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a b s t r a c t

The majority of population genetic theory assumes fully haploid or diploid organisms with obligate
sexuality, despite complex life cycles with alternating generations being commonly observed. To
reveal how natural selection and genetic drift shape the evolution of haploid–diploid populations,
we analyze a stochastic genetic model for populations that consist of a mixture of haploid and diploid
individuals, allowing for asexual reproduction and niche separation between haploid and diploid stages.
Applying a diffusion approximation, we derive the fixation probability and describe its dependence on
the reproductive values of haploid and diploid stages, which depend strongly on the extent of asexual
reproduction in each phase and on the ecological differences between them.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Sexual reproduction in eukaryotes generally consists of an
lternation of generations, where meiosis halves the number of
hromosomes to produce haploids and syngamy brings together
aploid gametes to produce diploids. The extent of development
n each ploidy phase varies substantially (Bell, 1982, 1994). In
iplontic organisms, at one extreme, development and growth oc-
ur only in the diploid phase, as is observed in most animals. Hap-
ontic organisms, at the other extreme, undergo mitotic growth
nly in the haploid stage, as is seen in some green algae. In
etween these extremes, many terrestrial plants, macroalgae, and
ungi exhibit both haploid and diploid growth (haploid–diploid
ife cycles). These stages are typically free living in macroalgae,
ith either macroscopically similar (isomorphic) or distinct (het-
romorphic) forms in the haploid and diploid stage (Raper and
lexer, 1970; Willson, 1981; Mable and Otto, 1998; Coelho et al.,
007).
To explain variation in life cycles, several theoretical models

ave analyzed the deterministic dynamics of a modifier allele that
lters the time spent in haploid and diploid phases (e.g., Perrot
t al., 1991; Otto and Goldstein, 1992; Goldstein, 1992; Otto,
994; Orr and Otto, 1994; Jenkins and Kirkpatrick, 1995; Otto and
arks, 1996; Scott and Rescan, 2016; Hughes and Otto, 1999).
owever, there are some gaps between these models and the
omplexities seen in many haploid–diploid species. For exam-
le, these models often treat haploid and diploid individuals as
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ecologically equivalent, despite the frequent observation of niche
differences and seasonal shifts in prevalence (e.g., Slocum, 1980;
Dethier, 1981).

Most of these models also assume obligate sexuality (but
see Otto and Marks, 1996), despite asexuality being frequently
observed among haploid–diploid species (‘‘asexual looping’’). Fur-
thermore, while several models have explored how haploid–
diploid life cycles might evolve, the impact of haploid–diploid
life cycles on evolutionary processes remains underexplored (see,
e.g., Bessho and Otto, 2017) on the impact on fixation probabili-
ties and Immler et al. (2012) on the maintenance of variation).

Here we contribute to evolutionary theory for haploid–diploid
populations by calculating the fixation probability of mutations
using a stochastic genetic model. This builds upon our previous
work (Bessho and Otto, 2017) by accounting for asexual looping
and niche differences between ploidy phases, both of which are
common in macroalgae (Bell, 1982; De Wreede and Klinger, 1988;
Hawkes, 1990). Haploid and diploid phases often differ physio-
logically, and even isomorphic haploids and diploids may differ
ecologically (Hannach and Santelicesm, 1985; Destombe et al.,
1993; Dyck and De Wreede, 2006; Thornber et al., 2006; Vieira
et al., 2018a,b). We therefore explore different forms of density
dependence, acting either globally on the total population size
(as in Bessho and Otto, 2017) or locally on the population size
of haploids and diploids separately (Fig. 1). We show that the
fate of a mutation depends strongly on the reproductive values
of haploids and diploids, which in turn depend on the extent
of asexual reproduction and ecological differences between the

phases.
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Fig. 1. An illustration of the haploid–diploid models. (a) In the global regulation model, both haploids and diploids occupy the same habitat and density dependence
holds the total population size Ntot constant. (b) In the local regulation model, each ploidy stage occupies a different habit, therefore density dependence regulates
the population size of haploids (NH ) and diploids (ND) separately.
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2. Model

In Bessho and Otto (2017), we calculated the fixation prob-
abilities by tracking the dynamics of a resident allele (R) and a
mutant allele (M) in haploid and diploid individuals, using both a
Wright–Fisher and a Moran model. In that model, reproduction
was obligately sexual, individuals were ecologically equivalent,
and the total population size was held constant (global density
dependence). Below, we calculate the fixation probability by first
considering asexual reproduction in each phase, assuming that
haploids and diploids are ecologically equivalent (global pop-
ulation regulation), and then determine how these results are
affected by niche differences (local population regulation that is
ploidy specific).

2.1. Haploid–diploid Wright–Fisher model with global regulation
and asexual looping

Let X(GT ) (t) be a random variable that represents the number
of individuals of a particular genotype (‘‘GT’’) at time t , involving
the resident (R) and mutant alleles (M) (e.g., GT = RM for a
heterozygous diploid and GT = M for a mutant haploid). Let
x(GT ) (t) represent a particular outcome of this random variable.
In the global regulation model, we assume a constant population,
xR+xM+xRR+xRM+xMM = Ntot , that is strictly regulated regardless
of the ploidy of the individuals.

The reproductive output and the degree of asexuality are char-
acterized by w(GT ) and aH for haploids [(GT ) = R or M] and w(GT )

and aD for diploids [(GT ) = RR, RM, and MM]. Specifically, diploid
individuals produce (1 − aD) w(GT ) haploid spores (sexual repro-
duction) and aDw(GT ) diploid offspring (asexual loop). Similarly,
haploids produce (1 − aH) w(GT )/2 female gametes (sexual repro-
duction) and aHw(GT ) haploid offspring (asexual loop), where we
assume that the species is monecious and invests equal resources
in male and female gametes. During syngamy, we assume that
male gametes are not limiting, that mating is random, and that
female gametes are successfully fertilized with male gametes,

at a rate f(GT ) [(GT ) = R or M], becoming diploid zygotes. For
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clarity, we describe the model with non-overlapping generations,
although we note that overlapping generations can be considered
by including surviving adults in the counts of asexual offspring
(aDw(GT ) and aHw(GT )).

We define the selection coefficient (s(GT )) and the degree of
dominance (h) acting upon the mutant allele such that: fM =

fR
(
1 − sfM

)
, wM = wR

(
1 − swM

)
, wRM = wRR

(
1 − swRM

)
, wMM =

wRR
(
1 − swMM

)
, and h = swRM/swMM . To perform the diffusion ap-

proximation, we assume that selection is weak, sfM = ϵ s̃fM and
sw(GT ) = ϵ s̃w(GT ), where ϵ is a small parameter (parameter ϵ is order
O (1/Ntot)).

2.2. Haploid–diploid Wright–Fisher model with local regulation and
asexual looping

We then consider the case where density dependence reg-
ulates haploid and diploid populations separately, which may
occur if they have different resource needs or utilize different
habitats or microhabitats (for short-hand, we refer to this case
as ‘‘local regulation’’). More specifically, we assume that the pop-
ulation size of haploids and diploids is separately regulated and
remains constant NH and ND (xR+xM = NH and xRR+xRM +xMM =

ND), respectively. We set NH + ND = Ntot , ρ̂L
H = NH/Ntot , and

ρ̂L
D = ND/Ntot , which will then allow us to compare the results
f local and global regulation. Holding population sizes constant
s assumed strictly for mathematical convenience but may be
easonable for populations whose sizes are strongly regulated by
he availability of appropriate habitat.

