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abstract: Evolutionary branching occurs when frequency-depen-
dent selection splits a phenotypically monomorphic population into
two distinct phenotypic clusters. A prerequisite for evolutionary
branching is that directional selection drives the population toward
a fitness minimum in phenotype space. This article demonstrates
that selection regimes leading to evolutionary branching readily arise
from a wide variety of different ecological interactions within and
between species. We use classical ecological models for symmetric
and asymmetric competition, for mutualism, and for predator-prey
interactions to describe evolving populations with continuously vary-
ing characters. For these models, we investigate the ecological and
evolutionary conditions that allow for evolutionary branching and
establish that branching is a generic and robust phenomenon. Evo-
lutionary branching becomes a model for sympatric speciation when
population genetics and mating mechanisms are incorporated into
ecological models. In sexual populations with random mating, the
continual production of intermediate phenotypes from two incipient
branches prevents evolutionary branching. In contrast, when mating
is assortative for the ecological characters under study, evolutionary
branching is possible in sexual populations and can lead to speciation.
Therefore, we also study the evolution of assortative mating as a
quantitative character. We show that evolution under branching con-
ditions selects for assortativeness and thus allows sexual populations
to escape from fitness minima. We conclude that evolutionary
branching offers a general basis for understanding adaptive speciation
and radiation under a wide range of different ecological conditions.
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Understanding the origin of new species remains one of
the core problems in evolutionary biology. Whether one
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believes that there are many (Hutchinson 1959) or actually
only a few species (Felsenstein 1981) compared to what
one would expect from general niche space considerations,
the actual mechanisms by which a phenotypic cluster of
individuals splits into two distinct descendant clusters with
restricted gene flow between them are only poorly un-
derstood. Traditionally, there are two basic approaches to
understanding this evolutionary process. In the first, sub-
populations of a given species are thought to become geo-
graphically isolated, after which they follow separate evo-
lutionary paths, eventually leading to different species that
are reproductively isolated even after secondary contact
(Mayr 1963). Since the particular cause for geographic
isolation is not part of the description, this is a kind of
“black box” mechanism. Given such isolation, it is rather
easy to imagine that separate evolution in different habitats
during many generations would lead to phenotypic dif-
ferences and to reproductive incompatibility. Indeed, such
allopatric speciation is quite well understood experimen-
tally (Rice and Hostert 1993). Theoretically, the basic in-
gredients for allopatric speciation are isolated habitats in
which selection pressures are different and in which dif-
ferent realizations of the stochastic process underlying ge-
netic drift can occur. Habitat differences have also been
the starting point for the second traditional approach,
which studies the conditions under which speciation oc-
curs in sympatry, that is, when gene flow is possible be-
tween two incipient species. In this approach, it is also
often assumed that there are different habitats favoring
different genotypes, but the different genotypes occur sym-
patrically and are pooled for mating. One then studies the
conditions necessary for reproductive isolation to evolve
between the genotypes that are favored in the different
habitats (e.g., Maynard Smith 1966; Felsenstein 1981; Kaw-
ecki 1996). Depending on whether one thinks that such
conditions are easy or hard to meet, one leans toward
sympatric or allopatric speciation as the dominant mode
for the origin of new species.

The difficulties in the theory of sympatric speciation are
twofold (Kondrashov and Mina 1986). On the one hand,
ecological conditions must induce disruptive selection in
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such a way that the population does not become mono-
morphic for one of the favored phenotypes. On the other
hand, given such ecological conditions, the mating system
must evolve such that reproductive isolation ensues be-
tween the phenotypes that are favored by disruptive se-
lection. In the history of the theory of sympatric speciation,
the focus has shifted between these two difficulties (e.g.,
Maynard Smith 1966; Felsenstein 1981). In this article, we
present an integrative framework for studying sympatric
speciation that simultaneously addresses both issues.

In genetic models for sympatric speciation, the main-
tenance of a polymorphism in the presence of disruptive
selection is often a delicate affair (Maynard Smith 1966;
Udovic 1980; Felsenstein 1981; Kawecki 1996), thus nar-
rowing the basis for the evolution of reproductive isola-
tion. In our theory, such problems of ecological fine tuning
do not arise because disruptive selection is not an exter-
nally imposed assumption. Instead, the system automat-
ically converges to a state in which it experiences disruptive
selection and in which the conditions for the evolution of
polymorphisms are satisfied. We will show that such a
course of events is a general phenomenon and can occur
under a wide range of ecological interactions.

Our approach is based on the phenomenon of evo-
lutionary branching and on the theory of adaptive dy-
namics (Metz et al. 1992, 1996; Dieckmann 1994; Dieck-
mann and Law 1996; Dieckmann 1997; Geritz et al. 1997,
1998; Meszéna et al. 2000). In this approach, ecological
interactions are the evolutionary driving force, and the
feedback between evolutionary change and the ecological
conditions experienced by individuals is considered. Evo-
lutionary dynamics are studied using the concept of in-
vasion fitness (Metz et al. 1992). This quantity measures
the long-term per capita growth rate of a rare mutant in
an environment that is determined by externally fixed
parameters on the one hand and by the population den-
sity and the phenotype of the resident population(s) on
the other. In particular, the invasion fitness of a mutant
explicitly depends on the resident phenotype, reflecting
the consequences of frequency-dependent ecological in-
teractions. For deriving analytical results, one makes a
number of simplifying assumptions, for example, that
mutations are sufficiently rare so that mutants encounter
monomorphic resident populations that are at their ec-
ological equilibrium. This corresponds to assuming a
separation of ecological and evolutionary timescales, with
the ecological dynamics occurring faster than the evo-
lutionary dynamics. Under the further assumption that
mutants whose invasion fitness is 10 not only can invade
(with some probability) but also can replace the former
resident and thus become the new resident, it is possible
to study the evolutionary dynamics by analyzing a func-
tion f (y, x) describing the invasion fitness of a mutant

y in a resident population x. Here x may be a multidi-
mensional vector, either because the trait under study
has more than one component or because there are more
than one species involved. Evolutionary dynamics then
follow selection gradients determined by derivatives of
the invasion fitness function f (y, x), as will be explained
in the next sections.

Phenotypes of special interest are those where the se-
lection gradient is 0, and the first question is whether these
points actually are evolutionary attractors. In classical op-
timization models of evolution, reaching such attractors
implies that evolution comes to a halt because evolutionary
attractors only occur at fitness maxima. However, in the
wider framework of adaptive dynamics, this need not be
the case (Geritz et al. 1998; Meszéna et al. 2000). When
frequency-dependent ecological interactions drive the evo-
lutionary process, it is possible that an evolutionary at-
tractor represents a fitness minimum at which the pop-
ulation experiences disruptive selection. In fact, evolution
toward fitness minima due to frequency-dependent selec-
tion has been found in a number of previous studies (e.g.,
Christiansen 1991; Ludwig and Levin 1991; Abrams et al.
1993). Adaptive dynamics takes these analyses one step
further by asking what happens after the fitness minimum
has been reached. The ensuing evolutionary dynamics can
indeed be very interesting because after attaining the fit-
ness minimum the population may split into two distinct
and diverging phenotypic clusters. Thus, in adaptive dy-
namics, evolutionary convergence toward a fitness mini-
mum can lead to evolutionary branching. It is important
to note that such a sequence of events is entirely explained
by frequency-dependent ecological interactions and does
not require any extrinsically imposed disruptive selection
pressures.

Evolutionary branching has been found in a number of
models, including models for the evolution of dispersal
rates (Doebeli and Ruxton 1997; Parvinen 1999) and for
the evolution of seed size (Geritz et al. 1999), in host-
parasite models (Boots and Haraguchi 1999; Koella and
Doebeli 1999), in models for habitat specialization (Geritz
et al. 1998), and in models for the evolution of quantitative
characters determining competitive interactions (Metz et
al. 1996; Dieckmann and Doebeli 1999; Kisdi 1999). These
results already hint at the possibility that evolutionary
branching might be a ubiquitous phenomenon. To support
and to substantiate this claim in a more systematic way,
our goal in this article is to demonstrate the phenomenon
of evolutionary branching in a number of classical models
covering a wide range of ecological interactions. In the
next section, we review evolutionary branching in single-
species models for symmetric and asymmetric resource
competition. It serves to recall basic concepts of the theory
of adaptive dynamics and paves the way for the more
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complicated two-species models analyzed in the following
two sections, where we extend our considerations to co-
evolutionary scenarios and show that evolutionary branch-
ing is a generic and robust phenomenon in ecological
models for two mutualistic species and for predator-prey
interactions. Our analytical theory is always supplemented
by computer simulations of stochastic individual-based
models, which overall confirm the analytical results and
thereby show that the assumptions used to derive the an-
alytical theory are sensible.

The framework of adaptive dynamics has so far mainly
been developed as an asexual theory that lacks population
genetic considerations. In particular, most previous models
of evolutionary branching have assumed clonal organisms
(for recent exceptions, see Dieckmann and Doebeli 1999;
Kisdi and Geritz 1999; Van Dooren 1999). Therefore, the
theory of adaptive dynamics may appear not to be relevant
for evolution in sexual populations. Quite to the contrary,
we suggest that adaptive dynamics and, in particular, pro-
cesses of evolutionary branching, can have interesting im-
plications for understanding general evolutionary princi-
ples. We think that evolutionary branching is a unifying
concept that helps us to understand speciation under a
wide range of ecological conditions. However, for evolu-
tionary branching to become a model for sympatric spe-
ciation, population genetics and mating mechanisms must
be incorporated into the underlying ecological models. In
this article, we do this by assuming that the quantitative
characters influencing ecological interactions are deter-
mined by many additive diploid loci (for an alternative
approach, see Kisdi and Geritz 1999). In fact, there is a
valid caveat against considering evolutionary branching in
asexual models as a basis for understanding aspects of
speciation: in sexual populations, branching could be pre-
vented by the continual production of intermediate off-
spring phenotypes through recombination between incip-
ient branches. If mating is random, this indeed is the case.
However, if mating is assortative with respect to the eco-
logical characters under study, evolutionary branching is
possible in sexual populations and can lead to speciation.
This will be demonstrated in “Evolutionary Branching in
Sexual Populations,” where we will also show that assort-
ative mating is a mechanism allowing the escape from
fitness minima. In initially randomly mating populations
under branching conditions, assortativeness can therefore
be favored by natural selection. Our conclusion is that
evolutionary branching can serve as a general paradigm
for sympatric speciation once multilocus genetics and the
evolution of assortative mating are included in the un-
derlying ecological models.

