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Abstract

Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory,
contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote
ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness.
As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in
response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates,
MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes
might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a
limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and
benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics.
Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a
correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and
composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of
parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC
alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and
pelagic habitats of lakes.
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Introduction

Competition and predation are central mechanisms of ecological

speciation [1,2], but the role of parasitism in the evolution of host

reproductive incompatability is less clear [3–5]. Parasites readily

shape, by natural selection, the phenotype and genotype distributions

of their hosts [6,7], and can promote host genetic diversity via

balancing [8] and disruptive selection [9]. Theory suggests that

speciation is more likely when functional traits [10], such as those

underlying ecological performance, are under both divergent natural

selection and sexual selection [11]. Such traits have been dubbed

‘magic traits’ [11], and are common elements of sympatric speciation

models [5,12]. Parasites are known to cause strong selection on

several host traits associated with mate choice [4,6,13], such as body

size [14] and odor [15]. However, from an empirical perspective, the

role of parasites in host speciation is highly understudied [4], and so

the consequences of parasite-mediated selection for host diversifica-

tion remain uncertain [5,12].

In theory, parasites can cause divergent selection on their hosts by

affecting tradeoffs between host life history and immune defense

[16–18]. The vertebrate immune system consists of two components,

namely the innate immune system, which includes several non-

specific mechanisms to protect hosts from infection [19], and the

adaptive immune system, which targets specific pathogens and is

driven by the extremely polymorphic genes of the Major Histocom-

patibility Complex (MHC) [20]. Because immune systems are costly

to maintain [21], the optimal allocation of energy to immune defense

is strongly dependent on environmental conditions and species

interactions [17,18,22]. In aquatic environments, parasite risk varies

both at the regional scale, for example between lake and river

environments [22], and at the local scale, for example between

adjacent foraging habitats in lakes [23–25]. As a result, spatial

variation in the nature of antagonistic coevolutionary interactions

between hosts and parasites [26] could promote divergence in hosts’

strategies of energy allocation toward adaptive and innate immune

defenses [16] and lead to divergence in hosts’ MHC genotypes [12].

Divergence in immune system genes that underly proximate mating

cues, such as odor [27], could ultimately influence reproductive

isolation between sympatric species [28].

Parasitism can be a persistent selective force in freshwater fish

populations [24] and may drive adaptive divergence between

sympatric fish species [12,14,28]. Sticklebacks, for example, are

infected by a diverse range of parasites, including species from the

taxon Mollusca, Crustacea, Nematoda, Cestoda, Trematoda and others
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[25], and their parasite-load can reflect sex- and individual-based

habitat specialization [23,25,29]. Parasite-mediated selection has

been implicated in the divergence of MHC genes between river

and lake stickleback populations in Northern Germany [30] and is

thought to influence sexual selection [15,31] and play a role in

ecological speciation [12]. In fact, MHC genotype has been

proposed as a magic-trait in stickleback [12], partly because

immune system genes can play a dual role in both parasite

resistance and mate choice [15]. In general, however, little is

known about the strength and form of natural selection (e.g.

divergent, directional, or balancing) that parasites exert on host

populations.

We use threespine stickleback to investigate the potential

importance of parasites and immune systems for ecological

speciation [1,12]. In several British Columbia lakes, threespine

stickleback have undergone a recent parallel diversification,

resulting in a limnetic species that specializes on plankton in open

water habitats and a benthic species that specializes on macro-

invertebrates in littoral habitats [32,33]. Most speciation research

on stickleback has focussed on the role of competition and

predation in generating divergent selection regimes within lakes

[1]. More recently, researchers have found that sympatric

stickleback species have different parasite communities [25], but

the importance of parasitism for ecological speciation in

stickleback remains unclear [25]. Limnetics are more frequently

parasitized by species using planktonic crustacea as intermediate

hosts (e.g. Schistocephalus solidus), whereas, benthics are more

commonly parasitized by species using snails as intermediate hosts

[25]. A recent study speculated that contrasting parasite-mediated

selection regimes in pelagic and littoral habitats of lakes could

cause divergence in the MHC alleles between limnetic and benthic

sticklebacks [12]. Here, we examine whether the proximate

foraging environment used by sticklebacks is predictive of their

MHC genotype, and test the hypothesis that benthic and limnetic

sticklebacks have divergent MHC genotypes. We use a simulation

model to examine how the strength of assortative mating, along

with parasite-mediated selection in pelagic and littoral habitats,

could affect the distribution of MHC alleles in sympatric

stickleback species.