. Fixation probability in a haploid–diploid population

.1. Fixation probability in the global regulation model

The fixation probability in a haploid–diploid population can be
erived using a diffusion approximation (Bessho and Otto, 2017),
ut doing so requires that we approximate the dynamics to re-
uce the dimensionality from four variables (x , x , x , x , x ,
R M RR RM MM



K. Bessho and S.P. Otto Theoretical Population Biology 143 (2022) 30–45

w
o
m
i

w

w
f
i
i
p
a(

c

w

a
s
r

t
f
u
e
a
m
g

u

m

v

1

w
c
r
d
t
p
d

hich sum to Ntot ) down to one. We do so by using a separation
f time scales, deriving the first and second moments of the
utant allele frequency. Specifically, we transform the number of

ndividuals of each genotype, x(GT ), into new variables that allow
us to separate the slower evolutionary dynamics and the faster
ecological dynamics (Appendix A):

pave = cHpH + cDpD, (1a)

δp = pD − pH , (1b)

ηHW = 1 −
1

2pD (1 − pD)
xRM

xRR + xRM + xMM
, (1c)

ρH =
xR + xM
Ntot

, (1d)

here pave indicates the average allele frequency of haploids and
diploids weighted by the class reproductive values (cH and cD,
here cH + cD = 1, see next paragraph), δp indicates the dif-

erence in allele frequencies between haploids and diploids, ηHW
ndicates the departure from the Hardy–Weinberg equilibrium
n diploids, and ρH indicates the frequency of haploids in the
opulation. Within these equations, the frequencies of mutant
lleles in haploids and diploids are pH = xM/ (xR + xM) and pD =
xRM
2 + xMM

)
/ (xRR + xRM + xMM). As similar variables are used in

the model with local population regulation, we use superscripts
to indicate the form of population regulation (‘‘Model’’ is G for
global or L for local regulation).

The class reproductive values of haploids and diploids are
defined as follows. In linear models, ‘‘reproductive value’’ is a
measure of the expected fraction of the population in the long-
term future that descends from an individual of a particular type
(e.g., age or stage class). Class reproductive values, as defined by
Taylor (1990) and Rousset (2004, p.153), scale these individual
reproductive values up to the whole population of each class
(i.e., the product of the individual reproductive values times the
class size). In the models considered here, the dynamics are non-
linear because of competition for resources (Ntot ). Nevertheless,
we can approximate reproductive values by assuming that the
population is near equilibrium with only resident alleles and by
holding the strength of competition constant (Appendix A, Sup-
plementary Mathematica file; Supplementary parts). Doing so, we
find that the class reproductive values of haploids and diploids,
expressed as proportions that sum to one, are:

cGH =
(1 − aH)

fR
2 wR

(
ρ̂G
H

)2
(1 − aH)

fR
2 wR

(
ρ̂G
H

)2
+ (1 − aD) wRR

(
ρ̂G
D

)2 , (2a)

G
D =

(1 − aD) wRR
(
ρ̂G
D

)2
(1 − aH)

fR
2 wR

(
ρ̂G
H

)2
+ (1 − aD) wRR

(
ρ̂G
D

)2 . (2b)

here ρ̂G
H = 1 − ρ̂G

D is the equilibrium frequency of haploids in
the global model (Eq. (A.4). As a special case of interest, when
populations are purely sexual (aH = aD = 0), we can plug
the equilibrium for ρ̂G

H from Eq. (A.4) into (2) and show that
cGH = cGD = 1/2. As discussed in Section 3.4, increasing the
degree of asexual reproduction of haploids tends to increase their
reproductive value, but there are exceptions when diploids are
more fertile and predominantly asexual. Similarly, increasing the
extent of asexual reproduction among diploids tends to increase
the reproductive value of diploids, except when haploids are
more fertile and predominantly asexual. These exceptions occur
because passage through the more productive ploidy level (via
sexual reproduction) then becomes essential for individuals of
the less productive ploidy to contribute substantially to future
generations.

As discussed in Appendix A (see also Bessho and Otto, 2017),
Eqs. (2) provide the only weights that allow ecological and evolu-
tionary time scales to be separated when calculating the average
32
allele frequency in Eq. (1a), which is why we take that to be
the evolutionarily relevant average. Although one might initially
think that diploids should count twice as much because they
contain two allele copies and that the evolutionarily relevant
average allele frequency would depend on the population sizes
of haploids and diploids, having a strict alternation of generations
in a fully sexual population (aH = aD = 0) ensures that haploids
nd diploids contribute equally to long-term future generations,
o that their reproductive values are equal and the evolutionarily
elevant average allele frequency is pave = (1/2) pH + (1/2) pD
(Bessho and Otto, 2017).

As with our previous model, we can track the slow evolution-
ary dynamics for the expected change in average allele frequency
pave under weak selection, once the fast ecological dynamics have
stabilized, as which point we can show that there are similar
allele frequencies in haploids and diploids (δp ≈ 0), diploids
are approximately at Hardy–Weinberg equilibrium (ηHW ≈ 0),
and the ratio of haploids is similar among mutant and resident
genotypes (ρH ≈ ρ̂G

H ) (Appendix A, Supplementary Mathematica
file; Diffusion approximation for global (local) regulation model).
Furthermore, to leading order, the second moment of change in
allele frequency is equal to the neutral case and can be derived
in the diffusion limit (Ntot → ∞).

Given a single variable, pave, changing slowly over evolutionary
ime, we can then use standard diffusion methods to calculate the
ixation probability of a mutation in a haploid–diploid population,(
pModel
0

)
, where ‘‘Model’’ is G for global and L for local (consid-

red in the next section). The diffusion is a function of the first
nd second moments of change in the mutant allele frequency,
Model (pave) and vModel (pave), both measured in time units of Ntot
enerations:

(
pModel
0

)
=

∫ pModel
0

0 exp
[
−2QModel

(
p′

)]
dp′∫ 1

0 exp
[
−2QModel (p′)

]
dp′

, (3a)

Model (pave) =
Ntotpave (1 − pave)

2
×

[
2sModel

ave + 2cModel
D pave (1 − 2h) swMM

]
, (3b)

Model (pave) =

pave (1 − pave)
[(

cModel
D

)2
ρ̂Model
H +

(
cModel
H

)2 (
2ρ̂Model

D

)]
ρ̂Model
H

(
2ρ̂Model

D

) .

(3c)

where pModel
0 is the initial allele frequency of mutants (we fo-

cus on the case with a single initial mutant allele, pModel
0 =

/
[
Ntot

(
ρ̂Model
H + 2ρ̂Model

D

)]
) and QModel (p) =

∫ (
mModel (p) /

vModel (p)
)
dp. We note that Eq. (3a) is obtained from the back-

ward equation for the fixation probability (Bessho and Otto, 2017)
and Eqs. (3b) and (3c) are derived in Appendix A. For the global
regulation model, the average selection acting upon rare mutant
alleles across haploid and diploid stages, sGave, can be calculated
from the first moment equation (see Supplementary Mathematica
file; Diffusion approximation for the global (local) regulation
model) and equals:

sModel
ave = cModel

H swM + cModel
D swRM + φModelcModel

D
sfM
2

, (4a)

φModel
=

(1 − aH) w̃Rρ̂
Model
H

(1 − aH) w̃Rρ̂
Model
H + aDwRRρ̂

Model
D

. (4b)

here w̃R = fRwR/2 is the fertility of haploids considering the
ost of sex. As we will see later, this equation is valid for local
egulation model. The term φModel indicates the fraction of the
iploids in the next generation that are sexually produced (from
he union of haploid-produced gametes) rather than asexually
roduced by diploid parents. With obligately sexual haploid–
iploids (a = a = 0, where cModel

= cModel
= 1/2 and
H D H D
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Model
= 1), these results coincide with those of Bessho and Otto

2017).

