
m1Na

ε,1
αNa

ε,2

]
+

δAε
2

[
αm2NA

ε,2
NA
ε,1

−
m1NA

ε,1
αNA

ε,2

])
+
δAε−δaε

4

[
NA
2,ε

NA
2,ε+Na

2,ε
−

NA
1,ε

NA
1,ε+Na

1,ε

]
+ O(ε2).

(28)

Box I.
JSL:=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
1
2

1
2

[
αm2 NA

2
NA
1

−
m1 NA

1
α NA

2

]
−

1
2

[
αm2 Na

2
Na
1

−
m1 Na

1
α Na

2

]
Na
1

NA
1+Na

1
−

Na
2

NA
2+Na

2
2 −

[
αm2 NA

2
NA
1

+
m1 NA

1
α NA

2

]
−

Na
1

NA
1+Na

1
+

Na
2

NA
2+Na

2
4

Na
1

NA
1+Na

1
+

Na
2

NA
2+Na

2
4

NA
2

NA
2+Na

2
−

NA
1

NA
1+Na

1
2

NA
1

NA
1+Na

1
+

NA
2

NA
2+Na

2
4 −

[
αm2 Na

2
Na
1

+
m1 Na

1
α Na

2

]
−

NA
1

NA
1+Na

1
+

NA
2

NA
2+Na

2
4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Box II.
a⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w

N

his is equivalent to the following system:

αm2 (Y a
− Y A) + g1

(
ηA + ηa + 2 (Z + 1)

)
(ηA − ηa) = 0,

m1
α

( 1
Y a −

1
YA ) + g2

(
ηA + ηa + 2 (Z − 1)

)
(ηA − ηa) = 0,

N1 −
(
1 − g1 (Z + 1 + ηA)2 − m1 + αm2 Y A

)
= 0,

N2 −

(
λ− g2 (Z − 1 + ηA)2 − m2 +

m1
α YA

)
= 0.

s Z ̸= 1 −
ηA+ηa

2 , the closed subsystem on (Y A, Y a) is, in turn,
quivalent to:

Y A
− Y a

= A1(Z) :=
g1
αm2

(
ηA + ηa + 2 (Z + 1)

)
(ηA − ηa),

−Y A Y a
= A0(Z) :=

g1 m1
α2 g2 m2

ηA+ηa+2 (Z+1)
ηA+ηa+2 (Z−1)

.

A and −Y a are the roots of the polynomial:

(X) = X2
− A1(Z) X + A0(Z).

P has two real roots of opposite signs if and only if:

[A (Z) < 0] ,
0

69
which is equivalent to:

−1 −
ηA + ηa

2
< Z < 1 −

ηA + ηa

2
.

Under the last condition on Z , A1(Z) is positive, A0(Z) is negative
nd we get:

Y A
=

A1(Z)
2

[√
1 −

A0(Z)(
A1(Z)

2

)2 + 1

]
,

Y a
=

A1(Z)
2

[√
1 −

A0(Z)(
A1(Z)

2

)2 − 1

]
,

(32)

hich is equivalent to (29).
Inverting the initial change of variables leads to:

a
1 =

Y A N1 − N2

Y A − Y a , Na
2 = Y a Y

A N1 − N2

Y A − Y a ,

NA
1 =

N2 − Y a N1

Y A − Y a , NA
2 = Y AN2 − Y a N1

Y A − Y a ,
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D

f
e
s
f
]

t
m

e

P
h
m

v

=

JS0 =

⎛⎜⎜⎜⎜⎜⎜⎝
−
αm2 Na

2
Na
1

− Na
1 αm2 −Na

1 0
m1
α

−
m1 Na

1
α Na

2
− Na

2 0 −Na
2

−NA
1 0 −

αm2 NA
2

NA
1

− NA
1 αm2

0 −NA
2

m1
α

−
m1 NA

1
α NA

2
− NA

2

⎞⎟⎟⎟⎟⎟⎟⎠ .

Box III.
hence (29). It defines a viable solution with positive entries if and
only if Y A N1 > N2 and N2 > Y a N1. □

Proposition D.2. For all allelic sizes of subpopulations (Na
1 ,N

A
1 ,N

a
2 ,

NA
2 ) ∈

(
R∗

+

)4 and Z ∈ R, there exists a unique solution (δ, δA, δa) to
the system (SL(Z)).

