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ABSTRACT 

 A non-linear parameter estimation routine was written for the Matlab language.  The 

program was used the method of least squares for parameter estimation, and a modification was 

made to allow estimation based on the method of maximum likelihood.   
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INTRODUCTION 

 Programs for non-linear parameter estimation exist for a variety of computer languages, 

many of which are not compatible with current PCs, and most programs are not user friendly.  

To make a program that can be run on a PC, by users unfamiliar with computer programming, a 

modified non-linear parameter estimation program was written for Matlab.  The program allows 

parameter estimation to be made by the method of least squares, and a modification allows 

estimation based on the method of maximum likelihood  (1). 

The non-linear parameter estimation method is based on the approach by Marquardt (5), 

with a modification allowing maximum likelihood estimation (1).  Briefly, it can be shown that if 

a parameter Lambda is chosen to be large enough, the parameters (β) will always converge at the 

value giving the best fit by the least squares criterion (5).  The smaller the value of Lambda, the 

faster the program will reach convergence (5).  For an initial Lambda and a set of starting β 

values, the program will calculate a new set of β values.  Next, the program compares the sum of 

squared errors (SSE) or the log-likelihood (LL) for the current set of parameters and compares it 

with the SSE or LL for the old β values.  If the new set of β values reduces the deviation 

(reduces the SSE or increases the LL), a new set of β values are computed by first reducing the 

Lambda by a factor of 10.  Conversely, if the deviation is increased, the new set of β values are 

computed by first increasing the Lambda by a factor of 10.  This iterative procedure continues 

until the program has found a new set of β values that does not change the deviance by more 

than a set value from the old β values, the convergence criterion (conv).  When this is achieved, 

the program computes the result for the converged set of parameters using propagation of error 

formulas (4).  For mathematical justification for the routines, the interested reader is referred to 

the references (1, 3, 5). 

 

THE PROGRAM 

 The parameter estimation routine, called “Marquardt”, was written in the Matlab 

language (Matlab Student Edition Version 5).  The program is detailed in Appendix A, and the 

routines required  to run the program are: marquardt, mod1-mod5, E, get_data, get_function, 

new_array, binary and a function in the form AB_Homer1.  The program uses functions instead 

of “goto” statements, the advantage being a more modular program that is easier to read and 

modify (6).    
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RUNNING THE PROGRAM 

Save the data in a text file, where dependent (y) and independent (x) variables are ordered 

in columns, starting with the dependent variable as shown in Table 1 for the data set in Example 

1. 

Before running the program, the number of independent variables (N2), convergence 

criterion (CONV), number of iterations (T1), and Lambda (L) need to be specified during 

initialization in Marquardt.  Once this is done, the program is run by typing “marquardt” at the 

“edu>” prompt in Matlab.   

A diary file is created, named with the date and time and with extension “dry”.  The diary 

file saves the information printed to the screen in a file that may be opened with any program 

that is able to open text files.   

Next, the user is asked to enter the data file and the function file name.  The function file 

contains the number of parameters to be used.  Currently, the function files are named with the 

prefix “AB_”, but this can be changed in the function “Get_Function”.  After the name of the 

function has been specified, the user is asked to enter starting values for the parameter 

estimation.  Once the starting values have been entered, the parameter search begins, with the 

log-likelihood or standard error for each iteration printed to the screen and saved to the diary file.  

At convergence, the final result, including the parameter estimates, the standard error of the 

parameter estimates, the coefficients of variation, and the variance-covariance matrix, is printed 

to the screen and saved in the diary file. 

Changes in the program can be made for the number of iterations (T1), the convergence 

criterion (CONV), the lambda (L), and the number of independent variables (N2).  This is done 

by changing the initilization of any of these in the “marquardt” routine. 

The program uses the function “binary” to determine if the dependent variable is binary 

(1 or 0) or continuous.  Therefore, no change is necessary when dealing with different data sets.  

The procedure used is seen in the output of the result, where continuous data output a SSE, and 

binary data a LL. 

Addition of “mod8” computes the 95% confidence regions of the parameter estimate.  