Results

MHC allele number and composition
Overall, we found 56 unique alleles in our MHC analysis of 342

stickleback (Kennedyalleles = 14; Cranbyalleles = 30; Priestalleles = 50;

Paxtonalleles = 37). At the population level, we found that the

limnetics tended to have lower allelic richness than benthics in

both Paxton Lake and Priest Lake (Table 1, ARMHC ). The Cranby

population had an intermediate allelic richness in relation to

benthics and limnetics in Paxton Lake, but a lower richness in

relation to both species in Priest Lake (Table 1). The Kennedy

Lake population had the lowest allelic richness overall.

At the individual level, we found that limnetics had lower allelic

richness than benthics in both Paxton (t77 = 26.1, pv0.001) and

Priest Lake (t42 = 23.4, pv0.001, Table 1, Figure 1). Cranby

sticklebacks had an intermediate allelic richness in relation to

limnetics and benthics in Priest (Limnetics: t81 = 22.3, pv0.02,

Benthics: t34 = 2.2, pv0.04), but had a similar allelic richness as

Paxton benthics (Limnetics: t61 = 26.9, pv0.001, Benthics:

t81 = 0.3, pv0.77). Kennedy Lake sticklebacks, consistent with

their pelagic phenotype and diet, had the lowest allelic richness per

individual (all pair-wise t-tests: pv0.001). Overall, these results

suggest there has been parallel divergence in the number of MHC

alleles per individual between stickleback populations foraging in

littoral and pelagic habitats (Figure 1).

The log-linear analysis strongly supported six of our seven

hypotheses about how allele number and frequency differed

among populations, and between ecotypes within lakes (Tables 2

and 3). We classified the model results into five groups, A (high

AIC) through E (low AIC), which were ordered by their increasing

support from the data. The poor support for A-models, relative to

all other models, suggests there has been significant divergence in

MHC allele frequencies that cannot be accounted for by

differences in allele number among populations (Table 2). The

greater support for the C-models over the B-Models, indicates that

within sympatric lakes limnetics and benthics differ in their allele

frequencies. However, the greater support for D- and E-models

indicates that stickleback populations in different lakes have

contrasting allele frequencies, suggesting that the divergence in

allelic composition (i.e. the identities of the alleles) has not

occurred in parallel in both lakes with species pairs. The best

model (E-3), considers all the two-way interactions between

‘Allele’, ‘Lake’, and ‘Ecotype’ (Table 2). Overall, these results

suggest that the number of MHC alleles has diverged in parallel

between benthics and limnetics (Figure 1), but the particular alleles

involved in the divergence has differed between lakes with species

pairs (Table 2, Figure 2).

Microsatellite analysis
Genetic diversity at eight microsatellite loci was analyzed to

differentiate selective and demographic influences on the MHC class

IIB alleles in the studied stickleback populations. The mean observed

Table 1. Allelic richness of MHC and microsatellites.

Population Nfish MHCmean MHCmed MHCpop ARMHC Hexp Hobs Rs mSatsmean

Kennedy pelagic 54 2.2 2 14 0.4 – – – –

Cranby intermediate 96 4.3 4 27 1.1 0.62 0.46 9.6 1.54

Paxton benthic 48 4.4 5 36 1.2 0.60 0.48 8.0 1.50

Paxton limnetic 46 2.9 4 24 0.9 0.67 0.55 9.8 1.54

Priest benthic 48 5.0 4.5 37 1.5 0.76 0.66 11.6 1.67

Priest limnetic 48 3.9 3 24 1.4 0.69 0.56 11.9 1.60

Summary of the mean (MHCmean) and median (MHCmed ) number of MHC class IIB alleles per individual, and the number of different alleles found in the sampled
population (MHCpop). The number of alleles detected per sampled stickleback (ARMHC ) is a standardized index of population-level allelic richness, and was calculated via
bootstrapping with a constant sampling effort (Nfish = 20). Limnetics and benthics did not differ in the levels of heterozygosity (Hexp and Hobs), or in the mean number of
alleles per microsatellite locus, calculated at both the population level (Rs) and at the individual level (mSatsmean).
doi:10.1371/journal.pone.0010948.t001

