Publications

placeholder image
Molecular and Cellular Mechanisms of Salt Taste.
Taruno A, Gordon MD. (2023). Annual Review of Physiology 
doi.org/10.1146/annurev-physiol-031522-075853
graphical%20abstract
A molecular mechanism for high salt taste in Drosophila.
McDowell SAT, Stanley M, Gordon MD. (2022). Current Biology 32(14): P3070-3081.E5
Jelen
Optogenetic induction of appetitive and aversive taste memories in Drosophila.
Jelen M, Musso P-Y, Junca P, Gordon MD. (2021). bioRxiv doi.org/10.1101/2021.11.12.468444
Musso
A neural circuit linking two sugar sensors regulates satiety-dependent fructose drive in Drosophila.
Musso P-Y, Junca P, Gordon MD. (2021). Science Advances 7, eabj0186
Junca
Modulation of taste sensitivity by the olfactory system in Drosophila.
Junca P, Stanley M, Musso P-Y, Gordon MD. (2021). bioRxiv https://doi.org/10.1101/2021.03.30.437740
Stanley
Mechanisms of lactic acid gustatory attraction in Drosophila.S
Stanley M, Ghosh B, Weiss ZF, Christiaanse J, Gordon MD. (2021). Current Biology 31(16): 3525-3537.E6
Lau
A closed-loop optogenetic screen for neurons controlling feeding in Drosophila.
Lau CKS, Jelen M, Gordon MD. (2021).  G3 Genes|Genomes|Genetics 11(5): jkab073
Lau
Social facilitation of long-lasting memory is mediated by CO2 in Drosophila.
Muria A, Musso P-Y, Durrieu M, Portugal FR, Ronsin B, Gordon MD, Jeanson R, Isabel G. (2021). Current Biology. 31(10):2065-2074. e5.
Figure 1
A fly rhodopsin sheds light on thermal taste.
Stanley M, McDowell SAT, Gordon MD. (2020). Cell Calcium. 2020 Jul 27;91:102259.
Figure 1
Bab2 Functions as an Ecdysone-Responsive Transcriptional Repressor during Drosophila Development.
Duan J, Zhao Y, Li H, Habernig L, Gordon MD, Miao X, Engström Y, Büttner S. (2020). Cell Rep. 2020 Jul 28;32(4):107972.
Figure 1
Closed-loop optogenetic activation of peripheral or central neurons modulates feeding in freely moving Drosophila.
Musso P-Y, Junca P, Jelen M, Feldman-Kiss D, Zhang H, Chan RCW, Gordon MD. (2019). eLife 2019;8:e45636.
Figure 1
A complex peripheral code for salt taste in Drosophila.
Jaeger AH*, Stanley M*, Weiss Z, Musso P-Y, Chan RCW, Zhang H, Feldman-Kiss D, Gordon MD. (2018) eLife 2018;7:e37167
Figure 1
Heparan sulfate organizes neuronal synapses through Neurexin partnerships.
Zhang P, Lu H, Peixoto RT, Pines MK, Ge Y, Oku S, Siddiqui TJ, Xie Y, Wu W, Archer-Hartmann S, Yoshida K, Tanaka KF, Aricescu AR, Azadi P, Gordon MD, Sabatini BL, Wong ROL, Craig AM. (2018). Cell 174:1-15.
Figure 1
Starvation-induced depotentiation of bitter taste in Drosophila. LeDue EE, Mann K, Koch E, Chu B, Dakin R, Gordon MD. (2016). Current Biology 26(21):2854-2861.
Figure 1
Pharyngeal sense organs drive robust sugar consumption in Drosophila.
LeDue EE, Chen Y-C, Jung AY, Dahanukar A, Gordon MD. (2015). Nature Communications 6:6667 doi: 10.1038/ncomms7667.
Figure 1
Presynaptic gain control drives sweet and bitter integration in Drosophila.
Chu B, Chui V, Mann K, Gordon MD. (2014). Current Biology 24(17):1978-84.
Figure 1
Integration of taste and calorie sensing in Drosophila.
Stafford JW, Lynd KM, Jung AY, Gordon MD. (2012). J. Neurosci 32(42):14767-74