Currently, “mod8” is only able to do this for estimation of one independent variable.  After the 

estimation is completed, “mod8” plots the result.  The approximation for the standard error of the 

parameters is computed using the formulas for propagation of error (1, 4).  
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EXAMPLES 

Example 1, Continuous variables 

 For the estimation of continuous variables, the data set presented in Appendix C of 

Bailey and Homer (1977) will be used to present the non-linear least square estimation 

procedure.  These data are presented in Table 1, and Appendix B shows the fit using the non-

linear equation  

f(x) = β1 • X1
(X2*β2)    [1] 

to the continuous data.   

Example 2, Binary variables 

Many times in medical or biological research, one is faced with data that are binary, i.e. 

response or no response, death or no death etc.  For these problems, one can use a probabilistic 

formulation.  The unknown parameter becomes the probability (P) of a specific outcome or 

response.  Accordingly, the probability of no-response is then 1-P.   

In Appendix C, the binary data presented in the Table 2 is fitted to the dose response 

function,  

P(x) = X1 • (β1 • X1)-1    [2] 

and  

P(x) =X1
β2 • (β1

β2 + β1 • X1)-1   [3] 

using the maximum likelihood technique.  In these cases, the outcome (Y) is defined as 

either response (1) or no-response (0).  The likelihood of an event for the nth observation is: 

 

L(n) = P Y(n) • (1-P)(1-Y(n)) 

 

That is, the response (1) occurs with a probability P, and the no-response with a probability 1-P.  

The likelihood for the n independent observations is the product of their outcomes: 

∑=
=

n

1i
L(i) LL  

The estimation routine adjusts the parameters, and consequently P, to maximize the LL which is 

defined as the best fit to the data. 
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Table 1. Data format for a file.  The first row shown should be omitted, i.e. only the actual 

data should be presented in the form below. 

Reproduced from Bailey and Homer (1) 

Y 
 

X1 X2 

1 0.0001 0 
0 0.0001 2 
4 1 1 
2 1 2 
8 2 1 
2 2 0 

Equation 1 is used to fit the data   

 

Table 2. Binary data for use in fitting with Equation 2 and Equation 3. 

Y 
 

X 

0 0.6 
0 0.6 
0 0.6 
1 1.04 
1 1.04 
1 1.04 
1 1.44 
1 1.44 
1 1.44 
0 2 
1 2 
1 2 
1 2.75 
1 2.75 
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APPENDIX A 

Each routine is separated by “%%%%%%%”, and its name is written within the string of %-

signs.  In the program, comments begin with a ”%”-sign, which stops Matlab from reading the 

remainder of that line.  Some comments have been left in for clarification.  To use “mod8”, erase 

the %-sign in front of these in “marquardt”, save the file and run the program again. 
%%%%%%%%%%%%%%BEGIN MARQUARDT%%%%%%%%%%%%%% 
function marquardt() 
clear all; 
   format long;    
   timearray = clock; 
   month = int2str(timearray(2)); 
   if length(month)<2 
      month = ['0' month]; 
   end 
   day = int2str(timearray(3)); 
   if length(day)<2 
      day = ['0' day]; 
   end 
   hour = int2str(timearray(4)); 
   if length(hour)<2 
      hour = ['0' hour]; 
   end 
   minute = int2str(timearray(5)); 
   if length(minute)<2 
      minute = ['0' minute]; 
   end 
   diaryfile = [month day '-' hour minute '.dry']; 
   diary(diaryfile); 
   disp(['Open diary file: ' diaryfile]); 
 
   % read data from text file 

% input file has records in the following format {Y,X(1), %(2),...X(k) 
   %only  one independent variable is allowed  
   %We've defined arrays and vectors that will change and which needs 
   %to be accesed through the whole program as global variables, while 

%the other variables that must not be changed are passed to each %function 
   global A B G Z FUNCNAME %Matrices to be used  
   global SO N BETA N2 L CONV T1 T2%global variables   
      %%%%%%%%%%%%%%%%%%%%%%INITILIZATION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   SO=0;   %initializing the standard error 