MHC Divergence in Stickleback
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heterozygosities (Hobs) were variable among populations, and showed

a slight excess of homozygosity relative to Hardy Weinberg

expectations (Table 1). Limnetic and benthic populations had similar

levels of allelic richness (Rs) in the same lake (Table 1), and neither

locus-specific Rs values (two-tailed permutation test, p = 0.74) nor

population-specific Rs values (Friedman-test, p = 0.20) were signifi-

Figure 1. Frequency distributions of the number of MHC-class IIB alleles per individual. The top panels show the distribution of littoral
and intermediate eco-types, and the bottom panels show the distribution of pelagic eco-types. Red points and bars indicate the mean population
allelic richness (+ SD).
doi:10.1371/journal.pone.0010948.g001

Table 2. Summary of log-linear models.

Model ID Allele Lake Ecotype Allele* lake Allele*ecotype Lake*ecotype Allele*lake*ecotype n params AIC dAIC Weight

A-1 x 3 7488 1784 0

A-2 x x 4 7481 1777 0

A-3 x 3 7479 1775 0

A-4 x x x 5 7456 1752 0

B-1 x 56 6293 589 0

B-2 x x 58 6273 569 0

B-3 x x 58 6263 559 0

B-4 x x x x 60 6237 533 0

C-1 x x x x 169 5986 282 0

C-2 x x x 168 5985 281 0

C-3 x x x x x 170 5959 255 0

D-1 x x x 168 5757 53 0

D-2 x x x x 169 5749 45 0

E-1 x x x x x 224 5726 22 0

E-2 x x x x x 170 5719 15 0

E-3 x x x x x x 225 5704 0 1

E-4 x x x x x x x 280 5748 44 0

We compared the fit of seventeen possible models for our data, considering all combinations of single factor effects with two- and three-way interactions. For each
model, an x denotes that a given factor or interaction was included. The number of parameters for each model is given. In some cases, certain parameters were
redundant, and are not included in this count. AIC scores, delta-AIC values, and Akaike weights are given in the last three columns. A model including all two-way
interactions but no three-way interaction term is strongly favored by the data.
doi:10.1371/journal.pone.0010948.t002
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cantly different between limnetics and benthics within a lake. At the

individual level, the mean number of microsattelite alleles per locus

(mSatsmean) was not different between limnetics and benthics in both

Priest (p = 0.16) and Paxton Lake (p = 0.28) (Table 1). Similarly,

expected heterozygosity (Hexp) was similar among the studied

populations, and was not significantly different between limnetics

and benthics (pw0.05). Hence, our results suggest that the greater

number of MHC alleles in benthics compared to limnetics is not a

result of differences in effective population size or neutral processes

such as drift.

MHC simulation model results
The divergence in MHC allele frequencies that we observed

between limnetics and benthics (Figure 2) is consistent with the

patterns seen from our simulations when there is introgression

between species foraging in contrasting selective environments

(Figure 3, 4). When specific MHC alleles confer fitness advantages

in either the benthic or pelagic foraging habitat, we observed

divergence in the composition of MHC alleles between limnetic

and benthic stickleback that is driven by frequency dependent

selection (Figure 3). The frequency of alleles that are shared by

both the benthic and limnetic species increases with higher levels

of hybridization (a increases from 0–0.2; Figure 3). Hence, alleles

could persist in the limnetic species, for example, that only confer

benthics with resistance to benthic parasites purely as a

consequence of introgression between the species. In contrast,

increasing the intensity of selection against maladapted alleles in

one habitat will reduce the amount of allele sharing between

species (Figure 4). Overall, our simulations show that the rate of

hybridization between species and the strength of selection

between habitats will jointly determine the amount of overlap in

the frequency distributions of MHC alleles between benthic and

limnetic stickleback.

Discussion

We found divergence in MHC genes between closely related

stickleback species and populations that forage in contrasting

habitats (Figure 1). The parallel divergence in the number of

MHC class II alleles per individual between limnetic and benthic

species in two lakes with species pairs is not observed in the allelic

richness of microsatellites, and is unlikely to have occurred by drift.