.2. Fixation probability in the local regulation model

We next derive the fixation probability in a haploid–diploid
opulation when density dependence regulates haploid and
iploid populations separately (Fig. 1b), by again applying a
ransformation of variables and separation of time scales. For the
ocal regulation model, the appropriate weights for the average
llele frequency are similar to the global regulation model, where
ow the class reproductive values, expressed as proportions, are:

L
H =

1 +
aHwRρ̂L

H
(1−aD)wRRρ̂L

D

2 +
aHwRρ̂L

H
(1−aD)wRRρ̂L

D
+

2
fR

aDwRRρ̂L
D

(1−aH )wRρ̂L
H

, (5a)

cLD =

1 +
2
fR

aDwRRρ̂L
D

(1−aH )wRρ̂L
H

2 +
aHwRρ̂L

H
(1−aD)wRRρ̂L

D
+

2
fR

aDwRRρ̂L
D

(1−aH )wRρ̂L
H

. (5b)

After applying a separation of time scales and conducting a diffu-
sion approximation, we conclude that the solution for the fixation
probability in a haploid–diploid population, Eqs. (3), remains
valid for the local regulation model (Supplementary Mathematica
file; Diffusion approximation for the local regulation model), with
the average selection coefficient now being given by Eqs. (5).

3.3. Effective genetic parameters

Using the first and second moments of change in allele fre-
quency, we derive effective genetic parameters to compare our
results to the dynamics found in the classical model for fully
haploid or fully diploid organisms (Bessho and Otto, 2017). More
specifically, we define the effective selection coefficient (se), dom-
nance coefficient (he), and effective population size (Ne) that
ould result in the same expected change in allele frequency and
ariance as in the classical diploid model of selection.
For selection, the diploid model is: ∆pave = sepave (1 − pave)

he + (1 − 2he) pave] (Crow and Kimura, 1970; Bessho and Otto,
017). Because this equation depends on the allele frequency in
he same way as Eq. (3b), we can find the effective and dominance
election coefficient from ∆pave/ [pave (1 − pave)] = sehe when
ave = 0 and ∆pave/ [pave (1 − pave)] = se (1 − he) when pave = 1,
ielding:

Model
e = 2sModel

ave + 2cModel
D

(1 − 2h) swMM

2
. (6a)

Model
e =

2sModel
ave

4sModel
ave + 2cModel

D (1 − 2h) swMM
. (6b)

When the mutation is additive (h = 1/2), these effective param-
eters are sModel

e = 2sModel
ave and hModel

e = 1/2.
We next derive the variance effective population size (Crow

and Kimura, 1970) by equating the one generation change in
variance (Eq. (3c) divided by the time scale, Ntot ) to the variance
in allele frequency expected in the classical Wright–Fisher model,
pave (1 − pave) /2Ne with Ne diploid individuals, obtaining:

NModel
e =

pave (1 − pave)
2(vModel/Ntot )

=
Ntot ρ̂

Model
H ρ̂Model

D(
cModel
D

)2
ρ̂Model
H + 2

(
cModel
H

)2
ρ̂Model
D

.

(7)

lugging these effective parameters into the formula from the
ixation probability in the classical diploid Wright–Fisher model
33
(Kimura, 1957, 1962; Crow and Kimura, 1970, p. 427), the fixation
probability in a haploid–diploid population given by Eq. (3a) can
be expressed as:

u
(
pModel
0

)
=

∫ pModel
0

0 exp
[
−2NModel

e sModel
e

{(
2hModel

e − 1
)
p′

(
1 − p′

)
+ p′

}]
dp′∫ 1

0 exp
[
−2NModel

e sModel
e

{(
2hModel

e − 1
)
p′ (1 − p′) + p′

}]
dp′

.

(8)

Assuming an initially rare and additive mutation (h = 1/2) with
weak positive selection in a large population (sModel

e NModel
e pModel

0 ≈

and sModel
e NModel

e ≫ 1), we obtain the classic approximation,(
pModel
0

)
≈ 2sModel

e NModel
e pModel

0 , which upon substituting from
q. (7) yields:

(
pModel
0

)
≈

2ρ̂Model
H ρ̂Model

D(
ρ̂Model
H + 2ρ̂Model

D

) [(
cModel
D

)2
ρ̂Model
H + 2

(
cModel
H

)2
ρ̂Model
D

]2sModel
ave .

(9a)

or example, because haploids and diploids have the same repro-
uctive values in the obligately sexual case (ĉModel

H = ĉModel
D =

/2), we obtain:

u
(
pModel
0

)
≈

8ρ̂Model
H ρ̂Model

D(
ρ̂Model
H + 2ρ̂Model

D

)2 2sModel
ave (9b)

Eq. 13a in Bessho and Otto (2017), or simply u
(
pModel
0

)
≈ 2sModel

ave
if haploid and diploid population sizes are equal in terms of
number of chromosomes (ρ̂Model

H = 2/3).
In the next three sections, we explore the implications of these

results for the evolution of haploid–diploid populations.

3.4. Effective selection in a haploid–diploid population

The strength of selection averaged across haploids and
diploids, sModel

ave , plays a key role in the evolution of haploid–
diploid populations. When a mutation is rare, both the rate of
change in allele frequency (Eq. (3b)) and the approximate fixation
probability (Eq. (10)a) are proportional to sModel

ave . We thus begin
by exploring how sModel

ave varies as we alter the amount of asexual
eproduction in haploid and diploid phases. We focus on the case
here the mutation does not affect fertilization success (sfM = 0),

so that the average selection becomes:

sModel
ave = cModel

H swM + cModel
D swRM , (10)

n both global and local regulation models (Eqs. (4) and (6)).
The relative evolutionary importance of selection in the hap-

oid and diploid phases is thus determined by the class reproduc-
ive values, cModel

H and cModel
D (where cModel

H +cModel
D =1). Fig. 2 (global

egulation) and Fig. 3 (local regulation) illustrate the proportional
eproductive value of haploids, cModel

H , as a function of the degree
f asexual reproduction in haploids (x-axis) and diploids (ranging
rom 0.05 in red to 0.95 in blue). With global regulation, the
requency of haploidy within the population, ρ̂G

H (given by Eq.
.4), varies with the parameters (see inset graphs in Fig. 2), rising
ith the frequency of haploid asexuality (x-axis in inset) but
eclining with more asexuality in diploids (from red to blue).
By contrast, with local regulation, the frequency of haploidy is

eld fixed by the strict density dependent competition that we
ave assumed (ρ̂L

H = 0.8 in Fig. 3(a)(b) and 0.3 in (c)(d)). In the
eft panels, haploids have a higher fertility (wR/wRR = 5), leading
o a higher haploid reproductive value, cModel

H , especially with local
egulation when haploids are also more common (ρ̂L

H = 0.8
n Fig. 3a). In the right panels, diploids have a higher fertility
wRR/wR = 5), leading to a lower haploid reproductive value,
specially when haploids are rare (ρ̂L

= 0.3 in Fig. 3d).
H
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Fig. 2. Class reproductive value of haploids in the global regulation model, cGH . Curves show cGH as a function of the degree of haploid asexuality, aH (x-axis), with
he degree of diploid asexuality ranging in color from aD = 0.05 (red) to 0.95 (blue) in increments of 0.05. Other parameters are set as: (a) fR = 0.5, wR = 5000,
RR = 1000, (b) fR = 0.5, wR = 1000, wRR = 5000. The resulting frequency of haploids, ρ̂G

H Eq. (A.4), is shown in the inset plots. Note that if haploids are strictly
sexual (aH = 1), diploids persist only when aDwRR > wR (i.e., when aD > 0.2 in panel b), which accounts for the switch in behavior observed in this panel.
Fig. 3. Proportional reproductive value of haploids in the local regulation model, cLH . Parameters are the same as Fig. 2, except that haploids are held fixed at a
requency of (a)(b) ρ̂L