%ll=0;%If the function is using log-likelihood ll==0 least %squares   
%ll==1 

   T1 =20;%input('Enter the number of iterations? '); 
   N2 = 1;%input('Enter the number of independent variables? '); 
   L = 1.0;%input('Enter the starting Lambda? '); 
   CONV = 0.001;%input('Enter the convergence criterion? '); 
   T2 = 0;%actual number of iterations 
 
   s=GET_DATA;%gets the data array s 
   w = new_array(s,N2);  %the data array 
   ydat=w(:,1);         %ydat gets Y-data 
   for i=1:N2 
      xdat(:,i)=w(:,i+1);     %xdat gets x data 
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   end    
   N=length(ydat); 
   b_num=GET_FUNCTION;%gets the function name from the user 
   ll=binary(ydat);%binary determines if ll=0 or 1 
   A=zeros(b_num,b_num);%VARIANCE-COVARIANCE matrix init. to zeros  
   G=zeros(b_num,1);%gradient vector initialized 
   mod1(b_num,ydat,xdat,ll);%begin parameter search mod1-mod5 

%to use these 
%u=mod8(b_num,ydat,xdat,N-b_num,ll);%get confidence region and %return 
conf. region data 

   diary off; %turns off the diary file 
   return 
 
%%%%%%%%%%%%%%END MARQUARDT%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN MOD1%%%%%%%%%%%%%% 
function mod1(b_num,ydat,xdat,ll) 
global BETA G SO A N T2  
global Z %Z is used in mod 6 to avoid recomputation of p for the SSE case, in 
the LL case it is not used since we need to recompute new partials,  since 
creation of an array of dummy x-values p needs to be computed 
p=zeros(N,b_num); %partial derivative in module 2 is  size= [N,b_num] 
e1=E(ydat,xdat,ll); %function call to get error vector 
if ll==0%ll=test statement to see if Log-like or least squares 
   SO=sum(-e1);%for log-likelihood  
else    
   SO=sum(e1.^2);%for least squares 
end    
T2=T2+1; 
for i=1:b_num 
      BETA(i)=BETA(i)*1.001;%BETA gets changed temporarily 
      e2(:,i)=E(ydat,xdat,ll); %e2 is the new error term to be compared %to 
e1   
      BETA(i)=BETA(i)/1.001;%Beta gets changed back 
      s(:,i)=(e1-e2(:,i));  %s=temp array to hold subtracted values for %each 
X Y pair, to dec. # calc    
end     
for i=1:b_num 
   p(:,i)=s(:,i)/(BETA(i)*0.001);%creating the partial derivative for %each y 
and beta       
end    
Z=p;%needed if SSE in mod 6  
for i=1:b_num 
   if ll==0 
      G(i)=sum(-p(:,i));%gradient vector for log-likelihood 
   else 
      G(i)=sum((p(:,i).*e1));%gradient vector determining the next  
    %array multiplication is used and not matrix multiplication 
   end    
end 
for i=1:b_num 
   for j=1:b_num 
      A(i,j)=sum(p(:,i).*p(:,j));%variance-covariance vector 
    end 
end 
mod2(b_num,ydat,xdat,ll); 
return 
%%%%%%%%%%%%%%END MOD1%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%BEGIN MOD2%%%%%%%%%%%%%% 
function mod2(b_num,ydat,xdat,ll) 
global L BETA G A  
for i=1:b_num 
   for j=1:b_num 
      q(i,j)=A(i,j)/(sqrt((A(i,i)*A(j,j)))); 
   end 
   G(i)=G(i)/sqrt(A(i,i));    
end 
mod3(b_num,ydat,xdat,q,ll); 
return 
%%%%%%%%%%%%%%END MOD2%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN MOD3%%%%%%%%%%%%%% 
function mod3_3(b_num,ydat,xdat,q,ll) 
global L BETA G A 
p=zeros(1,b_num); 
for i=1:b_num 
   q(i,i)=q(i,i)*(1+L); %adds the gradient vector to q 
end 
c=inv(q);                %the inverse of q 
for i=1:b_num 
   for j=1:b_num 
      p(i)=p(i)+c(i,j)*G(j);%estimate new partials 
   end 
   p(i)=p(i)/sqrt(A(i,i)); 
end 
mod4(b_num,ydat,xdat,q,p,ll); 
return 
%%%%%%%%%%%%%%END MOD3%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN MOD4%%%%%%%%%%%%%% 
function mod4(b_num,ydat,xdat,q,p,ll)%q only needed for recursive call %to 
mod3 
global L BETA G SO A CONV T1 T2 
if T1<0 
   disp(['print results']); 
   mod5(b_num,ydat,xdat,ll); 
elseif T1<=T2%you're out of iterations 
   tt2=num2str(T2); 
   disp(['Iteration number: ' , tt2]); 
   T1=T1-1; 
   L=0; 
elseif abs(p./BETA)< CONV %if any is larger than conv do another %interation 
      disp(['CONVERGENCE']); 
      T1=-1; 
      L=0; 
      mod1(b_num,ydat,xdat,ll); 
else     
   BETA=BETA+p;%modify parameters by adding their partial derivatives 
   e=E(ydat,xdat,ll);%E should return the error for each X Y pair,  
   if ll==0 
      s1=sum(-e); 
      ss1=num2str(-s1); 
      disp(['Log-likelihood for next B= ' , ss1]); 
   else    
      s1=sum(e.^2);%summing up the squared errors 
      ss1=num2str(s1); %changed to positive from negative 
      disp(['SSE for next B= ' , ss1]); 
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   end    
   if s1>SO 
      L=L*10; 