Proof. Using the notation N1 := NA
1 + Na

1 and N2 := NA
2 + Na

2 , we
compute thanks to a symbolic computation tool (Mathematica©):

det(JSL ) = −
1
4

[
m1

α

N1

N2
+ αm2

N2

N1
+ 2

m2
1

α2

Na
1 N

A
1

Na
2 N

A
2

+ 2α2m2
2
Na

2 N
A
2

Na
1 N

A
1

+ 2m1m2

(
NA
1
2Na

2

Na
1N1N2

+
Na

1
2NA

2

NA
1N1N2

+
NA

2
2Na

1

Na
2N1N2

+
Na

2
2NA

1

NA
2N1N2

+ 2
NA

2N
a
1

N1 N2
+ 2

Na
1N

a
2

N1N2

)]
< 0. □

.1.2. Stability
Convergence toward a limit system locally in time in a slow–

ast analysis relies essentially on a stability criterion of the fast
quilibria which constitute the slow manifold (Levin and Levin-
on, 1954; Dekens, 2022). In this subsection, we show that all
ast equilibria found in Propositions D.1 and D.2 for a level Z ∈

−1−
ηA+ηa

2 , 1−
ηA+ηa

2 [, are stable. Due to the particular shape of
he slow manifold, it is sufficient to study separately the Jacobian
atrix associated to (S0(Z)) denoted JS0Proposition D.3 and the

Jacobian matrix associated to the linear system (SL(Z)), which is
xactly JSLProposition D.4.

roposition D.3. Let Z ∈]−1−
ηA+ηa

2 , 1−
ηA+ηa

2 [ such that (S0(Z))
as a unique solution (Na

1 ,N
A
1 ,N

a
2 ,N

A
2 ) ∈

(
R∗

+

)4. Let us define the
atrix JS0 (see Box III). Then:

1. JS0 is the Jacobian of (S0(Z)) at (Na
1 ,N

A
1 ,N

a
2 ,N

A
2 ).

2. All the eigenvalues of JS0 are located in the left open half plane.

Proof. 1. Let (Na
1 ,N

A
1 ,N

a
2 ,N

A
2 ) be solution of (S0(Z)). One can

erify that:

∂
[
αm2 Na

2 − m1Na
1 + Na

1

[
1 − (Na

1 + NA
1 ) − g1 (Z + ηa + 1)2

]]
∂Na

1[
1 − (Na

1 + NA
1 ) − g1 (Z + ηa + 1)2 − m1

]
− Na

1 = −
αm2 Na

2

Na
1

− Na
1 ,

for (Na
1 ,N

A
1 ,N

a
2 ,N

A
2 ) solves (S0(Z)). The same holds for the other

diagonal entries.
2. Let:

χ (X) = X4
− tr

(
J
)
X3

+ b X2
+ c X + det J ,
JS0 S0 S0

70
Fig. 8. Same as the left panel of Fig. 5, but with fixed subpopulations sizes.
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b

a

Fig. 9. Same as Fig. 5, but with asymmetrical initial subpopulation sizes.
e the characteristic polynomial of JS0 . Let us verify the Routh–
Hurwitz criterion: all the eigenvalues of JS0 are located in the left
open half plane if and only if:

(i) det JS0 > 0,
(ii) −tr

(
JS0
)
> 0,

(iii) −tr
(
JS0
)
b − c > 0,

(iv) (−tr
(
JS0
)
b − c) c − tr

(
JS0
)2 det JS0 > 0.

We have:

det JS0 = m1 m2
(
Na

1 N
a
2 − NA

1 NA
2

)2 ( 1
Na
1 N

A
2

+
1

NA
1 Na

2

)
> 0.

nd:

− tr
(
JS0
)

= N1 + N2 +
√
m1 m2

(
α
√
m2Na

2
√ a +

√
m1Na

1
√ a
m1N1 α m2N2

71
+
α
√
m2NA

2
√
m1NA

1
+
α
√
m2NA

2
√
m1NA

1

)
> 0.

With the help of a symbolic computation tool (Mathematica©),
we verify that the left hand side of the two last conditions are
sums of positive terms, but are too long to be displayed here. □

The Jacobian matrix of the linear system (SL(Z)) is exactly JSL
and we also show that JSL satisfies the Routh–Hurwitz criterion:

Proposition D.4. JSL has all its eigenvalues located in the left open
half plane.

Proof. Let the following be the characteristic polynomial of JSL :

χJSL
(X) = X3

− tr(JSL )X
2
−

1
2

(
tr(J2SL ) − tr(JSL )

2) X − det(JSL ).

We show that J satisfies the Routh–Hurwitz criterion:
SL
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W
t

Fig. 10. Same as Fig. 5, but with a quantitative background of L = 50 loci and σLE = 0.2.
(i) − det(JSL ) > 0,
(ii) −tr(JSL ) > 0,
(iii) 1

2

(
tr(J2SL ) − tr(JSL )

2
)

tr(JSL ) + det(JSL ) > 0.