Evolutionary Branching in Models for Symmetric
and Asymmetric Competition

In order to introduce some basic concepts and notation,
we begin with single-species competition models that are
based on the classical Lotka-Volterra population dynamics.
More extensive discussions of related material can be
found in Metz et al. (1996), Dieckmann and Doebeli
(1999), and Kisdi (1999). We assume that individuals are
characterized by a quantitative trait x, for example, body
size, which affects intraspecific competition between in-
dividuals. Let N(x, t) be the population density of indi-
viduals with character value x at time t. Then their eco-
logical dynamics are given by

dN(x, t) N (x, t)effp rN(x, t) 1 2 . (1)[ ]dt K(x)

Here, K(x) is the carrying capacity of populations that are
monomorphic for trait x. For simplicity, it is assumed that
K(x) varies with the trait x and that the intrinsic growth
rate r is independent of x. The quantity Neff(x, t) is the
effective population density that an individual with char-
acter value x experiences at time t. The effective density
is determined by the distribution of phenotypes in the
population and by the function , which measuresa(x 2 y)
the strength of competition exerted by an individual with
phenotype y on an individual with phenotype x. Here, we
take the function to bea(x 2 y)

2 2 2 2j b 2(x 2 y 1 j b)a a
a(x 2 y) p exp exp , (2)

2( ) [ ]2 2ja

which has been previously used in the study of character
displacement (Rummel and Roughgarden 1985; Taper
and Case 1992). For , this function describes sym-b p 0
metric competition; that is, is a symmetric func-a(x 2 y)
tion of the difference with a maximum at 0 (seex 2 y
fig. 1A). This implies that individuals with similar phe-
notypes compete more strongly with each other than in-
dividuals with dissimilar phenotypes, as, for example,
when beak size in birds determines the type of seeds
eaten. If , describes asymmetric competi-b 1 0 a(x 2 y)
tion, with being maximal for some negative dif-a(x 2 y)
ference in character values (see fig. 1A). This implies that
larger individuals tend to have a competitive advantage
over smaller individuals. In contrast to the asymmetric
competition models in Law et al. (1997) and in Kisdi
(1999), in which the competitive advantage or disadvan-
tage increased monotonically with phenotypic distance,
the function used here implies that competitiona(x 2 y)
between very different phenotypes is always weak. Such



S80 The American Naturalist

Figure 1: Asexual resource competition and evolutionary branching. A,
Strength of competition as a function of phenotypic difference between
competitors. Symmetric competition is described by the function

(see text) with . An example of asymmetric competitiona(x 2 y) b p 0
is shown for . In both cases, is set to 0.65. B, Evolutionaryb p 1.5 ja

dynamics with the asymmetric competition function shown in A. The
distribution of character values (shown by scales of gray: black p highest
frequency, white p absence) first converges toward the ecological char-
acter’s evolutionary branching point. Since higher values of the ecological
character confer an advantage under asymmetric competition, branching
occurs at a phenotype that is larger than the one with maximal resources,

. At the branching point, directional selection turns into disruptivex p 00

selection, which splits the character distribution into two phenotypic
clusters. The two resulting branches differ in their population size: the
upper branch, which is farther away from the carrying capacity’s max-
imum, consists of fewer individuals, although its individuals possess a
competitive advantage over those in the lower branch. Parameters:

, , , , , .r p 1 K p 1,000 j p 1 j p 0.65 b p 1.5 x p 00 K a 0

asymmetric competition would, for example, occur when
overlaps in resource utilization between different phe-
notypes are asymmetric but vanish with increasing phe-
notypic distance.

For both symmetric and asymmetric competition, the
effective density Neff(x, t) is obtained as a weighted sum
over all densities N(x, t):

′ ′ ′N (x, t) p a(x 2 x )N(x , t)dx . (3)eff E
To determine the invasion fitness f(y, x) of a rare mutant
y in a resident population that is monomorphic for the
character value x, we assume that mutants invade suffi-
ciently rarely, so that residents are always at (or very close
to) their ecological equilibrium K(x) when new mutants
appear. Since the mutant is initially rare, its own density
is negligible compared to that of the resident, and hence
the effective density that the mutant experiences is simply
the resident density K(x) weighted by the strength of com-
petition between the mutant and the resident.a(y 2 x)
Thus, in the initial phase of the invasion when the mutant
is rare, the population dynamics of the mutant are given
by

dN(y, t) a(y 2 x)K(x)
p rN(y, t) 1 2 . (4)[ ]dt K(y)

The invasion fitness of the mutant is its long-term per
capita growth rate when rare (Metz et al. 1992; Dieckmann
1994; Rand et al. 1994; Dieckmann and Law 1996; Metz
et al. 1996), hence the invasion fitness of the mutant y in
the resident x is

a(y 2 x)K(x)
f(y, x) p r 1 2 . (5)[ ]K(y)

To determine the evolutionary dynamics, one calculates
the derivative of f(y, x) with respect to y and evaluates it
at the resident value x. Thus, the crucial quantity is the
selection gradient:

­f(y, x)
g(x) p . (6)F­y ypx

If , then invasion fitness increases for mutants withg(x) 1 0
higher trait values than the resident, while invasion fitness
decreases for mutants with lower trait values. Since

by necessity (i.e., the resident neither growsf(x, x) p 0
nor declines in its own equilibrium population), this
means that mutants with higher trait values can invade,
that is, are favored by natural selection, while mutants
with lower trait values are selected against. Analogous
statements in the opposite direction hold for .g(x) ! 0
Thus, as long as , selection is directional. For theg(x) ( 0
evolutionary dynamics, those values are important for∗x
which . These trait values are called “evolution-∗g(x ) p 0
arily singular” (Metz et al. 1996; Geritz et al. 1998). A
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singular value is an attractor for the evolutionary dy-∗x
namics if and only if

dg(x)
! 0, (7)F

∗dx xpx

for, in that case, for and for∗g(x) ! 0 x 1 x g(x) 1 0
; hence, lower trait values are favored when the∗x ! x

resident is larger than and higher trait values are fa-∗x
vored when the resident is smaller than the singular value

. Singular points that are not attractors are of little∗x
practical interest since, even starting with resident pop-
ulations that are very close to such a point, evolution
will drive the trait away from the singular point. A critical
issue to realize, however, is that there are two different
types of evolutionary attractors.

This can be seen by considering the second derivative
of the invasion fitness at the evolutionary attractor . If∗x

, then the point is a fitness max-2 ∗ 2 ∗[­ f(y, x )]/­y F ! 0 x∗ypx

imum with respect to the mutant trait value y (recall that
, since we assume that∗ ∗ ∗[­f(y, x )]/­yF p g(x ) p 0 x∗ypx

is a singular point). The evolutionary attractor is, there-∗x
fore, stable against invasion of neighboring phenotypes;
that is, it is an evolutionarily stable strategy (ESS).

If is an ESS, selection first drives the population∗x
toward and then comes to a halt; that is, is an∗ ∗x x
evolutionary equilibrium, also called a “continuously sta-
ble strategy” (CSS; Eshel 1983). A very different scenario
occurs when

2 ∗­ f(y, x )
F 1 0. (8)∗ypx2­y

In this case, evolution still drives the population toward
since we assumed the singular point to be an evo-∗ ∗x x

lutionary attractor. However, once at , the population∗x
is actually located at a fitness minimum and therefore
experiences disruptive selection. As a consequence, evo-
lutionary branching can occur; that is, the population can
split into two different and diverging phenotypic clusters
(Metz et al. 1996; Geritz et al. 1997, 1998).

Metz et al. (1996), Dieckmann and Doebeli (1999), and
Kisdi (1999) have shown that evolution toward a fitness
minimum, and hence evolutionary branching, is a generic
phenomenon in models for resource competition similar
to the ones described above. To complement this theory,
we use equation (2) above for the function de-a(x 2 y)
scribing the frequency dependence in the competitive in-
teractions, and we take the resource distribution to be of
Gaussian form with a maximum at some intermediate
phenotype x0:

22(x 2 x )0K(x) p K exp . (9)0 2[ ]2jK

We then calculate g(x), equation (6), from equations (4)
and (5), as

′K (x)′g(x) p 2r a (0) 2[ ]K(x)

x 2 x 0p 2r 2 b . (10)
2( )jK

It follows that for . Note that the∗ ∗ 2g(x ) p 0 x p x 1 bj0 K

singular point is always larger than the trait value maxi-
mizing the carrying capacity. The derivative of g(x) at the
singular point is∗x

dg(x) r
p 2 ! 0. (11)F 2

∗dx jxpx K

Hence, always is an evolutionary attractor. In addition,∗x
straightforward calculations reveal that condition (8)
becomes

2 ∗­ f(y, x ) 1 1
p r 2 1 0. (12)

2 F 2 2( )∗­y j jypx a K

This condition is satisfied, and hence is a fitness min-∗x
imum, if

j ! j . (13)a K

Thus, for a given width of the resource distribution,jK

the singular point is a branching point, that is, an∗x
evolutionarily attracting fitness minimum, if the parameter
ja is small enough. Since ja measures the strength of the
frequency dependence in the competitive interactions, this
implies that, in the model considered, asymmetric com-
petition leads to evolutionary branching whenever the fre-
quency dependence is strong enough. (Note that this result
is also true if competition is symmetric; i.e., if ; seeb p 0
Dieckmann and Doebeli 1999.) An example of the cor-
responding evolutionary dynamics is shown in figure 1B.
(This figure is based on an individual-based model, the
details of which are described in app. A.) Starting with
small phenotypic values, the evolutionary dynamics show
a steady increase in the trait value until the system reaches
the branching point. Because larger phenotypes have an
intrinsic advantage, branching occurs at a phenotypic
value that is larger than the value that maximizes the car-
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rying capacity. After branching, the phenotype in one
branch continues to increase, while in the other branch it
decreases again. Note that the population size is different
in the two branches, with the branch that consists of larger
individuals and is located farther away from the optimal
carrying capacity having fewer individuals. For a more
thorough treatment and additional examples of evolu-
tionary branching under symmetric and asymmetric com-
petition, see Dieckmann and Doebeli (1999) and Kisdi
(1999).

Evolutionary Branching in Coevolutionary
Models for Mutualisms

The classical models for studying processes of diversifi-
cation are based on competition (MacArthur and Levins
1967), and other types of ecological interactions have re-
ceived less attention. In the next two sections, we therefore
examine evolutionary branching in models for mutualism
and for predator-prey interactions. In the models consid-
ered, coevolutionary dynamics of quantitative characters
in two separate species are driven by interspecific ecolog-
ical interactions. The mathematics of adaptive dynamics
in two-species models are more involved than in their one-
species counterparts (Abrams et al. 1993; Dieckmann and
Law 1996; Marrow et al. 1996; Matessi and Di Pasquale
1996; Metz et al. 1996; Leimar 2000). However, conditions
for evolutionary branching are analogous to those for the
one-species models: frequency-dependent selection results
in convergence to an evolutionary attractor on which ei-
ther one or both species find themselves at fitness minima.
Accordingly, evolutionary branching can occur in only one
species, in both species simultaneously, or in both species
sequentially (see below).