We also observed a similar pattern of divergence in the individual

MHC allelic richness between two stickleback populations with a

littoral and pelagic phenotype. Overall, these results suggest a

correlation between MHC genotype and foraging habitat,

whereby stickleback have lower individual MHC allelic richness

in pelagic compared to littoral foraging habitats. MHC divergence

between limnetics and benthics is a key prediction from a recent

model of MHC-based pleiotropic speciation in stickleback [12],

and likely results from contrasting parasite communities in pelagic

and littoral habitats [25].

What explains variation in allelic richness of MHC genes
in stickleback?

Local scale heterogeneity in the distribution of parasite

communities [24,25] could help explain the high levels of MHC

diversity in natural populations [8]. The spatial scale of parasite

heterogeneity, along with the frequency of host-parasite interac-

tions, will determine whether parasites cause balancing or

divergent selection on their hosts [17]. Our results suggest that

genetic diversity at MHC loci in freshwater fish could be promoted

by the contrasting parasite communities in benthic and pelagic

habitats of lakes [25]. In natural systems, an individual’s immune

system is persistently challenged by multiple parasites that vary

widely in their virulence [17]. Host-parasite co-evolution occurs

independently between each species of parasite and host, meaning

that parasite communities might maintain a constant diversity of

challenges to a host’s immune system over time without causing

dramatic temporal fluctuations in gene frequencies [17]. If

contrasting co-evolutionary dynamics are occuring in adjacent

habitats, then rare MHC alleles might be maintained in the

population if they are selectively neutral in some environments,

but beneficial in others. Indeed, our simulations predict that the

extent of allele sharing between sympatric host populations should

depend strongly on the contrasting selection pressures that are

mediated by parasites in adjacent foraging environments (Figure 3).

An important next step, is to experimentally confirm that

contrasting parasite communities in lakes can cause disruptive

selection on stickleback populations, as has been shown in other

host-parasite systems [9].

Our results suggest that the optimal number of MHC alleles per

individual depends on habitat specialization by stickleback

(Figure 1). This conclusion is supported by a similar pattern of

divergence in the individual MHC allelic richness between lake

and river stickleback populations in Northern Germany [15].

River stickleback, compared to lake stickleback, have a lower

number of MHC alleles per individual fish [15], have a lower

parasite load [22], and are less resistant to lake parasites [34]. The

associations between host genotype and parasite resistance are

currently unknown in the benthic-limnetic system, and so the

underlying mechanism of MHC divergence is still uncertain.

Nevertheless, our results for stickleback, along with those for

cichlids [28], provide good evidence for MHC divergence between

closely related species that live in the same lake but exploit

different foraging habitats [28].

Table 3. Conclusions from the log-linear analysis in Table 2.

Model Effect Hypothesis being tested by the model formulation Supported?

Lake Does the average number of alleles differ among lakes? Yes

Ecotype Does the average number of alleles differ among ecotypes? Yes

Allele Do alleles have different frequencies? Yes

Allele * lake Do lakes have different allele frequencies? Yes

Allele * ecotype Do ecotypes have different allele frequencies? Yes

Lake * ecotype Does the average number of alleles between ecotypes differ among lakes? Yes

Allele * lake * ecotype Does each ecotype in each lake have different allele frequencies? No

doi:10.1371/journal.pone.0010948.t003

MHC Divergence in Stickleback
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How might parasites cause divergence in the number of
MHC alleles?

Parasites can drive host evolution in several ways [35], but here

we consider two possibilities for how contrasting parasite

communities (Figure 5, Panel A) might generate divergent

selection on hosts culminating in evolution in the number of

alleles per individual (Figure 5, Panel D).

The first possibility is that hosts may experience different levels of

risk associated with detecting parasite infections in environments with

contrasting parasite communities (Figure 5, Panel B, dotted line

shows the declining risk of not detecting parasites). In this case, the

adaptive immune system’s ability to detect parasites tends to increase

with an increasing number of MHC alleles [36] (Figure 5B).