We have − det(JSL ) > 0 from the proof of Proposition D.2 and:

− tr(JSL ) = 1 +
√
m1 m2

(
α
√
m2Na

2
√
m1Na

1
+

√
m1Na

1

α
√
m2Na

2

+
α
√
m2NA

2
√
m1NA

1
+
α
√
m2NA

2
√
m1NA

1

)
> 1 + 4

√
m1m2.

e verify that the l.h.s. of the last condition is a sum of positive
erms. □
72
Appendix E. Proof of Proposition 3.1

Let us define the quantities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y A,∗
=

2 g η
m

[√
1 +

m2

4 g2 η2
+ 1

]
,

Y a,∗
=

2 g η
m

[√
1 +

m2

4 g2 η2
− 1

]
,

N∗

1 = 1 − g η2 − g − m + 2 g η
√
1 +

m2

4 g2 η2
,

N∗

2 = N∗

1 .

(33)

Proposition D.1 states that the latter defines a solution to (S0(Z))
given that Z = 0:
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(

S

1

w

(

Fig. 11. Same as Fig. 5, but with a quantitative background of L = 50 loci and σLE = 0.2 and asymmetrical initial subpopulations sizes.
Na,∗
1 ,Na,∗

2 ,NA,∗
1 ,NA,∗

2 ) =

(
N∗

1
Y A,∗

− 1
Y A,∗ − Y a,∗ , N∗

1
1 − Y a,∗

Y A,∗ − Y a,∗ ,

N∗

1
1 − Y a,∗

Y A,∗ − Y a,∗ , N∗

1
Y A,∗

− 1
Y A,∗ − Y a,∗

)
.

ince Y A,∗ > 1 and Y A,∗ Y a,∗
= 1, this solution is viable under the

condition: N1 > 0, hence requiring :

+

√
4 g2 η2 + m2 > g η2 + g + m,

hich in turn is equivalent to (13).
Proposition D.2 next states that (SL(Z)) has a unique solution

δ∗, δA,∗, δa,∗) for such allelic population sizes (Na,∗
1 ,Na,∗

2 ,NA,∗
1 ,

NA,∗
2 ). One can compute that:

δA,∗ = δa,∗ =
g
(
1 + η + Y A,∗(1 − η)

)
m(1 + Y A,∗)

,

δ∗
= −

2g
(
1 + η − Y A,∗2(1 − η)

)
Y A,∗ .
73
Finally, one can verify that (Na,∗
1 ,Na,∗

2 ,NA,∗
1 ,NA,∗

2 , δ∗, δA,∗, δa,∗)
along with setting Z∗

= 0 is a solution of the last equation of (12).

Appendix F. Supplementary IBS with fixed subpopulations
sizes

In this appendix, we show in Fig. 8 the analogous results as
those presented in Fig. 5, but with a slightly different procedure
for the IBS, which adjusts the birth rates to compensate exactly
for the deaths by selection at each generation, thus keeping the
subpopulations sizes fixed. As mentioned in the main text, the
loss of the polymorphism at the major-effect locus still occurs
with weak selection, but not with strong selection.

Appendix G. Supplementary IBS with asymmetrical initial con-
ditions or different parameters for the genetic architecture
(L = 50 loci and σLE = 0.2)

In this appendix, we first show that the phenomenon of loss of
polymorphism in the presence of a quantitative background with
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eak or strong selection is robust to asymmetrical initial popula-
ion sizes, and even occurs much faster (Fig. 9). We emphasize on
he excellent agreement of the deterministic iterations with the
ndividual-based simulations

Furthermore, we also show that our findings hold when con-
idering a smaller number of loci involved in the quantitative
ackground (L = 50 instead of 200), with increased relative effect
σLE = 0.2 instead of 0.1), so that the trait range [−η−σLE

√
L, η+

LE
√
L] ≈ [−η − 1.4, η + 1.4] extends beyond the local optima

−1 and 1) even in the absence of major effects. We display the
esults of the IBS with symmetrical initial subpopulation sizes
n Fig. 10 and with asymmetrical initial subpopulation sizes in
ig. 11. Note that the right panel of each figure does not change
rom Figs. 5 and 9, because the control case does not depend
n the number of loci, but we choose to display it anyway
or consistency of comparison. One can notice that the time to
ixation at the major-effect locus in the presence of a quantitative
ackground under weak (Figs. 10(e), 11(a)) and strong selection
Figs. 10(e), 11(e)) is reduced compared to when the quantitative
ackground comes from a larger number of loci (Figs. 5, 9).
oreover, the sensitivity of the numerical resolutions of (1) with

egard to symmetrical initial states is more pronounced here.
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