In this section, we extend standard Lotka-Volterra mod-
els for mutualisms to coevolutionary models in which
quantitative characters affect the strength of mutualistic
interactions. Simple models of mutualistic dynamics (see,
e.g., Vandermeer and Boucher 1978) arise in a very similar
way from one-species models as do two-species compe-
tition models, namely by adding a second density-depen-
dent term to per capita growth rates in the basic Lotka-
Volterra equation for one species:

dN (t) N (t)1 1p r N (t) 1 2 1 a N (t) ,1 1 12 2[ ]dt K1

dN (t) N (t)2 2p r N (t) 1 2 1 a N (t) . (14)2 2 21 1[ ]dt K2

Here a12 and a21 are positive real numbers describing the
strength of mutualistic support that the two species pro-

vide to each other. Vandermeer and Boucher (1975) have
studied the ecological dynamics of system (14) (for an
extension see Bever 1999), but we are not aware of ex-
tensions of this system to situations where the interaction
coefficients aij are determined by evolving quantitative
characters in the two species. Such an extension can be
formulated based on the theory of mutualism developed
in Kiester et al. (1984), who analyzed coevolution in mu-
tualistic systems using the quantitative genetics framework
of Lande (1982). They considered a pair of mutualistic
species, for example, a flowering plant and its insect pol-
linator, in which quantitative characters, for example, re-
lated to flower morphology and to feeding apparatus, de-
termine the level of mutualistic support. Specifically, let
x1 and x2 denote the characters in the two species, and let
p1(x1) and p2(x2) be the phenotype distributions in the two
species. In other words, the frequency of individuals with
phenotypes in the interval in species 1 is(x , x 1 dx )1 1 1

p1(x1)dx1 and similarly for p2(x2). Following Kiester et al.
(1984), we assume that the support that aa (x 2 x )12 1 2

species-1 individual with phenotype x1 receives from a
species-2 individual with phenotype x2 is given by

a(x 2 x )1 2a , (15)12 ′ ′ ′a(x 2 x )p (x )dx∫ 1 2 1 1 1

where , and where a12
2 2a(x 2 x ) p exp [2(x 2 x ) /2j ]1 2 1 2 a

is a positive constant. This expression takes into account
that the total amount of support provided to species-1
individuals by any one species-2 individual is limited and
equal to a12 and that this total amount is distributed among
species-1 individuals according to the weights a(x 21

. Thus, individuals of species 2 do not vary in theirx )2

total amount of support given to species-1 individuals.
Instead, they vary in how the support is distributed among
species-1 individuals according to differences in character
values. The support provided by species-1 in-a (x 2 x )21 2 1

dividuals with phenotype x1 to species-2 individuals with
phenotype x2 is obtained in an analogous way as

a(x 2 x )2 1a , (16)21 ′ ′ ′a(x 2 x )p (x )dx∫ 2 1 2 2 2

where a21 is the total amount of support provided by spe-
cies-1 individuals. The rationale behind expressions (15)
and (16) is applicable to many mutualistic species pairs,
as is explained in detail in Kiester et al. (1984). Here, we
combine their approach with the classical models of Van-
dermeer and Boucher (1978), equation (14) above.

For populations that are monomorphic for character
values x1 and x2, respectively, the ecological dynamics are
given by
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dN (x , t)1 1 p r N (x , t)1 1 1dt

N (x , t)1 1# 1 2 1 a N (x , t) ,12 2 2[ ]K (x )1 1

dN (x , t)2 2 p r N (x , t) (17)2 2 2dt

N (x , t)2 2# 1 2 1 a N (x , t) .21 1 1[ ]K (x )2 2

Here, N1(x1, t) and N2(x2, t) are the population sizes of
the monomorphic populations of species 1 and 2 at time
t, and we again assume that individuals do not vary within
species in their intrinsic growth rates but that, owing to
variation in resource availability, there is within-species
variation in the carrying capacities K1(x1) and K2(x2). These
functions are assumed to be of of the form K (x) p1

for species 1 andK 1 K N(x , j , x) K (x) p K 111 12 10 K 2 211

for species 2, where the areK N(x , j , x) N(x , j , x)22 20 K i0 K2 i

Gaussian functions of the variable x with maximum at
and variance equal to . The parameters Ki1 rep-x p x ji0 Ki

resent a uniform background level of resources. Note that
the maxima x10 and x20 of the two resource distributions
will generally occur at different character values in the two
species.

As in the previous section, we assume a separation of
ecological and evolutionary timescales in order to analyze
the coevolutionary dynamics of the two traits x1 and x2.
That is, we start from monomorphic resident populations
at their ecological equilibrium and then determine the fate
of rare mutants as they arise in both species. For certain
choices of parameters a12 and a21, the ecological system
(14) does not converge toward an equilibrium (Vander-
meer and Boucher 1978), and instead, population sizes
increase without bounds. Here we restrict our attention
to those biologically feasible cases in which the mono-
morphic residents reach a stable equilibrium.

The equilibrium population sizes of such resident pop-
ulations are functions and of the∗ ∗N (x , x ) N (x , x )1 1 2 2 1 2

resident character values x1, x2 in both species and can be
calculated from (17) by setting right-hand sides equal to
0. Given these values, the dynamics of a rare mutant y1

in species 1 are given by

∗dN (y , t) N (x , x )1 1 1 1 2p r N (y , t) 1 21 1 1 [dt K (y )1 1

a(y 2 x )1 2 ∗1 a N (x , x ) . (18)12 2 1 2 ]a(x 2 x )1 2

Here the support given to species-1 individuals with char-
acter value y1 by species-2 individuals with character value
x2 is calculated from equation (15) using the fact that the
mutant y1 is very rare initially, so that the phenotype dis-
tribution in species 1 is concentrated at the resident′p (x )1 1

phenotype x1, . Thus,′ ′ ′a(x 2 x )p (x )dx p a(x 2 x )∫ 1 2 1 1 1 1 2

the initial per capita growth rate of a rare species-1 mutant
y1 in the resident (x1, x2)-population, that is, the invasion
fitness f1(y1, x1, x2), is given by

∗N (x , x )1 1 2f (y , x , x ) p r 1 21 1 1 2 1[ K (y )1 1

a(y 2 x )1 2 ∗1 a N (x , x ) . (19)12 2 1 2 ]a(x 2 x )1 2

Analogously, the invasion fitness of a rare species-2 mutant
y2 in the resident (x1, x2) population is

∗N (x , x )2 1 2f (y , x , x ) p r 1 22 2 1 2 2[ K (y )2 2

a(y 2 x )2 1 ∗1 a N (x , x ) . (20)21 1 1 2 ]a(x 2 x )2 1

The evolutionary dynamics of this system are determined
by evaluating the derivatives of the invasion fitness func-
tions with respect to the mutant trait value at the respective
resident values, that is, by

­f (y , x , x )1 1 1 2g (x , x ) p (21)1 1 2 F­y y px1 1 1

and by

­f (y , x , x )2 2 1 2g (x , x ) p . (22)2 1 2 F­y y px2 2 2

In analogy with the one-dimensional system considered
in the previous section, the singular points of the two-
dimensional coevolutionary system studied here are resi-
dent values such that∗ ∗ ∗ ∗ ∗ ∗x , x g (x , x ) p g (x , x ) p 01 2 1 1 2 2 1 2

(Dieckmann and Law 1996; Metz et al. 1996; Geritz et al.
1998; Leimar 2000). Whereas in one-dimensional systems
singular points are either attractors or repellors for the
evolutionary dynamics, two-dimensional systems offer
more possibilities, including saddle points (Dieckmann
and Law 1996; Leimar 2000) and cyclic evolutionary dy-
namics (Dieckmann et al. 1995; Marrow et al. 1996). In
appendix B, we indicate how to determine the evolutionary
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Figure 2: Asexual coevolutionary dynamics of mutualistic interactions. A, Simultaneous evolutionary branching in two symmetric mutualistic species
leads to two asymmetric pairs of mutually specialized populations. In each pair, one branch is close to its resource optimum (high abundance),
while the other (low abundance) mainly exploits its mutualistic partner. Parameters: , ,2r p r p 1 K (x ) p K 1 K exp [2(x 2 x ) /2j ]1 2 1 1 11 12 1 10 K1

, , , , , , ,2K (x ) p K 1 K exp [2(x 2 x ) /2j ] K p K p 300 K p K p 400 x p 21 x p 1 j p j p 1.0 a p a p 0.00016 a(x 22 2 21 22 2 20 K 11 21 12 22 10 20 K K 12 21 12 1 2

, , , . B, Primary evolutionary branching in one of two asymmetric mutualistic2 2x ) p exp [2(x 2 x ) /2j ] j p 0.4 m p m p 0.01 j p j p 0.052 1 2 a a 1 2 M M1 2

species results in repeated secondary evolutionary branching and extinction in the partner species. After the two branches of the first mutualist are
established, subsequent branching occurs in the second mutualist. This causes one of the resulting secondary branches to evolve to exploit the highly
abundant branch of its mutualistic partner. This adaptation requires a large departure from the second species’ resource optimum, upon which the
newly established branch goes extinct again, triggering a continual cyclic sequence of repeated branching and extinction in the second mutualist.
Parameters are the same as in A, except for , , , , , .K p K p 50 K p K p 200 j p 0.8 j p 0.55 a p a p 0.001 j p 0.311 21 12 22 K K 12 21 a1 2

stability properties of a singular point . We are∗ ∗(x , x )1 2

interested in singular points that are evolutionary attrac-
tors, and we wish to determine the conditions under which
those evolutionary attractors are also fitness minima for
either one or both of the trait values and . That is,∗ ∗x x1 2

we are looking for evolutionary attractors for∗ ∗(x , x )1 2

which the invasion fitness functions have a minimum with
respect to the mutant trait values:

2 ∗ ∗­ f (y , x , x )1 1 1 2
1 0, (23)

2 F
∗­y y px1 1 1

2 ∗ ∗­ f (y , x , x )2 2 1 2
1 0. (24)

2 F
∗­y y px2 2 2

If either one or both of these conditions are satisfied at
an evolutionary attractor, then the evolutionary dynamics
will first converge to the singular point , after which∗ ∗(x , x )1 2

evolutionary branching will occur in one or both species
(see app. B). It is not our aim here to give an exhaustive
classification of all the possibilities of coevolutionary dy-
namics in our model for mutualism (although this would
seem to be a worthwhile and interesting endeavor). In-
stead, we confine ourselves to pointing out that, again,
evolutionary branching is a generic feature of this model
and proceed by describing general conditions under which
branching occurs.