BETA=BETA-p;%the estimate was worse and L is incremented by then,  
%BETA is modified back to its  
%original value and module 3 is called again, this is not counted %as 
an iteration 

      mod3(b_num,ydat,xdat,q,ll);%Recursive call to mod3 
   else 
      L=L/10; 

mod1(b_num,ydat,xdat,ll);%call mod1 again and start over from %scratch, 
i.e new iteration 

   end 
end 
return 
%%%%%%%%%%%%%%END MOD4%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN MOD5%%%%%%%%%%%%%% 
function mod5_5(b_num,ydat,xdat,ll)%not needed t1 t2 l 
global BETA SO N A 
df = N-b_num;%the degrees of freedom 
if ll==0 
   V=1;%for the log-like case 
   so=num2str(-SO); 
   disp(['Final log-likelihood=   ',so]); 
else    
   V=SO./df;%summing up the squared errors, i.e. variance 
   V1=sqrt(V);%stdev 
   v=num2str(V); 
   v1=num2str(V1); 
   so=num2str(SO); 
   disp(['Variance=   ',v]); 
   disp(['Std.dev=    ',v1]); 
   disp(['Final SSE=  ',so]);  
end    
C=inv(A); 
A=V*C;        %Var-covar matrix 
for i=1:b_num 
   D(i)=sqrt(A(i,i));%D=std. error of parameter 
end 
D2=D./BETA; %coefficient of variation 
b=num2str(BETA); 
d=num2str(D); 
d2=num2str(D2); 
disp(['Parameters=                 ',b]); 
disp(['Std. Error of Parameters=   ',d]); 
disp(['Coeff of var=               ',d2]) 
disp(['Var-Covar matrix= ']); 
disp(A) 
return 
%%%%%%%%%%%%%%END MOD5%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN GET_FUNCTION%%%%%%%%%%%%%% 
function y=GET_FUNCTION 
global FUNCNAME npars BETA%FUNCNAME is global and used by other %functions to 
call 
%the chosen function, contains the anme of the function and its %destination 
% select model 
[funcfilename, pathname] = ... 
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uigetfile('AB_*.m','Select model function file'); 
FUNCNAME = strtok(funcfilename, '.'); 
%THE BELOW COMMAND IS HOW TO EVALUATE THE FUNCTION I.E. CALL FUNCNAME 
%string = ['u=' funcname '(ydat,W,BETA);'];%creates a string to be used %in 
eval 
%eval(string);  %the driver to call the function 
Z = [1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 ]; 
string = ['dummy=' FUNCNAME '(0,0,Z);']; 
eval(string);   % dummy call to funcc to get npars 
clear Z; 
 