H = 0.8 or (c)(d) ρ̂L
H = 0.3. We consider the case when (a)(c) haploid fertility is larger than diploid wR = 5000, wRR = 1000, and when (b)(d)

iploid fertility is larger than haploid wR = 1000, wRR = 5000.
d
d
0
c

When haploids are primarily sexual (aH ≈ 0), increasing
sexuality of the haploid stage typically causes the reproductive
alue of haploids to rise, unless diploids are fitter and more
requent (Fig. 3d and blue curves in Fig. 2b). At the other extreme,
he reproductive value of haploids typically plummets to zero as
aploid reproduction becomes primarily asexual (aH ≈ 1) while
iploids remain sexual, particularly with local regulation (Fig. 3),
ecause haploids then act as a genetic ‘‘sink’’ contributing little to
he diploid sub-population. This downward trend when haploids
re predominantly asexual is also seen with global regulation if
34
iploids are more fit (Fig. 2b), except when the diploid population
oes not sustain itself and goes extinct, which occurs when aD <

.2 and aH = 1. The net result can thus be non-monotonic (purple
urves with 0.2 < aD < 0.4 in Fig. 2b and Fig. 3(a)(b)(c)).

3.5. Effective population size in a haploid–diploid population

We next consider the effective size of haploid–diploid popula-
tions with varying degrees of asexuality. Fig. 4 plots the effective
population size (Eq. (8)) relative to the total population size,
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Fig. 4. The effective population size of a haploid–diploid population. The relative
effective population size over the total population size (NModel

e /Ntot , Eq. (7)) is
hown as a function of the frequency of haploids (ρ̂Model

H , x-axis), when the
haploid reproductive value (cModel

H ) varies from 0.05 (blue) to 0.95 (red) in
ncrements of 0.05. This figure applies to both global and local regulation models.

Model
e /Ntot , as a function of the frequency of haploids, ρ̂Model

H (x-
xis), and the class reproductive values (with cModel

H ranging from
.05 in blue to 0.95 in red). As noted by Bessho and Otto (2017),
he effective population size is highest – and drift weakest – at
ntermediate frequencies of haploids and diploids, which ensures
he least sampling error as organisms alternate generations.

When haploids and diploids have equal reproductive values,
s in the fully sexual case (cModel

H = cModel
D = 1/2), the effective

opulation size is maximized at ρ̂Model
H ≈ 0.586. With asexual

eproduction, the peak shifts towards whichever ploidy level has
he higher reproductive value. For example, if haploids have a
igh reproductive value (red) then the effective population size
s maximized at a higher frequency of haploids, reducing the
mount of genetic drift in that phase. Although not illustrated,
he peak shifts to NModel

e = ρ̂Model
D Ntot when future popula-

ions descend only from diploids (cModel
H = 0) and to NModel

e =

ρ̂Model
H /2

)
Ntot when future populations descend only from hap-

loids (cModel
H = 1), effectively becoming diplontic or haplontic,

espectively (with the 1/2 arising because haploids have half the
umber of chromosomes).
Of course, the reproductive values, as well as the frequency

f haploids with global population regulation (ρ̂G
H ), depend in

urn on the fertility parameters and the extent of asexuality,
s explored in the previous section. Fig. 5 (global regulation)
nd 6 (local regulation) illustrate the effective population size
s a function of the frequency of haploid asexuality, aH (x-axis),
nd the frequency of diploid asexuality (aD rising from red to
lue), using the parameters in Figs. 2 and 3, respectively. The
rends are often non-monotonic, with NModel

e /Ntot values varying
round 1/2 when the parameter values are intermediate. The
ffective population size is often higher when diploids rarely
eproduce asexually (red) rather than when they frequently do
blue), although there are exceptions.

To check whether our analytical result is correct, we sim-
lated a haploid–diploid population for a neutral allele (Fig. 7
or the global regulation and Fig. 8 for the local regulation). In
he classical WF model, the expected heterozygosity within a
imulation is E [H (t)] = H (0)

(
1 −

1
2N

)t
≈ H (0) exp

[
−

t
2N

]
.

Our simulations reveal that the effective population size predicts
the average dynamics of E [He (t)] (yellow line) where He (t) =

pave (1 − pave). A slight discrepancy is observed when diploids
reproduce primarily asexually (Figs. 7d and 8h), because the
assumption that departures from Hardy–Weinberg remain small
35
becomes accurate with drift; nevertheless, our formula for the ef-
fective population size continues to perform reasonably well even
in this case (especially for the first few hundred generations).

Here, we have tracked the ‘‘effective’’ heterozygosity calcu-
lated as He (t) = 2pave (1 − pave) where pave is the average allele
frequency based on the (typically unknown) class reproductive
values. We also find, however, that the effective population size
equally well predicts loss of heterozygosity using the naive al-
lele frequency that one might observe by randomly sampling
alleles from a population: pnaive = (2xMM + xRM + xM) / (2xMM
+2xRM + 2xRR + xM + xR) (see Supplementary Mathematica file;
igs. 7 and 8). Even the loss of heterozygotes in the diploid popu-
ation, xRM/ (xMM + xRM + xRR), is well described by the effective
population size derived here.

3.6. Fixation probability in a haploid–diploid population

We next compare the above results with numerical simula-
tions estimating the fixation probability of a newly arisen muta-
tion in a haploid–diploid population. When simulating the global
regulation model, we assumed that the population has reached
the demographic equilibrium, ρ̂G

HNtot haploids and ρ̂G
DNtot diploids

see Appendix A). We then chose one resident allele R at ran-
om and replaced it with a mutant allele M. After mutation,
ffspring were sampled from the parental generation according
o a multinomial distribution with expected frequencies given by
(GT ), repeating until the mutant allele fixed or was lost from the
opulation. We estimated the fixation probability as the fraction
f 100,000 replicate simulations leading to fixation.
We here consider the additive case (h = 1/2 and he = 1/2),

where the fixation probability (Eq. (8)) simplifies to:

u
(
pModel
0

)
=

exp
[
−2pModel

0 NModel
e sModel

e

]
− 1

exp
[
−2NModel

e sModel
e

]
− 1

(11)

nd where sModel
e = 2 sModel

ave (Eq. (6)). Fig. 9 plots the fixation prob-
bility as a function of the average selection pressure, sModel

ave , when
he reproductive values and chromosome numbers in haploids
nd diploids are equal (cModel

H = cModel
D and ρ̂Model

H = 2/3) and
Model
ave =

[
(1/2) swM + (1/2) swRM

]
. The diffusion Eq. (11) provides

n excellent fit, as does the approximation Eq. (9b) for selection
oefficients that are positive and not too weak. In this case, the
esults are the same with global and local population regulation
Figs. 9a and 9b, respectively) and are insensitive to how much
election occurs in the haploid or diploid phases (sModel

M and sModel
RM ,

espectively), as long as sModel
ave is held constant (see additional

imulations in Supplementary Mathematica file; Fig. 9). As ex-
ected, the extent of selection in the haploid versus diploid phase
atters more when the mutation is not additive (h ̸= 1/2 and

e ̸= 1/2) (supplementary Mathematica file; non additive muta-
ion). Additional simulations are presented in the supplementary
athematica file (Supplementary: Fixation probability for global

or local) regulation model (simulation)).
These confirm that the analytical results remain valid across a

road parameter space (combinations of higher haploid fertility
s diploid fertility, higher haploid asexuality vs diploid asexuality,
nd higher frequency of haploids vs diploids).
Next, we illustrate the approximate fixation probability,

q. (9a), as a function of the degree of asexuality (aH and aD)
when the population size is globally (Fig. 10) or locally (Fig. 11)
regulated, assuming only selection in haploids or only in diploids.
For example, with additive mutations, the fixation probability can
be approximated as u ≈ 4cModel

H NModel
e pModel

0 swM when selection
occurs only in the haploid phase or u ≈ 4cModel

D NModel
e pModel

0 swRM
with selection only in the diploid phase, indicating that the fate
of mutations depends as much on the strength of selection as on
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he reproductive value of the ploidy phase in which selection acts
as illustrated in Figs. 2 and 3). Fig. 10 (global) and Fig. 11 (local)
llustrate how the fixation probability depends on the various
arameters in the model, particularly the amount of asexual
eproduction in haploids (x-axis) and diploids (aD rising from red
o blue). The trends can be understood by the combined effects
f the parameters on the reproductive value and the effective
opulation size (e.g., Fig. 11(a) is proportional to the product of
ig. 3(a) and Fig. 6(c)).