Prevailing theory suggests that an intermediate number of MHC

alleles is optimal, because too few alleles reduces the detection rate of

antigens by T-cells, and too many alleles increases the likelihood of T-

cell depletion [36,37]. T-cells undergo a process called negative

selection during their maturation in the thymus, which reduces the

number of self-reactive MHC molecules and the likelihood of

autoimmune diseases [36]. However, negative selection can com-

promise immune responses when the number or diversity of T-cells is

severely reduced (i.e. T-cell depletion). Natural selection on the

stringency of this negative selection process is thought to explain most

of the natural variation in the allelic repertoire of individuals among

Figure 2. Frequency distributions of MHC-class IIB alleles in each population. Panel (A) is the distribution for all the alleles identified in the
study. Panel (B) is the distribution for the pelagic phenotype in Kennedy Lake. Panel (C) is the distribution for the intermediate phenotype in Cranby
Lake. Panels (D) and (E) are the distributions for each stickleback species in the two lakes with species pairs.
doi:10.1371/journal.pone.0010948.g002

MHC Divergence in Stickleback
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systems [22,37], but it is largely unknown how the risk of T-cell

depletion might differ between environments [37]. In fact, [38]

suggests that the risk of T-cell depletion, illustrated as a linear function

in Figure 5 (solid line), may only be expressed at very high levels of

allelic diversity that is not observed in nature. If so, T-cell depletion

would not be a likely cause for the low levels of individual allelic

richness in limnetics, and would probably not cause the observed

divergence in allele number between sympatric species. Nevertheless,

assuming the risks of T-cell depletion are similar between

environments and positively related with MHC allelic richness

(Figure 5B), divergent selection could arise if hosts experience

different levels of parasite risk in adjacent foraging habitats (Figure 5B,

compare two dotted lines). A limitation of this theory, however, is that

is does not consider the relative costs of the innate and adaptive

components of the immune system in different ecological contexts, so

it might inadequately explain allelic variation of MHC over a broad

range of natural environments [16,17].

A second possibility is that hosts adopt different allocation

strategies to immune defense in environments with contrasting

parasite communities [16–18]. In this case (Figure 5C), the

evolution of host specificity in immune defense (i.e. adaptive

immune system) occurs at the expense of allocation to a

generalist strategy (i.e. innate immune system) [18]. Investing

resources into the adaptive immune system is costly (Figure 5C,

Figure 3. Simulation output with varying levels of assortative mating. Bar heights are the mean allele counts averaged over 10
simulations, and error bars denote one standard deviation. Simulations were run for 1000 generations with 10,000 individuals in each
population. All alleles were initially present at equal frequencies. Selection strengths were s1~ 0:06,0:08,0:1,{0:075,{0:075,{0:075,{0:075,{0:075f g
and s2~ {0:075,{0:075,{0:075,0:1,0:09,0:08,0:07,0:06f g and recombination occurs freely between all loci.
doi:10.1371/journal.pone.0010948.g003

MHC Divergence in Stickleback
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solid line), but reduces the maintenance costs of the innate

system (Figure 5C, dotted line). Because the innate system

compensates for the adaptive system’s deficiencies in coping with

multiple virulent parasites, the benefits of an efficient innate

system are greatest in risky environments (e.g. Figure 5,

Environment B). In such environments, individuals with few

alleles will have a low fitness, either because they receive more

parasite infections or because they must up-regulate their innate

immune system. In comparison, in environments with few

virulent parasites (e.g. Figure 5, Environment A), hosts are better

off having fewer MHC alleles, and possibly multiple copies of

them [39], for targeting the few virulent parasites in the

environment.

We believe that our understanding about the role of parasitism

in host speciation will be improved by studying the mechanisms of

how parasites might cause divergent selection on host traits. In

stickleback, and other freshwater fish, more research is needed to

understand how the distribution of parasite communities in pelagic

and benthic environments can affect both the innate and adaptive

immune systems of hosts.