for i = 1:npars%get intial betas from user 
   num_param = int2str(i); 
   ask_value = ['Enter initial value for beta(' num_param '): ']; 
   BETA(i) = input(ask_value); 
end    
y=npars; 
return 
%%%%%%%%%%%%%%ENDGET_FUNCTION %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN GET_DATA%%%%%%%%%%%%%% 
function y=GET_DATA 
disp('Please provide the name of for the array of outcome data.'); 
[filename,pathname]=uigetfile('*.txt','Outcome Data File Name');%gives %the 
name of file and path 
disp(['Data file name: ' filename]);%displays the file name chosen 
fullfilename=[pathname filename]; 
%s=dlmread(fullfilename,',');%reads the data array 
in = fopen(fullfilename,'rt');%fopen(filename,permission), rt=rad and %write 
a txt file 
s = fscanf(in,'%f');%reads the entire file into an array, file needs to %have 
the y and x variables column wise 
%i.e.Y, X(1), X(2), X(3), ...X(N2) etc  
y=s;%returns s, i.e. the whole data array 
fclose(in); %closes data file 
return 
%%%%%%%%%%%%%%END GET_DATA%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN E %%%%%%%%%%%%%% 
function y=E(ydat,xdat,ll) 
global FUNCNAME 
global BETA 
str = ['v=' FUNCNAME '(ydat,xdat,BETA);'];%creates a string to be used %in 
eval 
eval(str);  %the driver to call the function 
for i=1:length(ydat)%to be used when v cannot be 0 
   if v(i)==0 
      v(i)=0.000001; 
   elseif v(i)==1 
      v(i)==0.999999; 
   end    
end     
if ll==0 %if LL=compute log-likelihood for each observation 
   m=ydat.*log(v)+(1.0-ydat).*log(1.0-v); 
else %if SSE return the error estimate 
   m=ydat-v; 
end    
y=m;%returns LL or SSE also called F in all NMRI programs 
%%%%%%%%%%%%%%END E%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%BEGIN NEW_ARRAY%%%%%%%%%%%%%% 
function y= new_array(W,N2) 
v=0; %coounter in the for loop 
col=N2+1; %col gets total number of columns 
row=length(W)/col;%this is the number of data points in each column, %i.e. 
rows  
for i=1:row 
   for k=1:col 
      v=v+1;  
      temp(i,k)=W(v); 
   end 
end 
y=temp;%returns the reshaped matrix with Y in the first column and then %the 
x'es 
return 
%%%%%%%%%%%%%%END NEW_ARRAY%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN MOD8%%%%%%%%%%%%%% 
function y=mod8(b_num,ydat,xdat,df,ll) 
global A N Z BETA%Z is a matrix containing the partial derivative p() from 
mod1 
T=1/(df); 
T=1.96+T*(2.3724+T*(2.8227+T*(2.5561+T*1.5897))); 
if df<=1.1 
   T=12.706 
end 
xmin = min(xdat);               %gets minimum x 
xmax = max(xdat);               %gets max x 
xrange = xmax - xmin;           %gets the range of values 
 
%++++++++++++++++++++++++++++BEGIN IF ELSE+++++++++++++++++++ 
if ll==0%if LL=set all outcome to 1 and reestimate partials based on this 
   newx = linspace(xmin,xmax,100+1)';%creates a data array of values at each 
who 
   V1=zeros(length(newx),1);%initializing 
   YHAT=zeros(length(newx),1);%initializing 
   yones=ones(length(newx),1);%creates an array with all ones for use in 
making conf. region 
   p=zeros(length(newx),b_num); %partial derivative in module 2 is by size= 
[N,b_num] 
   e1=E(yones,newx,ll); %function call to get error vector or LL also F in 
the NMRI programs 
   for i=1:b_num 
      BETA(i)=BETA(i)*1.001;%BETA gets changed temporarily 
      e2(:,i)=E(yones,newx,ll); %e2 is the new error term to be compared to 
E1   
      BETA(i)=BETA(i)/1.001;%Beta gets changed back 
      s(:,i)=(e1-e2(:,i));  %s=temp array to hold subtracted values for each 
X Y pair, to dec. # calc    
   end  
   for i=1:b_num 
      p(:,i)=s(:,i)/(BETA(i)*0.001);%creating the partial derivative for each 
y and beta       
   end   
   for q=1:length(newx) 
      for i=1:b_num 
         for j=1:b_num 
            V1(q)=V1(q)+(p(q,i).*p(q,j).*A(i,j));%variance-covariance vector 
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         end 
      end       
   end 
   SEYHAT=sqrt(abs(V1)); %the seyhat of the estimate 
 
