BIOL 300: Biostatistics

Course web address:
http://www.zoology.ubc.ca/~irwin/BIOL300/

Instructor:
Dr. Darren Irwin
(Associate Professor, Dept. of Zoology)

Office: 209 Biodiversity
(Beaty Biodiversity Research Centre)
e-mail: irwin@zoology.ubc.ca

Office hours: Fri. 3:30-4:30
(Biodiversity 209)

and after class most days

Please feel free to ask questions during class

Teaching Assistants

• Jessica McKenzie
• Marc Delepine
• Rebecca Kordas
• Jocelyn Nelson
• Laura Tremblay-Boyer
Statistics: likely the most important subject you study at UBC

- Statistics is about how we can use data to infer something about Truth.
- Applicable in all fields.
- Vital for scientists, especially biologists (and doctors).
- Understanding of statistical principles is important for everyone.
 - Making decisions (e.g. medical / safety / environmental)
 - Interpreting news reports
 - Making wise purchases

Textbook

- Whitlock and Schluter (2009)
 The Analysis of Biological Data.

Lab manual

- Available for about $10 at Copiesmart in the UBC Village (near McDonald’s)
- Available at course web site

Lab

- Begins **second** week of term (January 9-13)
- BioSciences room 2434
- Attendance is highly recommended (but technically optional for some labs)
- Great opportunity for learning from TAs, using JMP, and for doing two lab assignments.
JMP

- Statistical software for PCs and Macs
- Used in the labs

- You *might* be interested in buying your own copy (*optional*). Available online: see course website for link.

Evaluation

- Homework assignments 15%
- Lab assignments 10%
- Mid-term 30%
- Final 45%

Homework Assignments

- Available on course web-page
- Due on Fridays at noon, at your TA’s office
- Intended to help you learn
- First assignment due Jan. 13th

Midterm

- February 29, in class
Wait list

• If you are on the wait list, chances are good that you can take the course (but no promises now).
• If you are not registered, try to register for the wait list. If not successful, email me.
• If you do not want to take the course, please de-register yourself (make room for others).

STATISTICS PAIRINGS

• Credit given for only one of BIOL 300, FRST 231, STAT 200, PSYC 218 or 366.

These are paired with BIOL 300, but do not count as biology courses

Let’s collect some data . . .

On an index card, please write (all anonymous and optional):
 a) Your height (indicate inches or cm)
 b) Number of siblings you have (count half sibs as half)
 c) # of cups of coffee consumed in past week
 d) Your writing hand (left/right/other)
 e) Length of your commute this morning (in minutes)
 f) Type of transportation used today (e.g., walk, bike, car, bus)
 g) Your weight (indicate lbs or kg)
 h) A random number between 0 and 101
 i) Your sex (M/F/other)

Introduction to statistics

Statistics is "a quantitative technology for empirical science; it is a logic and methodology for the measurement of uncertainty and for an examination of that uncertainty."

The key word here is "uncertainty." Statistics become necessary when observations are variable.
Goals of statistics

• Estimate the values of important parameters

• Test hypotheses about those parameters

Parameter: a characteristic of a population.

Statistics is also about good scientific practice

Feline High-Rise Syndrome (FHRS)

The injuries associated with a cat falling out of a window.

“The diagnosis of high-rise syndrome is not difficult. Typically, the cat is found outdoors, several stories below, and a nearby window or patio door is open.”

High falls reported to show lower injury rates

Why?

1. Cats have high surface-to-volume ratios
2. Cats have excellent vestibular systems
3. Cats reach terminal velocity quickly, relax, and therefore absorb impact better
4. Cats land on their limbs and absorb shock through soft tissue

Jared Diamond, Nature 1988

Or not…

A sample of convenience is a collection of individuals that happen to be available at the time.
A newer study reports more injuries with longer falls

FHRS: Limb fractures vs. thoracic trauma

FHRS illustrates importance of:

- Unbiased sample
- Large sample size
- Replication of studies
- Careful choice of variables measured
- Careful interpretation of data

Read: Chapters 1 & 2
Variables and Data

- **A variable** is a characteristic measured on individuals drawn from a population under study.

- **Data** are measurements of one or more variables made on a collection of individuals.

Explanatory and response variables

We try to predict or explain a **response variable** from an **explanatory variable**.

Older terminology: *dependent variable* and *independent variable*

Mortality on the *Titanic*, as predicted by sex

Populations and samples
Histogram of family size of a sample of BIOL300 students

<table>
<thead>
<tr>
<th># of children in family</th>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

$n = 40$

average = 2.4

This is higher than national average family size. Why?

You must think carefully about what population is being sampled

- All cats falling out of windows vs. survivors being brought into vets
- Families vs. children from families

Populations <-> Parameters; Samples <-> Estimates

Estimates differ from true population characteristics (parameters) for two reasons:
- Sampling error
- Bias
Bias is a systematic discrepancy between an estimate and the true population characteristic.
1936 Literary Digest Poll

- 2.4 million respondents
- Based on questionnaires mailed to 10 million people, chosen from telephone books and club lists
- Predicted Landon wins: Landen 57% over Roosevelt 43%

1936 election results

Roosevelt won with 62% of the vote

What went wrong?

Subjects given the questionnaire were chosen from telephone books and clubs, biasing the respondents to be those with greater wealth

Voting and party preference is correlated with personal wealth

Volunteer bias

Volunteers for a study are likely to be different, on average, from the population

For example:
- Volunteers for sex studies are more likely to be open about sex
- Volunteers for medical studies may be sicker than the general population
Each point represents an estimate of a parameter.

Properties of a good sample

- Independent selection of individuals
- Random selection of individuals (each individual has equal chance of being selected)
- Sufficiently large

In a *random sample*, each member of a population has an equal and independent chance of being selected.

One procedure for random sampling

1. Number each individual
2. Choose random numbers (e.g., 10, 14, 21)
3. Sample those individuals with matching numbers
Population parameters are *constants* whereas estimates are *random variables*, changing from one random sample to the next from the same population.

Sampling error

- The chance difference between an estimate and the population parameter being estimated.

 (note that sampling bias is not included here)

The good news:

We can estimate the magnitude of sampling error using properties of the sample.

Larger samples on average will have smaller sampling error.