Figure 4. Simulation output with varying selection strengths. Bar heights are the mean allele counts averaged over 10 simulations,
and error bars denote one standard deviation. Simulations were run for 1000 generations with 10,000 individuals in each population.
All alleles were initially present at equal frequencies. a~0:1 in all plots and recombination occurred freely between all loci. Selection
strengths were, in the top plot: s1~f0:6,0:8,1,{0:75,{0:75,{0:75,{0:75,{0:75g and s2~f{0:75,{0:75,{0:75,1,0:9,0:8,0:7,0:6g, in the middle
plot: s1~f0:06,0:08,0:1,{0:75,{0:75,{0:75,{0:75,{0:75g and s2~f{0:75,{0:75,{0:75,0:1,0:09,0:08,0:07,0:06g, and in the bottom plot:
s1~f0:06,0:08,1,{0:075,{0:075,{0:075,{0:075,{0:075g and s2~f{0:075,{0:075,{0:075,1,0:9,0:8,0:7,0:6g.
doi:10.1371/journal.pone.0010948.g004

MHC Divergence in Stickleback
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Implications of MHC divergence for the magic-trait
model of ecological speciation

Functional traits under disruptive selection that also form the basis

of assortative mating have been dubbed ‘magic’ because of their

potential to accelerate speciation in sympatry [11,40]. In threespine

stickleback three ‘magic traits’ have been proposed, namely body size

at maturity [14], feeding behavior [41], and MHC genotype [12].

Body size is a good candidate for a magic trait in stickleback

[14], because it is commonly under divergent selection in nature

[1,42], and extensive mating trials, particularly between benthics

Figure 5. Two scenarios leading to divergent selection on MHC genotype. Panel (A) shows the contrasting virulence distribution of two parasite
communities, where the dotted line indicates that the average virulence of the community is similar in both environments. Panel (B) shows the tradeoff
between the ability of the immune system to detect parasites (dotted lines) and the risk of T-cell depletion (solid lines). Panel (C) shows the tradeoff
between allocating resources to the adaptive versus the innate immune system. Panel (D) illustrates the resulting population distribution of individual allele
number in the two environments (A or B) resulting from divergent selection mediated by either of the tradeoffs illustrated in Panel B and C.
doi:10.1371/journal.pone.0010948.g005

MHC Divergence in Stickleback
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and limnetics [43], show that body size strongly underlies

stickleback mate choice [44]. However, the source of divergent

natural selection on stickleback body size could result from

tradeoffs related to both feeding performance [41,45] and parasite

infection [14,46]. Stickleback body size and feeding behavior, for

example, are often correlated in stickleback populations [47], and

so assortative mating may appear to reflect recent feeding history

[41] even if body size is the proximate cue for mate choice [43].

Correlations between body size and MHC genotype (two putative

magic-traits) may also exist within stickleback populations [46],

which is intriguing because peptides originating from MHC

genes could also be associated with odors [27] that influence

mating decisions [31]. To date, MHC-based mate choice has not

been investigated for benthic and limnetic sticklebacks, and so

more experimental tests would be useful to disentangle the effects

of body size and MHC genotype on stickleback mating

preferences.

In summary, our results demonstrate that limnetics and benthics

have divergent MHC genotypes in a pattern consistent with the

divergence also observed between populations along the pelagic-

littoral gradient (Figures 1). It is still an open question whether

these MHC differences between species are a by-product of

habitat specialization, and whether they underly pleiotropic

speciation in stickleback [12]. Future studies should experimentally

test for parasite-mediated disruptive selection on MHC genotypes

(Figure 5), and examine MHC based mate choice between species

and populations with contrasting parasite exposure.

Materials and Methods

Study sites and collections
We sampled stickleback from four lakes: Cranby Lake (CRA),

Paxton Lake (PAX), Priest Lake (PRI), and Kennedy Lake (KEN).

Located on Texada Island, Paxton (Depthmax = 13, Area = 17 ha)

and Priest Lake (Depthmax = 17.3, Area = 44.3 ha) have sympatric

species of limnetic and benthic sticklebacks. The nearby Cranby

Lake has a similar morphometry (Depthmax = 12.3, Area =

44.6 ha) to Paxton and Priest Lakes, but has an allopatric

stickleback population that is intermediate in morphology and diet

between limnetics and benthics [48]. In contrast to these systems,

Kennedy Lake is a large deep lake on the West Coast of

Vancouver Island (Depthmax = 145, Area = 6475 ha), and has a

population of sticklebacks with a pelagic phenotype. Overall, our

study lakes include two lakes with a benthic and limnetic species

pair (Paxton and Priest), one population with an intermediate

phenotype (Cranby), and one population with a pelagic phenotype

from a large and deep lake (Kennedy). We set minnow traps

overnight to collect sticklebacks from the littoral habitats during

the breeding season (May–July). Limnetic and benthic species

were differentiated based on phenotypic differences in body amour

and shape. All fish were immediately frozen after collection, and

subsequently stored at 280uC until analysis.