We first consider a symmetric case, in which the mutual
support is equal for both species (i.e., ), and ina p a12 21

which the two species only differ in the location of the
maxima of their resource distributions. Then, if these max-
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ima are far enough apart, evolutionary branching is likely
to occur. This can be understood as follows. If the resource
distributions have different maxima, say , thenx ! x10 20

there is an evolutionarily singular point that lies∗ ∗(x , x )1 2

symmetrically between these maxima, that is, such that
and such that the distance to their re-∗ ∗x ! x ! x ! x10 1 2 20

spective resource maxima is the same in both species (app.
B). Such a configuration results from a trade-off between
being close to the own resource maximum and being close
to the phenotype of the other species in order to benefit
from its mutualistic support. With increasing distance be-
tween the two resource maxima, the distance between the
singular values and constituting a symmetric singular∗ ∗x x1 2

point increases as well. Intuitively speaking, an increasing
distance between the resource distributions increases the
strain on the evolutionary compromise between the two
species. If this strain is large enough, and if the symmetric
singular point is an evolutanry attractor (for techinical
details, see app. B), then simultaneous evolutionary
branching in both species occurs, an example of which is
shown in figure 2A.

The evolutionary outcome resulting from branching is
interesting: branching leads to two species pairs, in each
of which one of the species is close to its resource optimum
and provides a large amount of mutualistic support to the
other species in the pair, which in turn is far away from
its resource optimum and therefore can give only little
support. Thus, in each of the two original species, branch-
ing leads to one mutualistic branch, which is close to its
resource optimum, and one “exploitative branch,” which
is far from its resource optimum, and each branch interacts
mainly with its respective opposite in the other species. In
this way, an initially symmetric configuration, with each
species being at equal distance from its resource optimum
and giving equal amounts of support to its partner, evolves
into two asymmetric species pairs, in each of which one
species essentially only survives because of the mutualistic
support from the other species.

These results are robust in the sense that introducing
asymmetries in the system will not qualitatively change
them. With large asymmetries, however, new phenomena
such as repetitive evolutionary branching can be observed.
An example is shown in figure 2B. Here the evolutionarily
attracting singular point is a fitness minimum for∗ ∗(x , x )1 2

only one of the two species and, therefore, branching first
occurs only in that species. Subsequently, the evolving di-
morphism also induces evolutionary branching in the sec-
ond species because emergence of the two branches in the
first species leads to disruptive selection for mutualistic
support in the second species. The two branches in the
second species, however, do not persist indefinitely, and,
instead, the branch that is far away from its resource op-
timum eventually goes extinct. The remaining branch then

again undergoes secondary branching, which leads to a
repeating, cyclic pattern of speciation and extinction in
this lineage. That frequency-dependent ecological inter-
actions can lead to adaptation-driven extinctions has been
observed before (see, e.g., Dieckmann et al. 1995).

Evolutionary Branching in Coevolutionary
Predator-Prey Models

To complete our survey of evolutionary branching under
different fundamental types of ecological interactions, we
study coevolution in predator-prey systems. For this pur-
pose, we use an extension of classical Lotka-Volterra pred-
ator-prey models, similar to the ones used in Dieckmann
at al. (1995) and in Brown and Vincent (1992; see also
Doebeli 1997). Brown and Vincent (1992) already con-
cluded that frequency-dependent predation could lead to
coexistence of multiple predator and prey species at evo-
lutionary stable states. However, their approach differs in
at least two ways from the predator-prey models described
below: first, they did not study the actual mechanisms by
which multiple species would arise (i.e., speciation), and,
second, they included frequency-dependent competition
among the prey as an additional diversifying agent.

Here we assume that the interaction parameter describ-
ing predation efficiency depends on two quantitative char-
acters, one in the prey and the other in the predator. These
characters are scaled such that the interactions are the
stronger the more similar prey and predator characters
are. If x1 denotes the character in the prey and x2 that in
the predator, the predation efficiency of a predator with
phenotype x2 on prey individuals with phenotype x1 is

22(x 2 x )1 2
a(x 2 x ) p a exp . (25)1 2 0 2[ ]2ja

As a consequence, the ecological dynamics of monomor-
phic prey and predator populations with trait values x1

and x2 are given by

dN (x , t)1 1 p rN (x , t)1 1dt

N (x , t)1 1# 1 2[ K(x )1

2 a(x 2 x )N (x , t) , (26)1 2 2 2 ]
dN (x , t)2 2 p N (x , t)2 2dt

# [2d 1 ca(x 2 x )N (x , t)].1 2 1 1
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Figure 3: Asexual coevolutionary dynamics of predator-prey interactions. A, Evolutionary branching only in the prey. While the ecological character
in the prey converges (with oscillations) to a fitness minimum, leading to branching in the prey character, the resulting branches do not move far
enough apart to induce secondary branching in the predator. Parameters: , , , ,2r p d p 1 c p 2 a p 0.001 K(x ) p K exp [2(x 2 x ) /2j ] K p0 1 0 1 0 K 0

, , , , , , . B, Secondary evolutionary branching2 22,000 x p 0 j p 0.27 a(x 2 x ) p exp [2(x 2 x ) /2j ] j p 0.23 m p m p 0.01 j p j p 0.050 K 1 2 1 2 a a 1 2 M M1 2

in the predator. In this case, the prey branches diverge sufficiently for the predator to experience a fitness minimum, resulting in secondary branching
in the predator character. Parameters are the same as in A, except for , . C, Evolutionary cycling of predator-prey interactions.j p 0.7 j p 0.4K a

Under identical ecological conditions, changes in mutation rates can dramatically affect outcomes of asexual coevolution. In the case shown here,
the prey evolves so fast relative to the predator that it always evades the predator’s adaptation, instead of being caught at a fitness minimum and
undergoing evolutionary branching. Parameters are the same as in B, except for .m p 0.0022

Here, N1(x1, t) is the size at time t of the prey population
monomorphic for x1, N2(x2, t) is the size of the predator
population monomorphic for x2, and r, d, and c are pos-
itive rate constants describing, respectively, the intrinsic
growth rate of the prey, the death rate of the predator, and
the conversion efficiency of captured prey into predator
offspring. For simplicity, we assume that these parameters
are not influenced by the quantitative characters x1 and
x2. However, we again assume that resource availability
for the prey varies with the quantitative character x1 such
that the resource distribution function K(x1) is of Gaussian
form N(x0, jK) with a maximum at x0. Note, however,
that we do not assume frequency dependence in the com-
petitive interactions among the prey.

Yet, the existence of the predator system imposes fre-
quency-dependent selection on the prey because common
prey phenotypes have the disadvantage that the predator
phenotype that preys upon them most efficiently is thriv-
ing. We show that this frequency dependence can easily
lead to evolutionary branching in the prey. To see this, we
again calculate the growth rate of rare mutants in both
prey and predator while assuming that the resident phe-
notypes are at their ecological equilibria, and∗N (x , x )1 1 2

, which can easily be calculated by setting the∗N (x , x )2 1 2

right-hand sides of (26) to 0. The population dynamics
of a rare prey mutant y1 in the resident population is given
by

∗dN (y , t) N (x , x )1 1 1 1 2p rN (y , t) 1 21 1 [dt K(y )1

∗2 a(y 2 x )N (x , x ) , (27)1 2 2 1 2 ]
so that the invasion fitness becomes

∗N (x , x )1 1 2f (y , x , x ) p r 1 21 1 1 2 [ K(y )1

∗2 a(y 2 x )N (x , x ) . (28)1 2 2 1 2 ]

Similarly, the dynamics of a rare predator mutant y2 is
given by

dN (y , t)2 2 ∗p N (y , t)[2d 1 ca(x 2 y )N (x , x )], (29)2 2 1 2 1 1 2dt

so that the invasion fitness for the predator becomes

∗f (y , x , x ) p 2d 1 ca(x 2 y )N (x , x ). (30)2 2 1 2 1 2 1 1 2

As in the previous models, the quantities that determine
the monomorphic evolutionary dynamics of the system
are the selection gradients, that is, the derivatives of the
invasion fitness functions with respect to mutant pheno-
types, evaluated at the resident values:

­f (y , x , x )1 1 1 2g (x , x ) p1 1 2 F­y y px1 1 1

∗ ′N (x , x )K (x )1 1 2 1p r (31)
2K (x )1

′ ∗2 ra (x 2 x )N (x , x ),1 2 2 1 2

­f (y , x , x )2 2 1 2g (x , x ) p2 1 2 F­y y px2 2 2

′ ∗p 2d 1 ca (x 2 x )N (x , x ). (32)1 2 1 1 2

The quantities g1(x1, x2) and g2(x1, x2), together with the
rate constants for the mutation processes in the two spe-
cies, determine the coevolutionary dynamics (app. B). Sin-
gular points of this system are points with∗ ∗(x , x )1 2

. Their stability is determined∗ ∗ ∗ ∗g (x , x ) p g (x , x ) p 01 1 2 2 1 2

as described in appendix B. It is intuitively clear (and easy
to see analytically from eqq. [31] and [32]) that the only
singular point in this system is . If this point∗ ∗x p x p x1 2 0

is an evolutionary attractor, the prey character will evolve
to the optimum of the resource distribution, and the pred-
ator will evolve to maximize its predation efficiency. It is
also intuitively clear that for a given prey character, it is
best for the predator to have the same character value as
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the prey to maximize its predation efficiency. This implies
that the singular point (x0, x0) will always be a fitness
maximum for the predator and, hence, can never be a
branching point for the predator character.

However, the singular point will be a branching point
for the prey character as soon as the frequency dependence
given by the function is strong enough (app.a(x 2 x )1 2

B). In other words, for fixed values of the other parameters
in the system, evolutionary branching in the prey character
occurs when the predation efficiency decreases sufficiently
fast with increasing distance between prey and predator
characters. An example of evolutionary branching in the
prey is shown in figure 3A. In the example shown, the
predator does not undergo evolutionary branching. As a
consequence of branching in the prey, the predator there-
fore becomes a generalist with a lower predation efficiency
on each of the two emerging prey species than it had on
the single prey species that existed before branching.

