PROBABILISTIC MODELING OF DECOMPRESSION SICKNESS (DCS) RISK FOR PIGS IN H₂. <u>A. Fahlman, S.R. Kayar, J. Himm, and P. Tikuisis.</u> Naval Medical Research Center, Bethesda, MD 20889, USA; Carleton U., Ottawa, ON, Canada and DCIEM, Toronto, ON, Canada.

<u>BACKGROUND</u>: We used a probabilistic model to predict DCS outcome in pigs during H_2 dives. The data set included dives for control animals and animals with intestinal injections of H_2 metabolizing microbes.

<u>METHODS</u>: To simulate a H₂ dive, pigs (n=70, 19.5±1.3 kg) were placed in a dry chamber and compressed to 24 atm for 30, 120, 150, 180, or 1175 min. Final chamber gas composition was 86-96% H₂, 6-14% He, 2% O₂, 0-1% N₂. Animals were then decompressed (0.9 atm/min) to 11 atm, and observed for 1 h for symptoms of DCS. We used single exponential kinetics to describe the tissue partial pressures (P_{tis}) of H₂ and He: $P_{tis} = \int (P_{amb} - P_{tis})/\tau dt$, where P_{amb} is the ambient pressure. One exponential time constant (τ) was used for both gases. To predict the probability of DCS (pDCS) we used the risk function: pDCS = 1 - e^{-r}, where $r = \int (P_{tis}H_2 + P_{tis}He - P_{amb})/P_{amb} dt$. To estimate the effect of H₂ metabolism on pDCS in treated animals, we added a term (BUG) corresponding to the total activity injected (mmoles H₂ /min) into the calculation of P_{tis}H₂ = $\int (P_{amb} - BUG - P_{tis}H_2)/\tau dt$.

<u>RESULTS</u>: The probabilistic model showed that duration of hyperbaric exposure was positively correlated with increasing DCS incidence. Based on the log-likelihood ratio test, there was a significant improvement in the prediction of pDCS (P<0.05) with the inclusion of BUG into the model.

<u>CONCLUSION</u>: The results from the model suggest that pigs in H_2 may be 98% saturated after approximately 120 min. In addition, the model suggests that animals injected with H_2 metabolizing microbes have a decreased pDCS following a simulated H_2 dive. (NMRDC #61153N MR04101.00D-1103).