MHC analysis
The exact genomic structure of the stickleback MHC is still

unknown, but partial regions of MHC class I and class II have

been described previously [49,50]. In this study, we focused on

exon 2 which encodes the peptide-binding region (B1 domain) and

presents the most polymorphic part of the class IIB genes. We used

capillary electrophoresis single-strand conformation polymor-

phism (CE-SSCP) to screen and identify the allelic variants of

the MHC class IIB genes in a larger number of samples. This

method allows for high throughput, high sensitivity and good

reproducibility [51,52]. We use the term ‘allelic richness’, as

opposed to ‘allelic diversity’ [53], to describe the number of MHC

class II alleles in either a stickleback population or in an individual.

Genomic DNA was extracted from tissue samples (fin clips) with

a DNA extraction kit DNeasy Tissue Kit (Qiagen GmbH, Hilden,

Germany) according to the manufacturers protocol. The Qiagen

Multiplex PCR Kit (Qiagen GmbH, Hilden, Germany) with

fluorescent labeled primers (forward primer by 6-FAM and reverse

primer by NED) was used to amplify exon 2. We used GA11 as

our forward primer [54], which hybridizes in most bony fish in the

much conserved 5 area of the exon 2. We also used a new reverse

primer (GA11R 5 GAC TCA CCG GAC TTA GTC AG 3) that

we designed based on available published stickleback MHC class

IIB sequences [50,55] and MHC class IIB sequences that were

obtained from the stickleback Ensemble Genome Browser.

The thermal cycling profile for the PCRs consisted of initial

heating at 95uC for 15 min (hot-start polymerase activation),

followed by 30 cycles of denaturation at 94uC for 30 sec,

annealing at 56uC for 30 sec, extension at 72uC for 90 sec, and

ending with a 10 min extension step at 72uC. The isolated

fragment length was 242bp (including primer sequences) and parts

of it have been previously characterized [50]. For the CE-SSCP

analyses, the fluorescent-labeled PCR samples were prepared for

electrophoresis by combining 1 mL PCR product with 14 mL

loading mix which consisted of 13.75 mL Hi-DI formamide and

0.25 mL Genescan ROX 350 standard (Applied Biosystem). The

mixture was heated for 3 min at 95uC to separate the

complementary DNA strands, chilled on ice for 4 min and

analyzed by capillary electrophoresis on an ABI PRISM H3100

automated DNA Sequencer (Applied Biosystem). The CE-SSCP

polymer consisted of 5% Genescan polymer (Applied Biosystem),

10% glycerol, 16TBE, and HPLC-water. The running buffer

mixture contained 10% glycerol, 16TBE and HPLC-water. The

separation of the allelic variants was achieved by run conditions at

12kV for 36 minutes and by a run temperature at 22uC. The

retention times of the sequence variants were identified relative to

the ROX 350 standard. The GeneMapper software packages 4.05

from Applied Biosystems were used to process the obtained SSCP

data. With this PCR and screening approach we detected between

one and eight sequence variants per individual which probably

reflects the previously estimated number of genes (i.e. 3 to 4) per

individual [55,56].

Microsatellite analysis
We used eight microsatellite loci to compare genetic variation

among stickleback populations: Gac1125, Gac5017, Gac4174,

Gac2111, Gac7188, Gac1097, Gac7033, and Gac5196 [57,58].