Evolutionary branching in the prey can sometimes in-
duce secondary branching in the predator. When the prey
character splits into two clusters, one might, at first glance,
expect that it would always be best for the predator to
undergo such a split as well. However, whether this hap-
pens depends on the details of the system: predator in-
dividuals having character values deviating from the in-
termediate between the two prey branches have the
advantage of being closer to one of the two branches, but
at the same time they have the disadvantage of being far-
ther away from the other one. As is shown in appendix
B, it is the distance of the two prey branches from the
intermediate singular point x0 that determines whether or
not branching in the prey induces secondary branching
in the predator. This is exemplified in figure 3B, for which
parameters are the same as in figure 3A, except for in-
creased widths of the resource distribution and the pre-
dation efficiency. This allows the two phenotypic branches
in the prey to diverge farther and hence to induce sec-
ondary branching in the predator. In this case, the out-
come of the evolutionary process are two prey species,
each being exploited by a specialist predator, as opposed
to the generalist predator emerging with a narrower re-
source distribution for the prey (fig. 3A).

To end this section, we give an example of how a change
in the relative evolutionary speed, resulting from different
mutation rates in the two species, can critically affect the
adaptive dynamics. In the system shown in figure 3C,
everything is the same as in figure 3B, except that now
the mutation rate in the predator is five times lower than
the mutation rate in the prey. This destabilizes the singular
point (x0, x0), as described in appendix B: instead of con-
vergence to the singular point, the coevolutionary adaptive
dynamics now show sustained evolutionary cycling. Thus,
the evolution in the predator-prey system gives rise to a

cyclic type of arms race. This scenario has been extensively
studied by Dieckmann et al. (1995; see also Abrams and
Matsuda 1996; Doebeli 1997).

Evolutionary Branching in Sexual Populations

So far we have considered clonally reproducing popula-
tions. That is, the quantitative characters of offspring were
identical to those of their parents, except for changes re-
sulting from mutations. While such a theory is applicable
to simple organisms, it clearly requires incorporation of
population genetics in order to serve as a basis for un-
derstanding evolution in sexual populations. In this sec-
tion, we describe ways of including multilocus genetics
into models of adaptive dynamics, and we identify some
of the conditions under which branching can occur in
sexual populations. In particular, we show that evolution-
ary branching can easily arise in sexual species if mating
is assortative with respect to traits determining the eco-
logical interactions. The evolution of assortative mating
therefore is a crucial issue, which we address by assuming
that assortativeness is also a quantitative trait. We show
that under branching conditions selection favors genotypes
that mate assortatively, which leads to evolutionary
branching in initially randomly mating sexual populations.

To introduce population genetics into our ecological
models, we assume that the quantitative characters deter-
mining ecological interactions in these models are genet-
ically determined by many equivalent, additive, diploid
and diallelic loci with free recombination. This assumption
is easily implemented into individual-based models, as de-
scribed in appendix A. Examining parameter values that
ensure evolutionary branching in the corresponding asex-
ual models, simulations of the individual-based sexual
models readily reveal that evolutionary branching cannot
occur in sexual populations if mating is random (fig. 4A).
This is intuitively clear, for random mating produces in-
termediate offspring phenotypes from extreme parent phe-
notypes and therefore results in the continual production
of intermediate phenotypes from two incipient branches.
This prevents the branches from developing into distinct
phenotypic clusters.

However, the situation drastically changes if mating is
assortative rather than random. To model this case, we
assume that the probability of mating between individuals
with similar ecological characters is relatively higher than
the probability of mating between individuals with dissim-
ilar ecological characters. Such a situation would, for ex-
ample, arise if mating is assortative with respect to body
size and if body size at the same time has a strong effect
on the ecological interactions, conditions that appear to
be satisfied in many species (Schluter and Nagel 1995).
Another example is given by quantitative characters that
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Figure 4: Sexual coevolutionary dynamics of mutualistic interactions. A, Coevolution under random mating. Without assortative mating, the two
sexually reproducing mutualistic species cannot undergo evolutionary branching: the continual generation of intermediate offspring characters
prevents any bimodality in character values to persist. B, Coevolution under fixed assortative mating. Given a sufficiently high, yet fixed, degree of
assortativeness ( ), each of the two sexually reproducing mutualistic species rapidly splits into two reproductively isolated branches. C,j p 1/20mate

Coevolution under evolving degrees of assortative/disassortative mating. When allowing for adaptation in the degree of assortativeness (second and
fourth panel), disruptive selection at the fitness minima favors the evolution of assortative mating, thus enabling evolutionary branching in the two
sexually reproducing mutualistic species (first and third panel). Ecological characters and mating characters are determined by five diploid loci; other
parameters are the same as in figure 2A.



S90 The American Naturalist

Figure 5: Character-dependent degrees of assortative/disassortative mat-
ing. Mating probabilities as determined by mating character and differ-
ence in ecological characters between mates. If the mating character in
a focal individual is close to 11 (only plus alleles at mating loci), it has
a high probability of mating only with similar individuals. If its mating
character is close to 21 (only minus alleles), it is more likely to mate
with dissimilar individuals. Intermediate mating characters (close to 0)
correspond to random mating.

control diet preferences: often individuals mate where they
feed so that mating probabilities increase with similarity
of feeding preferences, as is the case, for example, for the
apple maggot fly (Feder et al. 1988).

To be specific, we assume that the probability of mating
between two individuals with ecological character values
x and y is proportional to

22(x 2 y)
exp , (33)

2[ ]2jmate

where the parameter jmate determines the degree of as-
sortativeness: if jmate is small, mating is strongly assort-
ative, and if , mating is random. In a randomlyj p `mate

mating population, the probability of mating between
phenotypes x and y is p(x)p(y), where p(x) and p(y) are
the frequencies of the two phenotypes. In a population
with assortative mating, however, the probability of mat-
ing between phenotypes x and y is proportional to

, with a proportionality fac-2 2exp [2(x 2 y) /2j ]p(x)p(y)mate

tor arising from a normalization ensuring that, as with
random mating, the total probability of mating equals 1
for all phenotypes. (This may not be a realistic assump-
tion for all systems: when assortative mating has a large
cost extreme phenotypes may have a disadvantage. How-
ever, we expect our results to be robust against intro-
ducing small to moderate costs of assortative mating.)

With this setup, evolutionary branching occurs in sexual
populations if mating is sufficiently assortative. An ex-
ample is shown in figure 4B, for which we have imple-
mented the genetic assumptions in the model for the evo-
lution of mutualism described in “Evolutionary Branching
in Coevolutionary Models for Mutualism.” The ecological
parameters for this figure are the same as those used for
figure 2A, which shows simultaneous branching in two
asexual mutualistic species. In figure 4A, mating is ran-
dom, and branching does not occur in either species. In
figure 4B, however, mating is assortative with respect to
the quantitative characters determining the mutualistic in-
teraction, and evolutionary branching again occurs si-
multaneously in both species. In other words, each species
splits into two distinct phenotypic and genotypic clusters.
Note that because mating is assortative with respect to the
phenotypes forming the clusters, these clusters eventually
are almost completely reproductively isolated, so that there
is very little gene flow between them. Similar observations
hold for our models for resource competition and for
predator-prey interactions: under branching conditions in
the clonal versions, evolutionary branching occurs in the
sexual multilocus versions of these models if assortative
mating with respect to the characters determining the eco-
logical interactions is strong enough.

The remaining question is why mating should be as-
sortative in the first place. To investigate this, we regard
the degree of assortativeness itself as a quantitative char-
acter that is determined by many loci. This allows us to
study the evolution of assortative mating in initially ran-
domly mating populations. To exert no bias on the evo-
lution of mating preference, we also allow for the possi-
bility of disassortative mating in our individual-based
models, that is, for the possibility that mating probabilities
increase with the distance between ecological characters of
partners. Thus, individuals having an intermediate mating
character mate randomly, while individuals having char-
acter values toward one extreme of the mating character’s
range mate disassortatively and individuals with values
toward the other extreme mate assortatively, that is, pref-
erentially with ecologically similar partners (fig. 5).

The basic result emerging from our individual-based
simulations is that, under branching conditions, positive
assortative mating is selectively favored and typically
evolves to a degree that allows for evolutionary branching.
That is, given parameter values that ensure branching in
the corresponding asexual model, mating evolves from
being random to a degree of assortativeness that enables
branching in sexual populations. For the case of symmetric
competition, this is described in more detail in Dieckmann
and Doebeli (1999). Here, we give examples for the evo-
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Figure 6: Sexual coevolutionary dynamics of predator-prey interactions.
Coevolution under evolving degrees of assortative/disassortative mating
in sexual predator and prey populations leads to primary and secondary
evolutionary branching. Initially, the prey character converges (with os-
cillations) toward the fitness minimum at its resource optimum (first
panel). There, the degree of assortativeness is evolutionarily adjusted to
high values (second panel ). Under these conditions, primary evolutionary
branching occurs in the prey (first panel). This induces a fitness minimum
for the predator, leading to increased levels of assortativeness in this
species (fourth panel ), and subsequently allowing for secondary evolu-
tionary branching in the predator (third panel ). Ecological characters are
determined by 10 diploid loci, mating characters by five diploid loci;
other parameters are the same as in figure 3B.

lution of assortative mating and subsequent evolutionary
branching in the sexual mutualistic model (fig. 4C) and
in the sexual predator-prey model (fig. 6).

Our extensive numerical simulations indicate that for
the models considered in this article, parameter require-
ments for the evolution of assortative mating, and hence
for evolutionary branching in sexual populations, are not
significantly more restrictive than the conditions for
branching in the corresponding clonal models. The reason
why assortative mating evolves under branching condi-
tions is rather straightforward. At the branching point, the
population is trapped at a fitness minimum if mating is
random (fig. 4A). Assortative mating is a mechanism that
allows for evolutionary branching and hence for a depar-
ture from the fitness minimum because it prevents the
generation of intermediate offspring phenotypes from ex-
treme parent phenotypes. Because their offspring are less
likely to have a phenotype corresponding to the fitness
minimum, individuals that mate assortatively are favored
by natural selection. Once assortative mating has evolved,
evolutionary branching can occur in sexual populations.
In conclusion, when multilocus genetics and the evolution
of assortative mating are incorporated into ecological
models, adaptive dynamics leading to evolutionary
branching offers a unifying framework for studying and
understanding sympatric speciation.

Discussion

Evolutionary branching is a type of adaptive dynamics that
naturally occurs in phenotypic evolutionary models involv-
ing frequency-dependent selection (Metz et al. 1996; Geritz
et al. 1998). It consists of two phases: first, there is con-
vergence in phenotype space to an evolutionarily attracting
fitness minimum, and then the population splits into two
diverging phenotypic clusters. In this article, we have shown
that this evolutionary phenomenon readily occurs in a range
of basic models in which evolutionary dynamics are driven
by different types of ecological interactions. Symmetric and
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asymmetric resource competition, mutualistic interactions,
and predator-prey interactions can all lead to evolutionary
branching, which is therefore a general and robust feature
of adaptive dynamics.