   YHAT=exp(e1);    %for LL estimation 
   err_maxmin=T*SEYHAT;%for LL estimation 
   YMIN=max(0,exp(e1-err_maxmin));%The lower end of the 95%CL region 
   YMAX=min(1,exp(e1+err_maxmin));%The upper end of the 95%CL region   
   
else %if the estimate is continuous variables and uses SSE estimation 
   V1=zeros(length(xdat),1);%initializing 
   YHAT=zeros(length(xdat),1);%initializing 
   e1=E(ydat,xdat,ll); %function call to get error vector or LL also F in the 
NMRI programs 
   for q=1:length(xdat) 
      for i=1:b_num 
         for j=1:b_num 
           V1(q)=V1(q)+(Z(q,i).*Z(q,j).*A(i,j));%variance-covariance vector, 
uses Z vector from mod1 
         end 
      end       
   end 
   SEYHAT=sqrt(abs(V1)); %the seyhat of the estimate 
   YHAT=ydat-e1;  %as defined in Bailey and Homer  
   YMAX=YHAT+T*SEYHAT; %for SSE estimation 
   YMIN=YHAT-T*SEYHAT; 
   newx=xdat; 
end 
%+++++++++++++++++END IF ELSE STATEMENT++++++++++++++++++++++++++ 
 
plot(newx,YHAT,'b:p',newx,YMIN,'c-',newx,YMAX,'c-') 
disp(['X   YHAT,         SEYHAT,    YMAX,     YMIN']) 
u=[newx, YHAT, SEYHAT, YMAX, YMIN]; 
u=num2str(u); 
disp(u) 
y=u;%return data to marquardt  
return 
%%%%%%%%%%%%%%END MOD8%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%BEGIN BINARY%%%%%%%%%%%%%% 
function y=binary(bin) 
for i=1:length(bin) 
   if (bin(i)==1) | (bin(i)==0)%if outcome 1 or zero, i.e. binary 
      y=0; 
   else 
      y=1; %if each data not binary it use SSE and set ll=1 
      return %if not 1 and 0 return immediatley no sense to continue   
   end 
end 
return 
%%%%%%%%%%%%%%END BINARY%%%%%%%%%%%%%% 
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Variables in Use: 
 
A(N,N)=holds information for variance-covariance matrix  
G(N)=gradient vector 
FUNCNAME = string for name of function 
SO = sum-squared errors 
N =number of observations 
N1 = number of parameters 
N2 = number of independent variables (x) 
b_num = number of parameters 
BETA = array of parameters  
L = Lambda 
CONV =convergence criterion 
T1 = maximum number of iterations before stopping 
T2 = iteration counter 
V = variance of observation 
V1 = standard deviation 
ll = holds the type of dependent variables, binary or continuous 
p(N, b_num) = partial derivatives 
xdat = independent variable array 
ydat = dependent variable array 
e = error 
e1 = error 
e2 = error 
Z (N, b_num) = temporary global storage of partial derivative 
q = intermediate storage 
q, i, j = counter variables 
df = degrees of freedom 
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APPENDIX B 

 To run the data in Table 1 using the non-linear least squares method, Eq. 1 will be used to 

fit the data.  First the data are saved as a text file and a Matlab m.file is made that defines the 

equation.  In this case, the function file is called AB_Homer1: 

function y=AB_Homer1(ydat,xdat,BETA) 
global npars 
if BETA(1)==1e-10 & BETA(2)==1e-10 
   npars = 2; 
   return 
else 
   y =  BETA(1)*(xdat(:,1).^(BETA(2)*xdat(:,2))); 
end    
return 
 
The function can be called any name, beginning with “AB_”. The “AB_” can be changed by 

modification of the “Get_Function” m.file.  Next, “N2” in the “marquardt” routine is set to 2 for 

two independent variables, convergence (CONV) to 0.001, Lambda (L) to 1, and the program 

run with a maximum of 20 iterations (T1). Starting values for the parameters are 2 and 2 for β1 

and β2, respectively.  The output of the result is shown below and is equivalent to the result 

presented by Homer and Bailey (1). 