All PCRs were carried out in 12 mL reaction volumes. Each PCR

reaction contained one to two microlitre genomic DNA,

fluorescent labelled (Applied Biosystems) primers and the Qiagen

Multiplex PCR Kit (Qiagen GmbH, Hilden, Germany). The PCR

programme used was 15 min 95uC followed by 35 cycles of 30 s at

94uC, 90 s annealing and 90 s at 72uC, ending with a 10 min final

elongation stage at 72uC. The annealing temperatures for the

multiplex PCRs (two microsatellite loci were run in the same

multiplex PCR) were 59uC for the microsatellites Gac1125 and

Gac5017; 57uC for Gac4174 and Gac2111; Gac7188 and

Gac1097; Gac7033 and Gac5196. PCR products were separated

and scored on an ABI PRISM 3100 automated DNA Sequencer

(Applied Biosystem). Using these markers we calculated the mean

number of alleles, observed heterozygosity (Hobs) and expected

heterozygosity (Hexp) using the Arlequin [59] and Genetix 4.02

[60] software. We calculated the mean number of microsattelite

alleles per locus (mSatsmean) to compare with the allelic richness at

MHC loci (i.e. MHCmean), and tested for differences between
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benthics and limnetics. In addition, we used FSTAT, version 2.9.3

[61] to calculate locus-specific values of allelic richness (Rs), which

is based on a rarefaction approach and accounts for unbalanced

sample sizes. We calculated population-specific Rs values as

arithmetic means over all polymorphic loci, and used the

Friedman-test, a non-parametric test, to compare Rs values

among stickleback populations. Using FSTAT we tested for

significant (1000 permutations) differences in Rs between the

limnetic and benthic populations.

Statistical analysis
We used log-linear analysis to examine how the number and

frequency of MHC alleles differed among lake populations and

ecotypes (Table 1). To simplify the interpretation of these analyses,

we compared allele frequencies of stickleback from both sympatric

lakes (Paxton and Priest) to stickleback from a single allopatric lake

(Cranby Lake). We formulated seventeen different linear models

(Table 2), based on seven different questions (Table 3), and then

used AIC to select the model best supported by our data. We used

this approach to determine how the average number of alleles and

the frequency of specific alleles differed among lake populations

and stickleback ecotypes (Table 2). All statistical analyses were

done using R [62].

MHC simulation model
We constructed a simulation model to examine whether

introgression between limnetics and benthics, along with contrast-

ing selective environments in adjacent foraging habitats, could

explain the observed distribution of MHC alleles in Paxton and

Priest Lake. Because of several uncertainties, including not

knowing the exact number of MHC loci in stickleback and not

being able to quantify copy number variation using CE-SSCP, we

did not use the model to estimate the strength of selection at MHC

loci. Instead, we used it to illustrate how variation in the strength

of selection and the level of assortative mating could affect the

frequency distribution of MHC alleles in benthics and limnetics.

We modeled stickleback recombination using a haploid model,

partly because our MHC typing method cannot distinguish

between homozygotes and heterozygotes at a particular MHC

locus. We considered two haploid populations (P1 and P2) of size

N1 and N2. Each life cycle consists of selection followed by

reproduction, and population sizes are held constant throughout.

Population identity is determined by a single locus with two alleles,

and we assumed that the two populations preferentially occupy

different environments; that is, the species identity locus codes for

habitat preference. A second locus with k alleles controls fitness

with respect to MHC haplotype in each environment. The

selection coefficients of alleles in each environment are given by

the k-dimensional vectors s1 and s2, and selection in each

environment is assumed to be frequency-dependent.

To illustrate with an example, suppose we have 3 alleles at the

MHC locus and s1~ 0:2,0:1,{0:1f g. This implies that alleles 1 and

2 are favoured in environment 1. To compute the relative fitnesses

of each of these alleles in environment 1 selection coefficients were

weighted by allele frequencies, as rare alleles are assumed to

experience a frequency dependent advantage. Letting f ið Þ denote

the frequency of allele i, the fitnesses of the three alleles in

environment 1 are then 1z0:2 1{f 1ð Þð Þ,1z0:1 1{f 2ð Þð Þ,f
1{0:1f 3ð Þg, in the order given. Because we are assuming that

common MHC alleles are more easily recognized by parasites, the

above implementation results in beneficial alleles experiencing the

strongest positive selection pressure when they are rare (e.g.,

1{f ið Þð Þ is large), with the strength of selection decreasing as they

become more abundant (e.g., as f ið Þ increases). Similarly,

deleterious alleles experience the strongest selection pressure against

them when they are common. Recombination occurs between the

two loci at rate r. Individuals mate within their population with

probability a and ‘‘hybridize’’ with individuals from the other

population with probability 1{a. Thus a can be viewed as the

probability of mating assortatively with respect to species identity.
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