Evolutionary branching is a mechanism that can explain
speciation in asexual populations. By including population
genetics into the underlying ecological models, it becomes
an integrating paradigm for studying sympatric speciation
in sexual populations. To illustrate this finding we have
assumed that the quantitative characters that determine
ecological interactions are controlled by many loci, and
we have investigated the evolution of assortative mating
in our models. The results show that, because of the evo-
lution of positive assortative mating with respect to the
characters determining ecological interactions, evolution-
ary branching also generically arises in models for sexual
populations, in which it can lead to sympatric speciation.

Previous Models for Sympatric Speciation

One of the main differences between our approach and
previous work is that in the framework presented here
disruptive selection is not an externally imposed assump-
tion, as is the case in the majority of earlier models, where
some form of habitat difference is usually needed to gen-
erate disruptive selection (e.g., Maynard Smith 1966;
Udovic 1980; Felsenstein 1981; Johnson et al. 1996; Kaw-
ecki 1996). In such models, the maintenance of a poly-
morphism for the phenotypes favored in the different hab-
itats (a prerequisite for the evolution of reproductive
isolation) is problematic. By contrast, in the framework
of adaptive dynamics, the emergence of disruptive selec-
tion is an intrinsic process: disruptive selection dynami-
cally arises from the underlying ecological interactions in
such a way that the conditions for the evolution and main-
tenance of a polymorphism, that is, for evolutionary
branching, are automatically satisfied. The basic insight is
that this is a generic phenomenon. (It should be noted
that evolutionary branching in traits determining habitat
specialization also readily occurs in multiple-habitat mod-
els; see Geritz et al. 1998.)

Two approaches similar to our theory were previously
put forward by Seger (1985) and by Kondrashov (1986;
Kondrashov and Kondrashov 1999). In Seger (1985) fre-
quency-dependent resource competition could generate a
mismatch between the phenotype distribution and the re-
source distribution, the consequences of which were ex-
plored by means of a simple genetic model leading to the
conclusion that overdispersed resources are needed for
sympatric speciation. Seger (1985) modeled assortative
mating as a discrete rather than as a continuous trait,
which may have contributed to the fact that unimodal
(binomial) resource distributions did not favor speciation

in his model. Nevertheless, if his model is put into the
framework of adaptive dynamics, his results can be re-
formulated in terms of conditions for evolutionary
branching points. From the perspective of population ge-
netics, Kondrashov’s studies of sympatric speciation (Kon-
drashov 1986; Kondrashov and Mina 1986; Kondrashov
and Kondrashov 1999) are more similar to ours, although
these authors did not use an ecological embedding that
would generate the selection regimes. Instead, an unspec-
ified mechanism is assumed to favor marginal phenotypes
at all times. Moreover, these authors did not model the
degree of assortative mating as a quantitative trait. Our
results can be viewed as an extension and generalization
of these previous results, suggesting that, in theory, sym-
patric speciation is a common evolutionary process.

The model that comes closest to this one—because it
is a precursor—is Doebeli (1996). This article shows that
frequency-dependent competition for unimodally distrib-
uted resources can lead to sympatric speciation if mating
is assortative, and that assortative mating should evolve
continuously toward a degree inducing speciation. It used
a deterministic multilocus genetic model for the ecological
traits but did not consider genetics for assortative mating.
It also did not put results into the framework of adaptive
dynamics and evolutionary branching and therefore did
not highlight the obtained results as a special case of a
general phenomenon.

Felsenstein (1981), who used a model of the type in-
volving habitat differences to generate disruptiveness, clas-
sified models for sympatric speciation into two groups:
the “one-allele” models, in which the same alleles need to
be substituted in the subpopulations forming the two in-
cipient branches in order to achieve divergence and re-
productive isolation, and the “two-allele” models, in which
different alleles must be substituted in the two incipient
species. Felsenstein (1981) noted that sympatric speciation
occurs relatively easily in one-allele models but is much
harder to obtain in two-allele models. The models pre-
sented here would all be classified as one-allele models
because in our models evolutionary branching occurs in
sexual populations if assortative mating evolves in both
incipient branches; that is, if the alleles coding for stronger
assortativeness are substituted in both branches. To make
the genetic theory more general, one therefore wants to
consider models in which assortative mating is not based
on the characters that determine ecological interactions
but instead on selectively neutral marker traits. In this case,
evolution of assortative mating is not sufficient anymore
to induce speciation under branching conditions. In ad-
dition, a linkage disequilibrium between loci coding for
the marker trait on the one hand and for the ecological
character on the other is required. This implies that dif-
ferent marker alleles must be substituted in the two in-
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cipient branches: this scenario thus corresponds to the
two-allele models of Felsenstein (1981). The reason why
speciation is more difficult when mating is based on a
marker trait is that recombination between the marker
loci and the loci determining the ecological character pre-
vents the buildup of a linkage disequilibrium between the
marker trait and the ecological trait. As Felsenstein (1981)
pointed out, deterministic models predict that sympatric
speciation is unlikely under these conditions (see also Seger
1985).

However, a rather different picture emerges when sto-
chastic, individual-based models are employed. In Dieck-
mann and Doebeli (1999), we have shown that, once
demographic stochasticity and resulting genetic drift are
included in the description, evolutionary branching is a
robust phenomenon in sexual populations even when as-
sortative mating is based on a neutral marker trait. The
reason is that genetic drift that is due to demographic
stochasticity leads to small and genetically localized linkage
disequilibria. These local and temporary disequilibria se-
lect for assortative mating, which in turn magnifies the
local disequilibria into a global and stable linkage dis-
equilibrium between marker trait and ecological character,
allowing for evolutionary branching. Thus, symmetry
breaking that is due to genetic drift can trigger evolution-
ary branching in sexual populations, despite the opposing
force of recombination. We have described this phenom-
enon in detail in Dieckmann and Doebeli (1999) for the
case of symmetric resource competition, and similar ob-
servations are expected to hold for the coevolutionary
models described in this article. This establishes a strong
link between our theory and models for sympatric spe-
ciation based on sexual selection (Lande 1982). That as-
sortative mating based on marker traits can lead to evo-
lutionary branching and sympatric speciation in our
ecological models means that the evolution of sexually
selected traits might strongly promote phenotypic cluster
formation and divergence if sexually selected characters
become correlated with characters affecting ecological in-
teractions. Recent results of Kondrashov and Shpak (1998)
indicate that sympatric speciation is unlikely without such
a correlation, that is, with assortative mating based on a
selectively neutral trait alone. Notice that a wide range of
potential marker traits coexist in typical organisms. For
branching to occur in sexual populations, only one of these
needs to latch on to the ecologically relevant character.
The likelihood for such an event is further enhanced by
the existence of spatial phenotypic heterogeneity and by
the occurrence of cryptic speciation (Metz et al. 1996):
fleeting patterns of cryptic variation may become “frozen”
at a branching point.

Empirical Evidence for Sympatric Speciation

Evidence for the sympatric origin of many species groups
is accumulating rapidly in recent years. Strong support
comes from phylogenetic reconstruction studies based on
genetic analyses, for example, in cichlids (Meyer et al.
1993; Schliewen et al. 1994), and it is increasingly rec-
ognized that extent populations show large degrees of pop-
ulation subdivision, which may often be the raw material
for processes of speciation. Relevant studies (e.g., Boursot
et al. 1996; De Leon et al. 1997) may reveal cases of in-
cipient speciation that can be investigated experimentally,
for example, in light of the theory presented here. This
seems to be promising because there already are a few
cases in which our theory agrees particularly well with
empirical insights about the mechanisms of speciation. For
example, a recent study of incipient speciation in a pair
of cichlid morphs in a crater lake in Cameroon by U.
Schliewen, K. Rassmann, and D. Tautz (unpublished man-
uscript) argues that competition for resources and size-
assortative mating are responsible for reproductive isola-
tion between two monophyletic morphs that only differ
in size. More generally, sympatric speciation driven by
niche separation due to resource competition is an at-
tractive explanation for the radiation of the monophyletic
cichlids in large lakes in Africa. Recent studies by See-
hausen et al. (1997) show that sexually selected traits are
used for maintaining species boundaries, which seems to
correspond well with the extension of our theory to the
evolution of assortative mating based on marker traits that
are correlated with ecological characteristics (Dieckmann
and Doebeli 1999).

Another example where our theory would seem to be
applicable are sticklebacks in the lakes of British Columbia
(Schluter and McPhail 1992; Schluter 1994; Taylor and
McPhail 1999). Although it is not clear at present whether
the two forms that exist in some lakes, a large benthic one
and a small limnetic one, arose sympatrically, there is ev-
idence from experimental research (Schluter 1994; Nagel
and Schluter 1998; Rundle and Schluter 1998) as well as
from phylogenetic studies (Taylor and McPhail 1999) that
supports this hypothesis. In these species, body size is an
ecologically important trait, and studies of assortative mat-
ing (Nagel and Schluter 1998; Rundle and Schluter 1998)
match with the theoretical prediction that size assortative
mating could have led to a sympatric split into a large and
a small form as a result of competition for resources.

Further empirical evidence for sympatric speciation via
evolutionary branching comes from studies on organisms
such as intertidal snails (Johannesson et al. 1995), Anolis
lizards (Losos et al. 1998), and senecio trees (Knox and
Palmer 1995), in which resource competition is likely to
have been a major driving force of speciation. Evolutionary
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branching due to resource competition may also help ex-
plain the much discussed speciation events in Darwin’s
finches, a group that, because of the biogeography of the
Galápagos islands, is regarded as a stronghold for allopatric
speciation theory. In fact, it is known that size-assortative
mating is common in these birds and that body size, and
in particular beak size, strongly influences their diet (Grant
et al. 1985). While these birds are a classical study system
for ecological character displacement (e.g., Schluter et al.
1985; Schluter 1988), the possibility of sympatric specia-
tion has not been a major focus of interest, and it may
be worthwhile to reconsider even this apparently long-
resolved case of allopatric speciation in the light of evo-
lutionary branching.

There are also cases of radiation and divergence in mu-
tualistic and predator-prey systems for which our models
may help unravel the underlying mechanisms. For ex-
ample, Kiester et al. (1984) argue that the exceptional di-
versity of orchids may be due to coevolution with orchid
bees, and our model for facultative mutualism could pro-
vide a theoretical basis for understanding speciation in this
group of species. Another example comes from carnations
in Middle Europe, whose diversity matches the diversity
of their pollinators. It is believed that coevolutionary in-
teractions dominate these mutualistic systems (A. Erhardt,
personal communication), and it is likely that many more
examples of adaptive speciation due to mutualistic inter-
actions are revealed once mutualisms are investigated more
rigorously from the perspective of ecologically driven ra-
diations (see Pellmyr and Leebens-Mack 2000, in this
issue).