. Discussion

Across the phylogenetic tree of life, organisms have diverse
nd complex reproductive strategies (Bell, 1982). Classical pop-
lation genetic theory has, however, focused most on fully hap-
oid or diploid life cycles with obligate sexuality. In this article
e develop a stochastic model for the population genetics of
aploid–diploid organisms considering demography, asexuality,
nd habitat differentiation between haploid and diploid stages.
sing a separation of time scales, we derive a diffusion approxi-
ation for the change in allele frequency, allowing us to estimate

he fixation probability of new mutations, the effective strengths
f selection and dominance, as well as the effective population
ize of haploid–diploid populations.

.1. Natural selection in a haploid–diploid population

Our results indicate that the strength of natural selection and
he extent of genetic drift depend strongly on the reproductive
alue of haploid versus diploid phases. In the simplest case, when
he effect of a mutation is weak, additive, positive, and absent in
he gamete stage (sfM = 0), the fixation probability is proportional
o the effective strength of selection (Eq. (10)), sModel

e = 2sModel
ave ,

hich in turn is proportional to the amount of selection in and
he reproductive value of haploids and diploids (Eqs.(2) and (5)).

These analytical results reveal some evolutionary principles
or populations that undergo an alternation of generations. One
onsequence is that the balance of opposing selection pressures
n haploids and diploids (Eqs. (4) and (6)) depends not only on
he selection coefficients, but also on the relative reproductive
alues of haploids (cModel

H ) versus diploids (cModel
D ). Thus, the very

irection of evolution depends on the extent of asexuality in
he two phases and the relative survival and fertility of haploids
ersus diploids when there is ‘‘ploidally antagonistic selection’’
Immler et al., 2012).
36
The efficacy of selection to fine tune traits in haploids and
iploids also depends on the class reproductive values. For exam-
le, when the population is regulated by local density dependence
i.e., the haploid and diploid phases are spatially or temporally
istinct), higher reproductive success in haploids increases the
fficiency of haploid selection (compare Fig. 3a to b). However,
hen there is extremely rare sexuality in haploids (aH near one),
iploid selection tends to be more effective because of increasing
ompetition between offspring from haploids. By contrast, the
rends differ with global density dependence (e.g., species that
re more isomorphic with small ecological differences between
tages). For example, the reproductive value of haploids remains
igh even when they reproduce primarily asexually in the global
egulation model (see Fig. 2 when aH approaches one), because
aploids then make up a larger proportion of the total population
ize (see inset figures). Thus, whether selection is effective in the
aploid phase when that phase mainly reproduces asexually is
uite sensitive to the nature of competition.
Our work can also be useful in the design of field studies and

he interpretation of data for species that alternate generations.
o understand the efficiency of selection on haploid and diploid
hases, we not only need data about the fraction of haploids
nd diploids and their fertility and mortality (e.g., Thornber and
ains, 2004; Vieira et al., 2018a,b), but we also need to know
bout the extent of asexuality in each phase and whether they
ompete for common or different resources.

.2. Genetic drift and effective size

The impact of random genetic drift on the genetic diversity of
aploid–diploid population depends on the effective population
ize (Eq. (7)). As we had found previously in a haploid–diploid
odel with obligate sexuality (Bessho and Otto, 2017, pp. 431),

he effective population size with asexuality is generally smaller
han the total number of individuals and again depends strongly
n the reproductive value of each phase (Figs. 4–6). With obligate
exuality, the reproductive values of haploids and diploids are
qual, drift is minimized for a new allele (the effective population
ize times p0 is maximized) when haploids comprise 2/3 of the
opulation, making the number of chromosomes equal between
aploids and diploids. Asexual reproduction, however, causes the
eproductive value of haploids and diploids to differ (Eqs. (2) and
5)). Consequently, drift is lessened if the phase with the higher
eproductive value is more common (see shifts in peaks in Fig. 4).
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.3. Evolution in haploid–diploid populations with asexuality

We find that evolution in haploid–diploid populations is sub-
tantially different than either fully haploid or fully diploid popu-
ations and also substantially different than fully sexual haploid–
iploid populations. The model considered in this paper allows
election in both haploid and diploids phases but does not re-
uire a strict alternation of generations, allowing individuals to
roduce offspring of either the same ploidy type (asexually) or
he opposite ploidy type (sexually).

Here we consider the implications for evolution, focusing on
he simplest case of additive selection with weak selection, where
he fixation probability is given by Eq. (9a). This formula indicates
hat evolution in a haploid–diploid population is dominated by
37
i) the average selection across haploid and diploid stages, (ii)
he ploidy ratio in the population, and (iii) the class reproductive
alues of haploids and diploids. Comparing this probability with
he classical result 2s reveals that evolution in a haploid–diploid
opulation differs substantially in three ways from evolution in a
ully haploid (or diploid) population.

First, and most obvious, evolutionary changes are shaped by
election in both haploid and diploid stages. As we see in Sec-
ion 4.1, because the reproductive values of haploids and diploids
etermine how selection in each phase contributes to the effec-
ive selection coefficient (6a), selection is not a simple average
cross ploidy stages but depends on the details of how the species
eproduces. Second, the ploidy ratio of haploids versus diploids
trongly affects evolution. In particular, because genetic drift is
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(black dots). The solid yellow curve gives the analytical result for the expected heterozygosity with the effective population size, E [He (t)] = H (0)
(
1 −

1
2NModel

e

)t
.

arameters: Ntot = 90, fR = 0.5. We consider the case when (a)(c) haploids are more fertile than diploids (wR = 5000, wRR = 1000) and when (b)(d) diploids are
ore fertile than haploids (wR = 1000, wRR = 5000), considering asexual reproduction at a high rate among (a)(b) haploids (aH = 0.8, aD = 0) or (c)(d) diploids

aH = 0, aD = 0.8).
trongest when either haploids or diploids are rare (Fig. 4), the
ffective size dramatically decreases when the ploidy ratio is
trongly skewed (i.e., most individuals are haploids or diploids;
ig. 4), reducing the efficacy of selection. Third, the reproductive
alues of haploid and diploid stages depend in a complex way
n selection in the two phases and their mode of reproduc-
ion (Figs. 2–4), affecting the course of evolution through both
election and genetic drift.
Evolutionary dynamics in completely sexual haploid–diploid

opulations is substantially simpler. In particular, with a strict
lternation of generations (no asexuality), the class reproductive
alues of haploids and diploids are equal (Bessho and Otto, 2017).
s a consequence, selection across the life cycle, is half the
trength of selection in haploids and half in diploids, regardless
f the frequency of the two types within the population.
With both asexual and sexual reproduction, however, the av-

rage selection, the ploidy ratio, and the reproductive values of
aploids and diploids all depend on the fertility parameters and
he degree of asexuality. The resulting interplay alters the fixation
robability of new mutations, as illustrated in Figs. 10 and 11.
hile the interplay is complex and often non-monotonic, some
atterns emerge.
An important take-home result is that the form of competition

cting to regulate population size strongly affects the repro-
uctive values of haploids and diploids (Eqs. (2) and (5)) and
hus dramatically alters the chance that a new beneficial muta-
ion fixes (Eq. (8); Figs. 10 and 11). We contrast two forms of
opulation regulation: global, where haploids and diploids are
38
competitively equivalent, and local, where only individuals of a
given ploidy level compete with one another.

