ASSIGNMENT \#1
due Th. Jan. 13 / 2005
Join a group. Minimum group size 3, maximum size 6. Please hand in one assignment per group, and list the names of all group members, and their e-mail addresses at the top of each sheet.

P 1-1 Staircase Olympics

a) Determine the mechanical power output $P=\eta \cdot \Gamma$ for each team member when walking up two flights of stairs outside Chem. 124. Height $\mathrm{h}=7.65 \mathrm{~m}$ (45 steps).
b) Estimate by how much this measurement could be wrong (error estimate).

To do this assign the largest possible values for M and ? h (height) and the smallest value for ? t , then calculate the largest possible value for $\mathrm{P}_{\text {max }}$. Similarly estimate the smallest reasonable value for $\mathrm{P}_{\text {min }}$. A good value for the uncertainty of your experimental results is $\delta \mathrm{P}=\frac{\mathrm{P}_{\max }-\mathrm{P}_{\min }}{2}$.
Express your answer for the power obtained in part (a) as $\mathrm{P} \pm \delta \mathrm{P}$.
c) Repeat the measurements for each one of your team members when running up the stairs.
d) Estimate the mass of the muscles $\mathrm{M}_{\text {musc }}$ used for running up the stairs and give the power to weight ratio $\mathrm{X}=\mathrm{P} / \mathrm{M}_{\text {musc }}$ of this muscle. (A good automobile engine generates about $1 \mathrm{~kW} / \mathrm{kg}$.). Muscle mass $\mathrm{M}_{\text {mus }}=$ muscle volume $\mathrm{V}_{\text {musc }}$ muscle density ρ. (Muscles have about the density of water)
e) Make a table including all your data and a log-log graph showing

Name of team member, $\mathrm{M}, ? \mathrm{t}, \mathrm{P}_{\text {running }}, \mathrm{P}_{\text {walk }} \Gamma_{\text {running }}, \Gamma_{\text {walking }} \mathrm{V}_{\text {musc }} \mathrm{X}_{\text {running }}$,
(i) The metabolic rate curve $\Gamma_{o}=3.6 \mathrm{M}^{3 / 4}$
(ii) The power P and metabolic rate Γ for each team member when walking up the stairs plotted as function of body mass
(iii) The power P and the metabolic rate as function of body mass when running upstairs.

The TAs will make a compound table for the whole class to get statistical values, and determine who has the highest power to weight ratio.

P 1-2 Metabolic rates of spiders and caterpillars.

In summer time a 500 mg spider catches a meal about once a day (? t_{s}, , in winter it goes without eating for 6 weeks ($? \mathrm{t}_{\mathrm{W}}$). Assume that the spider's prey weighs 100 mg on average, and that the spider only "eats" the soft tissue (fat \& proteins) and discards the empty shells. Assume that 1 g of fat and protein body tissue contains 25 kJ . a) Make a reasonable assumption of the percentage of body mass of the prey, which the spider eats and calculate the average energy content ? Q of a meal extracted by the spider. b) Calculate the metabolic rate ? $\mathrm{Q} /$? t in summer, and in winter. c) Do a similar calculation for 100 mg plant eating caterpillar, who consumes 20 times its body weight in a day. Assume that the plant tissue contains about 6% of useful edible starches and proteins, which have an energy content of about $21 \mathrm{~kJ} / \mathrm{g}$. d) Plot your results on a logarithmic plot, and draw on the same graph the metabolic rate curve Fig. 1.7 of warm blooded animals ("mouse to elephant" curve).

P 1-3 Allometry

a) Find out from the literature how many days a bear spend in Hibernation, and how much weight she looses. Compare this number with the weight loss predicted from the metabolic rate of this animal. If there is a difference explain why. b) Select a cetacean and an ungulate of the same body mass. Calculate and compare their skeletal masses, and comment on your numbers.