When viewed from the predator’s perspective, predator-
prey interactions lead to familiar resource competition, but
for the prey a different type of selection pressure emerges,
termed “apparent competition” by Holt (1977), under
which prey compete for predator-free phenotype space.
Recently, it has been emphasized that apparent competi-
tion may be a strong diversifying force (Brown and Vincent
1992; Abrams 2000, in this issue), and our theory shows
that apparent competition can lead to sympatric speciation
through evolutionary branching in the prey. Empirical
support for this comes for instance from mollusks, where
it has been argued that the great diversity of ornamentation
in some groups is due to evolutionary responses to pre-
dation (e.g., Van Damme and Pickford 1995; Stone 1998;
Leighton 1999). Another example comes from stickle-
backs, where it has been proposed that predation is im-
portant for the evolution of divergent body shapes (Walker
1997). Finally, Chown and Smith (1993) suggested that
size-selective predation by mice, in combination with size-
assortative mating, is causing sympatric speciation in sub-
Antarctic weevils, a scenario that corresponds well with

the models presented in “Evolutionary Branching in Sexual
Populations.”

In sum, there appear to exist many case studies sup-
porting a theory of sympatric speciation and radiation
driven by ecological interactions, as presented in this ar-
ticle. However, evidence for sympatric speciation from
field research and from experimental studies involving rel-
atively large organisms with long generation times such
as fish will almost always be circumstantial to some extent
(the example of Schliewen et al., unpublished manuscript,
mentioned above provides a convincing exception). A
promising alternative for empirically testing the theory of
evolutionary branching may be found in experimental
evolution of microorganisms. Recent work by Rainey and
Travisano (1998; Travisano and Rainey 2000, in this issue)
shows that sympatric divergence can be induced in bacteria
by placing them in a novel, heterogeneous environment.
It would appear that such approaches could be developed
into direct tests of evolutionary branching by experimen-
tally generating the ecological conditions and interactions
predicted by the theory to induce adaptive speciation. Such
experiments could greatly advance our knowledge about
one of the central problems in biology: understanding the
processes that lead to the origin of new species.
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APPENDIX A

Description of the Individual-Based Models

In this appendix, we summarize the algorithmic proce-
dures underlying the simulation results presented in this
article. For the individual-based asexual simulations, we
follow the polymorphic stochastic model developed in
Dieckmann (1994) and employed in Dieckmann et al.
(1995) and Dieckmann and Doebeli (1999). In this model,
individuals in an ecological community can belong to dif-
ferent species and can possess distinct phenotypes. At any
given time, each individual can reproduce or die according
to stochastic rates that can depend on the abundance and
phenotypic composition of all species in the community.
When an individual gives birth, its offspring will either
inherit the parent’s phenotype or undergo a mutation that
results in a random displacement between offspring and
parent phenotype.

For the evolutionary models of symmetric and asym-
metric intraspecific competition (“Evolutionary Branching
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in Models for Symmetric and Asymmetric Competition”),
the community comprises a single species. The distribution
of phenotypes x at time t is described by n(x, t). From
this, the phenotypic frequency distribution p(x, t), used
in equations (15) and (16), is obtained as p(x, t) p

. The stochastic per capita rates for birth′ ′n(x, t)/ n(x , t)dx∫
and death of an individual with phenotype x at time t are
then given by

b(x, n) p r,

1 ′ ′ ′d(x, n) p r a(x 2 x )n(x , t)dx (A1)EK(x)

N (x, t)effp r .
K(x)

Mutations in offspring phenotypes occur with probability
m. For a parent phenotype x, mutated offspring phenotypes
are chosen according to a Gaussian distribution N(x, jM)
with mean x and variance .2jM

For the coevolutionary models of interspecific mutu-
alisms (“Evolutionary Branching in Coevolutionary Mod-
els for Mutualisms”), the stochastic per capita birth and
death rates in the two mutualistic species are set to

b (x , n , n ) p r 1 1 a1 1 1 2 1 12[
′ ′a(x 2 x ) n (x )dx∫1 2 1 1 1

#E ′ ′ ′a(x 2 x )n (x )dx∫ 1 2 1 1 1

# n (x )dx , (A2)2 2 2]
1 ′ ′d (x , n , n ) p r n (x )dx ,1 1 1 2 1 E 1 1 1K (x )1 1

and to

b (x , n , n ) p r 1 1 a2 2 1 2 2 21[
′ ′a(x 2 x ) n (x )dx∫2 1 2 2 2

#E ′ ′ ′a(x 2 x )n (x )dx∫ 2 1 2 2 2

# n (x )dx (A3)1 1 1]
1 ′ ′d (x , n , n ) p r n (x )dx .2 2 1 2 2 E 2 2 2K (x )2 2

As for the single-species models, mutation probabilities
for two-species models are determined by m1 and m2, and
mutation distributions around parent phenotypes are
given by and .N(x , j ) N(x , j )1 M 2 M1 2

For the coevolutionary predator-prey models (“Evolu-
tionary Branching in Coevolutionary Predator-Prey Mod-
els”), per capita birth and death rates for the prey are

b (x , n , n ) p r,1 1 1 2

1
d (x , n , n ) p r1 1 1 2 [K(x )1

′ ′# n (x )dx (A4)E 1 1 1

1 a(x 2 x )n (x )dx ,E 1 2 2 2 2]
and for the predator

b (x , n , n ) p c a ( x 2 x )n (x )dx ,2 2 1 2 E 1 2 1 1 1

d (x , n , n ) p d. (A5)2 2 1 2

For the individual-based sexual simulations, we gen-
eralize the genetic model introduced by Dieckmann and
Doebeli (1999) to coevolutionary dynamics. In this ex-
tended model, individuals in an ecological community can
belong to different species and can possess distinct gen-
otypes. The stochastic per capita rates for birth and death
are affected by the abundance and phenotypic composition
of all species in the community in the same way as in the
asexual models.

However, in the sexual models, phenotypic diversity is
no longer only generated by mutations but now also arises
from the recombination of genotypes. Each individual car-
ries two diploid sets of diallelic loci (with alleles plus and
minus), one set determining the ecological phenotype, the
other set affecting mate choice. Loci have equivalent and
additive phenotypic effects and recombine freely. Under
these assumptions, five diploid loci, for example, can code
for 11 equidistant phenotypic values. The ecological char-
acter is chosen to range from 21 to 11 for the predator-
prey system and from 22 to 12 for the system of mu-
tualists. The mating character always assumes values
between 21 and 11 and is given by the difference between
the number of plus and minus alleles at the mating loci
divided by the total number of mating alleles.

An individual with ecological character x and mating
character m reproduces by chosing a partner with ecolog-
ical character depending on the difference . The′ ′x x 2 x
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probability distribution for this choice is depicted in figure
5. For , mating is assortative with mating probabil-m 1 0
ities following a Gaussian function withN(x, j )mate

. For , mating is random. For2j p 1/20m m p 0 m !mate

, mating is disassortative with mating probabilities fol-0
lowing a Gaussian function with1 2 N(x, j ) j pmate mate

. In order to avoid a bias against marginal phenotypes21/m
in the population, mating probabilities are normalized, so
that their sum over all potential partners is 1 for all eco-
logical phenotypes. Upon reproduction, one offspring al-
lele at each diploid locus is chosen randomly from the two
alleles at the corresponding homologous locus of the first
parent and the other allele from those of the second parent.
With a small probability ( ), a mutation occursm p 0.001
in the inherited alleles and reverses their value.

APPENDIX B

Coevolutionary Adaptive Dynamics of
Two Traits in Two Species

We briefly review some properties of the dynamical sys-
tems describing the coevolution of two quantitative traits
in two species. Let x1 and x2 denote the current resident
values of the two traits in species 1 and 2, respectively,
and let y1 and y2 denote trait values of rare mutants ap-
pearing in the populations. Then the fate of these mutants
is determined by the invasion fitness functions f1(y1, x1,
x2) and f2(y2, x1, x2). The quantities that determine the
direction of gradual evolutionary change are the selection
gradients

­f (y , x , x )1 1 1 2g (x , x ) p ,1 1 2 F­y y px1 1 1

­f (y , x , x )2 2 1 2g (x , x ) p . (B1)2 1 2 F­y y px2 2 2

More precisely, if mutations are sufficiently rare and suf-
ficiently small the adaptive dynamics of the trait vector

x 1( )x2

is given by

d x m (x )g (x , x )1 1 1 1 1 2p . (B2)( ) [ ]m (x )g (x , x )xdt 2 2 2 1 22

Here m1(x1) and m2(x2) are quantities describing how the

mutational process that governs evolution in the two traits
(and affects the rates and the distributions at which new
mutations occur) influences the speed of evolution.

Expression (B2) has been derived in Dieckmann (1994)
and in Dieckmann and Law (1996), to which we refer for
a much more detailed and general discussion of this so-
called canonical equation of adaptive dynamics (see also
Leimar 2000). The singular points of the evolutionary dy-
namics given by (B2) are those points in trait space∗ ∗(x , x )1 2

for which both selection gradients vanish, ∗ ∗g (x , x ) p1 1 2

. Whether a singular point is an evolution-∗ ∗g (x , x ) p 02 1 2

ary attractor or not can be seen from the Jacobian
of the dynamical system (B2) at the singular point∗ ∗J(x , x )1 2

(see Marrow et al. 1996; Leimar 2000):∗ ∗(x , x )1 2

­g ­g1 1∗ ∗ ∗ ∗ ∗ ∗ m (x ) (x , x ) m (x ) (x , x )1 1 1 2 1 1 1 2
­x ­x1 2∗ ∗J(x , x ) p .1 2 ­g ­g2 2 ∗ ∗ ∗ ∗ ∗ ∗m (x ) (x , x ) m (x ) (x , x )2 2 1 2 2 2 1 2
­x ­x 1 2

(B3)

The singular point is an evolutionary attractor∗ ∗(x , x )1 2

if and only if the Jacobian has eigenvalues with∗ ∗J(x , x )1 2

negative real parts. Note that the stability of a singular
point depends on the constants and , char-∗ ∗m (x ) m (x )1 1 2 2

acterizing the mutation process: for given selection gra-
dients and a singular point may be ang (x , x ) g (x , x )1 1 2 2 1 2

attractor for some values of and but not∗ ∗m (x ) m (x )1 1 2 2

for others (Marrow et al. 1996; see also Abrams and Mat-
suda 1996).