With global regulation, the fixation probability for an allele
that benefits the haploid phase is generally higher when haploids
are more asexual and diploids more sexual (Fig. 10), increasing
the fraction of haploids in the population (Fig. 2), but there are
exceptions when diploids have higher fertility and reproduce
predominantly asexually (bluer curves in Fig. 10b). Similarly, the
fixation probability for an allele that benefits the diploid phase
is generally higher when diploids are more asexual and haploids
more sexual (Fig. 10), increasing the fraction of diploids experi-
encing selection, with exceptions when haploids have higher fer-
tility and are predominantly asexual (right hand side of Fig. 10c).
In summary, selection in a particular ploidy phase is typically
more effective when that phase is more common and tends to
breed true (asexual reproduction), with exceptions when the
other ploidy phase is a greater evolutionary ‘‘source’’ of future
generations, with a higher reproductive value (higher fertility and
more asexual). These exceptions occur because passage through
the other ploidy phase then becomes essential for an allele to
avoid loss while rare, even when selection does not act in the
other phase.

The patterns with local regulation of population size differ
substantially. Because local population regulation by ploidy level
determines the equilibrium fraction of haploids and diploids,
the fixation probability tends to be less dependent on the ex-
act degree of asexuality, as long as there is some sexual and
some asexual reproduction (flatter curves with more overlapping
red/blue in Fig. 11). In this case, the fixation probability of an
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llele favored in the haploid phase is higher if haploids are more
ertile (Fig. 11 panels a and c versus b and d) and if haploids
re more common (panels a and b versus c and d), with the
everse holding for alleles favored in the diploid phase. When
opulations are predominantly sexual or predominantly asexual,
owever, there can be rapid changes in the fixation probability
Fig. 11), resulting from rapid changes in the reproductive value
f each phase (Fig. 3).
39
.4. ‘‘Ploidally-structured’’ populations

The key role that reproductive values play in this work is
nalogous to the role that patch dynamics play in two-patch
odels of evolution. In a spatially structured population, sub-
ivided local populations are genetically connected by migra-
ion. A haploid–diploid system can be seen as being ploidally
tructured, where gene flow describes the movement of alleles
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rom the diffusion approximation (Eq. (11)) and the dashed curve gives the approximation with weak, additive, and positive selection (Eq. (9b)). Black dots indicate
he fixation probability estimated from 100000 numerical simulations with 95% CI (Wilson score interval for binomial). Parameters: Ntot = 90, NH = 60, ND = 30,
fR = 0.5, wR = wRR = 1000, aH = aD = 0.1, h = 0.5, sfM = 0, swM = swRM = sModel

ave , such that the fraction of haploids in the resident population is ρ̂Model
H = 2/3 and class

eproductive values are equal cModel
H = cModel

D = 1/2. Holding sModel
ave = 1/2

(
swM + swRM

)
constant, similar results are obtained for a range of different choices of swM and

w
RM (see supplementary Mathematica file).
Fig. 10. The fixation probability in a haploid–diploid population in the global regulation model. Curves givethe approximation with weak, additive, and positive
election for the fixation probability (Eq. (9a)). Parameters are the same as in Fig. 2. Selection acts only in the haploid or diploid phase, with selection coefficients
et as swM = 0.02 for haploid selection (a)(b) and swRM = 0.02 for diploid selection (c)(d).
hrough sexual reproduction, with meiosis causing flow to hap-
oidy and syngamy flow to diploidy. We note that our research
eveals that all qualitative results are equally accurate for evo-
ution in a two-patch system (see Supplementary Mathematica
ile; Comparison with two-patch system). For example, fixation
40
probability strongly depends on class reproductive values of each
patch.

This analogy suggests an interesting idea: complex reproduc-
tive systems can be considered and analyzed using the tools of
metapopulation theory. For example, many eukaryotes including
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Fig. 11. The fixation probability in a haploid–diploid population in the local regulation model. Curves givethe approximation with weak, additive, and positive
selection for the fixation probability (Eq. (9a)). Parameters are the same as in Figs. 3 and 10. The frequency of haploids is held fixed at (a)(b)(e)(f) ρ̂L

H = 0.8,
(c)(d)(g)(h) ρ̂L

H = 0.3. Fertility of haploids is higher than diploids in panels (a)(c)(e)(g), and the opposite condition is considered in panels (b)(d)(f)(h). Selection only
occurs in the haploid (a)(b)(c)(d) or diploid stage (e)(f)(g)(h).
terrestrial plants, insects, and fishes, often exhibit ploidy vari-
ation, including polyploid members (Otto and Whitton, 2000;
Comai, 2005). In such species, individuals characterized by dif-
ferent numbers of chromosomes coexist, with complex repro-
ductive relationships causing gene flow between them (Ram-
sey and Schemske, 1998). Similarly, social insects often exhibit
complex sex determination systems linked with ploidy levels
(haplodiploidy).

Our research suggests that these ploidally-structured popu-
lations can be fruitfully treated as metapopulations. Selection
41
and drift in populations with diploids, triploids, and tetraploids
can, for example, be considered as a three-patch model. In this
system, we conjecture that the average strength of selection that
is evolutionarily relevant would be the mean selection coefficient
in each ploidy class, weighted by its class reproductive value, with
additional terms coming from reproductive interactions (akin to
the term of sfM in Eqs. (4)).

Many evolutionary aspects of haploid–diploid populations re-
main to be investigated. One avenue that we are exploring is
how model parameters can be estimated from field data. For
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xample, the analogy between spatially and ploidally structured
opulation suggests that genetic differences between haploids
nd diploid can be used to estimate gene flow between them
i.e., rates of sex), akin to using Fst to inform estimates of mi-
ration (e.g., Slatkin, 1987). Another fruitful avenue for further
ork is to determine how fluctuations in population size affect
he effective population size of species that alternate generations.
n classical population genetics theory, such fluctuations can be
aptured by using the harmonic mean population in place of
he total population size (Karlin, 1968). It is unclear, however,
hether the same is true in haploid–diploid populations. Can the
armonic total population size simply replace Ntot in the global
odel of population regulation? Similarly, can the harmonic pop-
lation sizes of haploids and diploids replace NH and ND with local
egulation? The answer is unclear because population size fluctu-
tions perturb the fast ecological dynamics away from the steady
tate (especially ρ̂Model

H ), and the impact of these perturbations
n selection and drift is unknown. Further research is needed to
larify evolutionary processes in the wide variety of species that
lternate generations.
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ppendix A. Fixation probability in a haploid–diploid Wright–
isher model using a diffusion approximation

.1. Equilibrium with global regulation

We derive the fixation probability in a haploid–diploid pop-
lation using a diffusion approximation (e.g., Bessho and Otto,
017). We first derive the stable equilibrium in the global regu-
ation model, allowing for asexual reproduction in each phase. In
he Wright–Fisher model, all individuals reproduce and then the
arents die (non-overlapping generations). Let b(GT ) represent the

number of reproductive cells of each type in the next generation:

bR = (1 − aD) wRRxRR + (1 − aD)
wRMxRM

2
+ aHwRxR, (A.1a)