 
Enter initial value for beta(1): 2 
Enter initial value for beta(2): 2 
SSE for next B= 4.9452 
SSE for next B= 4.7942 
SSE for next B= 4.7503 
SSE for next B= 4.75 
CONVERGENCE 
print results 
Variance=   1.1875 
Std.dev=    1.0897 
Final SSE=  4.75 
Parameters=                 2.2499     1.8301 
Std. Error of Parameters=   0.54486     0.4006 
Coeff of var=               0.24217    0.21889 
Var-Covar matrix=  
   0.296875  -0.190239 
  -0.190239   0.160477 
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APPENDIX C 

The maximum likelihood estimation procedure is used to fit the data in Table 2.  The 

outcome of the data is binary, and in this case a response=1, and no-response= 0.  The data is fit 

to the dose response functions Eq. 2 and Eq. 3.   

Example 1 

For Eq. 2, the parameter (β1) is the dose at which 50% of the outcome is 1.  The function 

file for this equation is called AB_Homer2 : 
function y=AB_Homer2(ydat,xdat,BETA) 
global npars 
if BETA(1)==1e-10 & BETA(2)==1e-10 
   npars = 1; 
   return 
else 
   y =  xdat./(BETA(1)+xdat); 
end    
 

For this estimation, the “N2” in “marquardt” needs to be set to 1, while all other variables remain 

as in the example above.  The output of the results for a starting value of the parameter of 0.45 is 

shown below:  
Enter initial value for beta(1): 0.45 
Log-likelihood for next B= -6.8292 
Log-likelihood for next B= -6.827 
Log-likelihood for next B= -6.827 
Log-likelihood for next B= -6.827 
CONVERGENCE 
print results 
Final log-likelihood=   -6.827 
Parameters=                 0.49645 
Std. Error of Parameters=   0.33669 
Coeff of var=               0.67819 
Var-Covar matrix=  
   0.113360 
  
Example 2 

Equation 3, also known as the Hill Function, is commonly used to describe biological 

phenomena such as the O2-dissociation curve (2), and has been used to describe the probability 

in decompression sickness (7,8).  For our purpose, we use it to describe a dose-response 

relationship with only two outcomes.  Again, the first parameter (β1) is the dose at which 50% of 

the outcome is 1, and the second parameter (β2) is the slope of the sigmoidal dose response 
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curve.  Compared to AB_Homer2, the function file for this equation only requires the following 

changes:    
npars = 1; 
and  
y =  xdat./(BETA(1)+xdat); 

The “marquardt” remains the same as for the first example using maximum likelihood above.  

The printout of the result is shown below using the following starting parameters β1 =0.8613 and 

β12 =3.5338, and with Lambda=1.0, conv=0.001, and T1=20: 
Enter initial value for beta(1): 0.8613 
Enter initial value for beta(2): 3.5338 
Log-likelihood for next B= -5.5912 
Log-likelihood for next B= -5.5904 
Log-likelihood for next B= -5.5902 
Log-likelihood for next B= -5.5906 
Log-likelihood for next B= -5.5905 
Log-likelihood for next B= -5.5902 
Log-likelihood for next B= -5.5902 
Log-likelihood for next B= -5.59 
Log-likelihood for next B= -5.5904 
Log-likelihood for next B= -5.5901 
Log-likelihood for next B= -5.59 
Log-likelihood for next B= -5.59 
Log-likelihood for next B= -5.59 
Log-likelihood for next B= -5.59 
CONVERGENCE 
print results 
Final log-likelihood=   -5.59 
Parameters=                 0.86235     3.4309 
Std. Error of Parameters=   0.34462      2.005 
Coeff of var=               0.39962    0.58439 
Var-Covar matrix=  
   0.11875   0.55232 
   0.55232   4.02002 
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