Just as in one-dimensional (i.e., in single-trait, single-
species) adaptive dynamics, a singular point that is an
attractor for system (B2) may not represent the endpoint
of the evolutionary process if one or both species find
themselves at a fitness minimum at the singular point. The
conditions for fitness minima at the singular point are
simply that the invasion fitness has a minimum with re-
spect to the mutant trait values,

2­ f1 ∗ ∗(y , x , x ) 1 0, (B4)1 1 22 F
∗­y y px1 1 1

2­ f2 ∗ ∗(y , x , x ) 1 0. (B5)2 1 22 F
∗­y y px2 2 2

Note that
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­f1∗ ∗ ∗ ∗g (x , x ) p (y , x , x ) p 0,1 1 2 1 1 2 F
∗­y y px1 1 1

­f2∗ ∗ ∗ ∗g (x , x ) p (y , x , x ) p 0,2 1 2 2 1 2 F
∗­y y px2 2 2

for any singular point. In one-dimensional adaptive dy-
namics, a fitness minimum at an attracting singular point
is sufficient for evolutionary branching (Geritz et al. 1998).
In higher-dimensional adaptive dynamics, this need not
be true anymore. For example, in adaptive dynamics of
two correlated traits in a single species, convergent stable
fitness minima alone need not generate evolutionary
branching (U. Dieckmann, personal observation). How-
ever, in all the cases considered in this article, it can be
shown that, if one (or both) of the species are at a fitness
minimum at an attracting singular point, then evolution-
ary branching occurs in one (or both) species. This sim-
plification relative to two-dimensional adaptive dynamics
in a single species occurs because, in our coevolutionary
models, the two traits are necessarily uncorrelated since
they belong to differenct species. A timescale separation
argument then shows that, at the singular point, each spe-
cies’ resident phenotype can be considered as a parameter
for the evolutionary dynamics of the other species, which
in effect reduces the two-dimensional problem at the sin-
gular point to the one-dimensional case, where conver-
gence to fitness minima is sufficient for branching.

To understand evolutionary branching in the adaptive
dynamics of mutualism defined by system (17) in “Evo-
lutionary Branching in Coevolutionary Models for Mutu-
alism,” we first have to find trait combinations for∗ ∗(x , x )1 2

which the selection gradients vanish and then check the
conditions for stability from (B3) and for branching from
(B4). The selection gradients are

­f (y , x , x )1 1 1 2g (x , x ) p1 1 2 F­y y px1 1 1

∗ ′ ′r N K (x ) r a (x 2 x )1 1 1 1 1 1 2 ∗p 1 a N ,12 22K (x ) a(x 2 x )1 1 1 2

­f (y , x , x )2 2 1 2g (x , x ) p (B6)2 1 2 F­y y px2 2 2

∗ ′ ′r N K (x ) r a (x 2 x )2 2 2 2 2 2 1 ∗p 1 a N ,21 12K (x ) a(x 2 x )2 1 2 1

where and are the eco-∗ ∗ ∗ ∗N p N (x , x ) N p N (x , x )1 1 1 2 2 2 1 2

logical equilibrium points of system (17).

We briefly discuss the symmetric case, in which the only
ecological difference between the two mutualistic species
is the position of the maxima of the resource distribution.
In this case, there is always a singular point ( ) that∗ ∗x , x1 2

lies symmetrically around the midpoint between the two
resource maxima x10 and x20 and satisfies ∗ ∗x ! x ! x !10 1 2

. This symmetric singular point may or may not be anx 20

evolutionary attractor. For example, the symmetric sin-
gular point may lose its stability through a pitchfork bi-
furcation, during which two new asymmetric and con-
vergent stable singular points are borne. Numerical
simulations indicate that, if the symmetric singular point
is the only singularity and if the mutational functions
m1(x1) and m2(x2) are the same, then this point is always
an evolutionary attractor. To see whether such a singular
point is an evolutionary branching point, we calculate the
second derivatives of the invasion fitness functions, equa-
tions (19) and (20), at the singular point:

2 ∗ ∗ ∗ ′′ ∗­ f (y , x , x ) r N K (x )1 1 1 2 1 1 1 1p
2 F 2 ∗

∗­y K (x )y px1 1 11 1

∗ ′2 ∗2r N K (x )1 1 1 12
3 ∗K (x )1 1

′′ ∗ ∗r a (x 2 x )1 1 2 ∗1 a N ,12 2∗ ∗a(x 2 x )1 2

2 ∗ ∗ ∗ ′′ ∗­ f (y , x , x ) r N K (x )2 2 1 2 2 2 2 2p (B7)
2 F 2 ∗

∗­y K (x )y px2 2 22 2

∗ ′2 ∗2r N K (x )2 2 2 22
3 ∗K (x )2 2

′′ ∗ ∗r a (x 2 x )2 2 1 ∗1 a N .21 1∗ ∗a(x 2 x )1 2

Two factors tend to make these expressions positive: first,
and must lie far enough away from their respective∗ ∗x x1 2

resource optimum, that is, beyond the inflection points of
the corresponding resource distributions, so that

and , and, second, and should′′ ∗ ′′ ∗ ∗ ∗K (x ) 1 0 K (x ) 1 0 x x1 1 2 2 1 2

be far enough apart from each other, so that the distance
lies beyond the inflection point of the function∗ ∗x 2 x1 2

a, so that . These conditions can be met′′ ∗ ∗a (x 2 x ) 1 01 2

by increasing the distance between the maxima of the re-
source distributions, which is equivalent to decreasing the
widths of the resource distributions and the width of the
mutualistic interaction function a. It is easy to do this in
such a way that the symmetric singular point does not
lose its stability. Consequently, it is easy to allow for si-
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multaneous evolutionary branching in this system (see fig.
2A).

Finally, we discuss the adaptive dynamics in the pred-
ator-prey system (26). It follows from the expression for
the selection gradient in the predator, equation (32), that
a singular point must satisfy . We∗ ∗ ′ ∗ ∗(x , x ) a (x 2 x ) p 01 2 1 2

therefore must have ; that is, . It then∗ ∗ ∗ ∗x 2 x p 0 x p x1 2 1 2

follows from the selection gradient in the prey that
for the singular prey character , hence′ ∗ ∗K (x ) p 0 x1 1

, so that the singular point occurs at the maximum∗x p x1 0

of the resource distribution. Straightforward calculations
reveal that the Jacobian matrix at the singular point is
given by

∗ ′′ 2 ′′ ∗ ′′ ∗( )m r N K (x )/K (x ) 2 a (0)N m ra (0)N1 1 0 0 2 1 2 
J(x , x ) p ,0 0  

′′ ∗ ′′ ∗2m ca (0)N m ca (0)N 2 1 2 1

(B8)

where and are the ecological equilibrium sizes of∗ ∗N N1 2

populations monomorphic for the singular character val-
ues , and where and(x , x ) m p m (x ) m p m (x )0 0 1 1 0 2 2 0

are the mutational parameters at the singular point. Using
the functional form for the predation efficiency a, equa-
tion (25), and for the resource distribution K, equation
(9), and calculating the equilibrium populations sizes

and using in equation (26), one∗ ∗N N x p x p x1 2 1 2 0

obtains

m r ca K 2 d d m r(ca K 2 d)1 0 0 1 0 0 # 2 2( )2 2 2ca K j j ca K j0 0 a K 0 0 aJ(x , x ) p .0 0 m d m d2 2 2
2 2j j a a

(B9)

Both eigenvalues of the Jacobian matrix J(x0, x0) have neg-
ative real parts if the determinant of J(x0, x0) is positive
and its trace is negative. The determinant of J(x0, x0) is
equal to and hence is always pos-2 2 2(d m m r)/(ca K j j )1 2 0 0 a K

itive. The trace is the sum of the diagonal elements and
may be positive or negative. In this situation, the diagonal
elements of the Jacobian matrix are, up to the constants
m1 and m2, respectively, equal to the second derivatives of
the invasion fitness functions with respect to the mutant
traits, evaluated at the singular point:

2­ f ­g1 1(y , x , x ) p (x , x )1 0 0 0 02 F­y ­xy px1 11 0

r ca K 2 d d0 0p 2 , (B10)
2 2( )ca K j j0 0 a K

2­ f ­g m d2 2 2(y , x , x ) p (x , x ) p 2 . (B11)2 0 0 0 02 F 2­y ­y jy px2 2 a2 0

In particular, the singular point is never a branching point
for the predator because is always2 2(­ f /­y )(y , x , x )F2 2 2 0 0 y px2 0

negative. Thus, to obtain attraction to the singular point
and subsequent evolutionary branching, the upper diag-
onal element of the Jacobian matrix J(x0, x0) must be pos-
itive, which would make the singular point a fitness min-
imum for the prey, whereas adding the negative lower
diagonal element must give a negative number, ensuring
that the singular point is an attractor. These conditions
are easy to meet. For example, setting andm p m1 2

, it follows that the trace of the Jacobian isr p d p 1
negative, and provided that , the upper diagonalca K 1 d0 0

element will be positive as soon as is small enough.ja

Once the prey has branched, selection pressures for the
predator change. Due to the symmetry in the system, the
two prey branches are at equal distances d on opposite
sides of the singular predator character x0. It follows that,
at time t, the growth rate of a rare mutant predator with
character value y2 is

N (t)1f (y , d, x , t) p 2d 1 ca(x 1 d 2 y )2 2 0 0 2 2

N (t)11 ca(x 2 d 2 y ) , (B12)0 2 2

where x0 is the singular predator trait value and N1(t) is
the prey population size at time t. Taking the second de-
rivative with respect to mutant trait value y2 and evaluating
at the resident trait value x0 reveals whether the predator
is located at a fitness minimum after the prey has branched:

2­ f (y , d, x , t) N (t)2 2 0 1′′p ca (d)
2 F­y 2y px2 2 0

N (t)1′′1 ca (2d) (B13)
2

′′p ca (d)N (t),1

since a is symmetric about the origin. This expression is
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positive for all t, and hence the singular point x0 is a fitness
minimum for the predator if d is large enough, that is, if
the two prey branches have moved far enough away from
x0. Once this has happened, the branching in the prey
induces secondary branching in the predator (fig. 3B).

That a difference in the mutational parameters m1 and
m2 can greatly affect the adaptive dynamics is shown in
figure 3C. With m2 decreased by a factor of 5, the lower
diagonal element of the Jacobian matrix J(x0, x0) given in
(B8) is not negative enough anymore to outweigh the
positive upper diagonal element describing the fitness min-
imum in the prey. Therefore, the trace of the Jacobian
becomes positive, and hence the branching point of figure
3B is no longer an attractor for the evolutionary dynamics.
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