M = (1 − aD)
wRMxRM

2
+ (1 − aD) wMMxMM + aHwMxM , (A.1b)

RR = (1 − aH)
fR
2

w2
Rx

2
R

wRxR + wMxM
+ aDwRRxRR, (A.1c)

RM = (1 − aH)
fR + fM

2
wRwMxRxM

wRxR + wMxM
+ aDwRMxRM , (A.1d)

MM = (1 − aH)
fM
2

w2
Mx2M

wRxR + wMxM
+ aDwMMxMM . (A.1e)
t

42
The probability that a reproductive cell of genotype (GT ) is sam-
pled from the offspring produced by the previous generation of
adults is

q(GT ) =
b(GT )

bR + bM + bRR + bRM + bMM
. (A.2)

Therefore, the composition of offspring in the next generation is
given by the multinomial distribution, sampling Ntot individuals
in proportion to Eq. (A.2). Using Eq. (A.1) and (A.2), we describe
the conditional expectation of change in the number of individ-
uals of genotype (GT ), ∆X(GT ) (t) = X(GT ) (t + 1) − X(GT ) (t), as

E
[
∆X(GT ) (t) |X⃗ (t) = x⃗

]
= Ntotq(GT ) − x(GT ), (A.3)

where E
[
∆F

(
X(GT ) (t)

)
|X⃗ (t) = x⃗

]
is the conditional expected

value for change in the function F of the random variable given
that X⃗ (t) =

(
XR (t) XM (t) XRR (t) XRM (t) XMM (t)

)T
equals x⃗ =

(
xR xM xRR xRM xMM

)T .
To simplify this fully stochastic system, we assume that the

resident population is large and treat demographic changes de-
terministically prior to the appearance of the mutation. Consid-
ering the dynamics of the resident population, we then find the
equilibrium of these dynamical equations by solving NtotqR −

x̂R = 0 and NtotqRR − x̂RR = 0 (x̂R + x̂RR = Ntot ). Setting
x̂R = ρ̂G

HNtot and x̂RR = ρ̂G
DNtot , the fraction of haploids ρ̂G

H (and
diploids ρ̂G

D = 1 − ρ̂G
H ) at equilibrium becomes as in Box I .

where w̃R = fRwR/2 is the fertility of haploids considering
the cost of sex (see Supplementary Mathematica file for the step-
by-step derivation; Supplementary parts). We note that, when
the fertility of haploids is much greater than that of diploids
(wR ≫ wRR), the frequency of haploids in a population approaches
aH/ {aH + [(1 − aH) fR/2]}, which is less than one because sexual
reproduction of the haploids produces diploids (the (1 − aH) fR/2
term). Conversely, when the fertility of diploids is much greater
than haploids (wR ≪ wRR), the frequency of haploids approaches
1 − aD, the rate at which diploids undergo meiosis.

A.2. First moment of change in allele frequency

To derive the first moment of change in allele frequency,
mModel (pave), we apply a separation of time scales (e.g., Nagylaki,
1976; Otto and Day, 2007; Bessho and Otto, 2017). Details of the
calculation are represented in the Supplementary Mathematica
file (Diffusion approximation for the global (local) regulation
model). We first transform the expected change in the num-
ber of individuals of each type (five variables that sum to Ntot )
into the expected change in a new set of four variables, Θ ∈{
pave, δp, ηHW , ρH

}
, described by the functions:

E
[
∆Θ|X⃗ (t) = x⃗

]
= f Model

Θ

(
ϵ, pave, θ⃗

)
, (A.5)

where θ⃗ =
(
δp, ηHW , ρH

)
and ϵ is proportional to the selection co-

efficients and assumed small (the functions f are given explicitly
in the Supplementary Mathematica file). With local regulation, ρH
is assumed fixed at NH/Ntot and dropped from the variable set, Θ .

To constant order (setting the small changes due to selection
to zero, ϵ → 0), the fast ecological dynamics of the system are
described by: f Model

Θ

(
0, pave, θ⃗

)
. This system of equations rapidly

approaches a steady state found by solving f Model
Θ

(
0, pave, θ⃗

)
=

0, which gives δp = ηHW = 0, and ρH = ρ̂G
H Eq. (A.4). To

his order, the steady state change in allele frequency is zero,
Model
pave

(
0, pave, θ⃗

)
= 0. We then describe slower changes, includ-

ng changes in allele frequency due to selection, by describing
he deviations that occur around this steady state. Specifically, to
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ρ̂G
H =

aHwR + aDwRR − 2wRR +

√
4 (1 − aH) (1 − aD) w̃RwRR + (aHwR − aDwRR)

2

2 [aHwR + (1 − aH) w̃R − wRR]
, (A.4)

Box I.
 [
(
i
X

a

u

rder ϵ, the variables are allowed to deviate from the steady state
y δp = δ̃pϵ, ηHW = η̃HW ϵ, and ρH = ρ̂G

H + ρ̃Hϵ, and the dynamics
f Model
Θ

(
ϵ, pave, θ⃗

)
are then approximated using a Taylor series

expansion. Defining the average allele frequency by combining
haploid and diploid populations using an arbitrary weighting,
pave = ωpH + (1 − ω) pD, we show in the Supplementary Mathe-
matica file (Class reproductive value in Supplementary parts) that
setting the weights proportional to the class reproductive values
(given by Eq. (2) with global regulation and Eq. (5) with local
regulation) is the only choice that separates evolutionary change
in pave from changes in the other variables to order ϵ. Defining the
average allele frequency in this way (Eq. (1a)), taking the Taylor
series, and reporting the results in the initial parameters (e.g.,
sw(GT ) rather than s̃w(GT ), where sw(GT ) = ϵ s̃w(GT )) the change in allele
frequency becomes:

E
[
∆pave|X⃗ (t) = x⃗

]
≈ MModel (pave)

=
pave (1 − pave)

2

[
2sModel

ave + 2cModel
D pave (1 − 2h) swMM

]
. (A.6)

n the supplementary Mathematica file, we represent an exam-
le of the simulation of 4-dimensional dynamics calculating the
raction of times that the mutation fixed in the population (see
ection ‘‘Example of 4-dimensional dynamics’’)

.3. Second moment of change in average allele frequency

We next derive the second moment of change in average
llele frequency in a haploid–diploid population with asexuality.
e again assume that the population size is very large, that

election is very weak, and that the system has approached the
teady state in

(
δp, ηHW , ρH

)
, ignoring deviations that are of O(ϵ).

ecause selection is assumed weak, the second moment is well
pproximated by that of the neutral model (to constant order,
→ 0).
Under these assumptions, the fraction of haploids in a pop-

lation is relatively fixed in both the global and local regula-
ion models, and we can sample the haploid offspring accord-
ng to a binomial distribution, with expectation and variance:[
XM |X⃗ (t) = x⃗

]
= qMNH and Var

[
XM |X⃗ (t) = x⃗

]
= qM (1 − qM)

NH where qM = bM/ (bR + bM). To simplify the equation, we set
E
[
X(GT )|X⃗ (t) = x⃗

]
= m(GT ) and Var

[
X(GT )|X⃗ (t) = x⃗

]
= v(GT ),

finding that:

E
[
∆XM |X⃗ (t) = x⃗

]
= mM − xM , (A.7a)

E
[
(∆XM)2 |X⃗ (t) = x⃗

]
= vM + m2

M − 2mMxM + x2M . (A.7b)

In terms of allele frequencies (rather than numbers), we have the
first and second moments for the haploid offspring population,
E
[

∆XM
NH

|X⃗ (t) = x⃗
]

=
1
NH

E
[
∆XM |X⃗ (t) = x⃗

]
and[(

∆XM
NH

)2
|X⃗ (t) = x⃗

]
=

1
N2
H
E
[
(∆XM)2 |X⃗ (t) = x⃗

]
.

Similarly, the diploid offspring are sampled according to a
rinomial distribution, with expectation, variance, and covari-
nce: m = q N , v = q

(
1 − q

)
N , and Cov
(GT ) (GT ) D (GT ) (GT ) (GT ) D
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XRM , XMM |X⃗ (t) = x⃗
]

= qRMqMMND, where q(GT ) = b(GT )/

bRR + bRM + bMM). To derive the moments of the allele frequency
n diploids, we define, yM = (xRM/2) + xMM and YM = (XRM/2) +

MM . The moments of random variable Y are then:

E
[
YM |X⃗ (t) = x⃗

]
=

mRM

2
+ mMM , (A.8a)

E
[
Y 2
M |X⃗ (t) = x⃗

]
=

vRM + m2
RM

4
+

(
Cov

[
XRM , XMM |X⃗ (t) = x⃗

]
+ mRMmMM

)
+

(
vMM + m2

MM

)
,

(A.8b)

E
[
∆YM |X⃗ (t) = x⃗

]
=

E
[
∆XRM |X⃗ (t) = x⃗

]
2

+ E
[
∆XMM |X⃗ (t) = x⃗

]
− yM , (A.8c)

E
[
(∆YM)2 |X⃗ (t) = x⃗

]
= E

[
Y 2
M |X⃗ (t) = x⃗

]
− 2E

[
YM |X⃗ (t) = x⃗

]
yM + y2M . (A.8d)

To consider the change in average allele frequency across the en-
tire population, we define ZM = cModel

H
XM
NH

+ cModel
D

YM
ND

and consider
the expectation of change in this random variable. Plugging in
Eqs. (A.7a), (A.7b), (A.8c), and (A.8d), we have

E
[
(∆ZM)2 |X⃗ (t) = x⃗

]
=

pave (1 − pave)
[(

cModel
D

)2
ρ̂Model
H +

(
cModel
H

)2 (
2ρ̂Model

D

)]
ρ̂Model
H

(
2ρ̂Model

D

)
Ntot

. (A.9)

After transforming time scales using the variable τ = t/Ntot
nd defining P (τ ) = Z (Ntotτ), we have the diffusion coefficient

vModel (pave) = limNtot→∞ E
[

(P(τ+∆τ)−P(τ ))2

∆τ

]
by taking the limit

Ntot → ∞, giving Eq. (3c). Similarly, we derive the drift coefficient
sing Eq. (A.6) (mModel

= MModelNtot ), giving Eq. (3b).

A.4. Class reproductive value of global regulation model

We now calculate the reproductive value of being haploid or
diploid, assuming only resident individuals. Specifically, we are
interested in knowing what the long-term contribution of an
individual is to the future population if it is sampled from either
haploids or diploids. Here, we describe the population dynamics
in a haploid–diploid population of resident alleles,

x′

R = Ntot
(1 − aD) wRRxRR + aHwRxR

[(1 − aD) wRRxRR + aHwRxR] +

[
(1 − aH )

fR
2 wRxR + aDwRRxRR

] ,

(A.10a)

x′

RR = Ntot
(1 − aH )

fR
2 wRxR + aDwRRxRR

[(1 − aD) wRRxRR + aHwRxR] +

[
(1 − aH )

fR
2 wRxR + aDwRRxRR

] .

(A.10b)

where, x′

R and x′

RR indicate the average number of haploids and
diploid at the next time step.

The reproductive value of an individual type is generally cal-
culated for linear models without density dependence. Because
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he dynamics of xR and xRR converge to equilibrium, we modify
he recursions so that the total offspring pool size (denominator)
s held constant at its steady state value. This gives us a linear
odel that allows us to focus on the effects of individual fitness
nd movement without the density-dependent feedback:

′

R =
(1 − aD) wRRxRR + aHwRxR[

(1 − aD) wRRρ̂
G
D + aHwRρ̂

G
H

]
+

[
(1 − aH )

fR
2 wRρ̂

G
H + aDwRRρ̂

G
D

] ,

(A.11a)

x′

RR =
(1 − aH )

fR
2 wRxR + aDwRRxRR[

(1 − aD) wRRρ̂
G
D + aHwRρ̂

G
H

]
+

[
(1 − aH )

fR
2 wRρ̂

G
H + aDwRRρ̂

G
D

] ,

(A.11b)

qs. (A.11) can be described by the matrix,
(
x′

R
x′

RR

)
= W

(
xR
xRR

)
.

t demographic equilibrium, the leading eigenvalue of matrix
should be one (see details in Supplementary Mathematica

file; Supplementary parts in ‘‘Diffusion approximation for the
global regulation model’’). The left eigenvector associated with
this eigenvalue is:(

(1−aH )fR
(
1−aD−ρ̂G

H

)
(1−aD)

(
fRρ̂G

H−aH
(
2+(−2+fR)ρ̂G

H

)) 1
)T

(A.12)

hich gives the relative individual reproductive value for a single
ndividual haploid or diploid. The class reproductive values scale
his up the contribution of each class,

ρ̂G
H

(1−aH )fR
(
1−aD−ρ̂G

H

)
(1−aD)

(
fRρ̂G

H−aH
(
2+(−2+fR)ρ̂G

H

)) ρ̂G
D

)T

. (A.13)

hese are proportional to the class reproductive values, Eqs. (2).

.5. Class reproductive value of local regulation model

We next calculate the reproductive value of being haploid or
iploid with local regulation. We describe the population dynam-
cs in a haploid–diploid population of resident alleles,

′

R = NH
(1 − aD) wRRxRR + aHwRxR
(1 − aD) wRRxRR + aHwRxR

, (A.14a)

x′

RR = ND
(1 − aH)

fR
2 wRxR + aDwRRxRR

(1 − aH)
fR
2 wRxR + aDwRRxRR

. (A.14b)

For the local regulation model, because both the haploid and
diploid population sizes are fixed, we have the trivial dynamics
x′

R = NH and x′

RR = ND.
To assess the impact of slight changes around this state, we

again hold the size of the offspring pool constant at its steady-
state value, obtaining the linear set of equations:

x′

R = ρ̂L
H

(1 − aD) wRRxRR + aHwRxR
(1 − aD) wRRρ̂

L
D + aHwRρ̂

L
H

, (A.15a)

x′

RR = ρ̂L
D
(1 − aH)

fR
2 wRxR + aDwRRxRR

(1 − aH)
fR
2 wRρ̂

L
H + aDwRRρ̂

L
D

. (A.15b)

Eqs. (A.15) can be described by matrix,
(

x′

R
x′

RR

)
= W

(
xR
xRR

)
.

The leading eigenvalue of W is again one because of the assump-
tion that the population is at its steady-state size (see details
in Supplementary Mathematica file; Supplementary parts in ‘‘Dif-
44
fusion approximation for the local regulation model’’), and the
associated left eigenvector becomes,(

(1−aH )fRwR

(
wRR−aDwRR+aHwRρ̂L

H−wRRρ̂L
H+aDwRRρ̂L

H

)
(1−aD)wRR

(
2aDwRR+fRwRρ̂G

H−aH fRwRρ̂L
H−2aDwRRρ̂L

H

) 1
)T

. (A.16)

his vector gives the relative reproductive value for a single
ndividual that is either haploid or diploid. The class reproductive
alues scale this up, with the contribution of each class being
roportional to the class reproductive values, Eqs. (5).

ppendix B. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.tpb.2021.11.002.
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