
Analysis of Linear Equations

Motivation – To determine the dynamics of a system of equations in more than one

variable.

Consider the recursion equations for any model that describes the change in state of a

population from one generation (xi[t]) to the next (xi[t + 1]). To make it easier to write, we

will use xi to denote the variables in the current generation and x′
i to denote the variables

in the next generation. In this handout, we will consider only LINEAR functions of the

variables (e.g. x′
1 = j11x1 + j12x2 but not x′

1 = j11x1x2). If there are n variables then there

will be n functions describing the change in these variables:

x′
1 = j11x1 + j12x2 + ...j1nxn,

x′
2 = j21x1 + j22x2 + ...j2nxn,

...

x′
n = jn1x1 + jn2x2 + ...jnnxn (1)

(e.g. in a predator-prey model, n = 2 since we have to track both the number of predators

and the number of prey). Since the equations are linear, we can also write these equations

in matrix form: 

x′
1

x′
2

...

x′
n



=



j11 j12 ... j1n

j21 j22 ... j2n

... ... ... ...

jn1 jn2 ... jnn





x1

x2

...

xn



(2)

Denoting the matrix by J and the vector of xi by ~x, we can then write equation (2) as

~x ′ = J~x. (3)

J is known as a transition matrix, since it describes how the population vector changes

from one generation to the next. To find out where the population will be at some gen-

eration t (described by the vector ~x[t]), we can use equation (3) over and over again:

~x[t] = J ~x[t− 1] = J2 ~x[t− 2]... = Jt ~x[0]. In most cases, it will be hard to find out what

Jt equals directly, so we must digress for a moment to review some basic theorems from
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linear algebra that can help. These will be used to determine what happens to the vector,

~x over time.

A Digression into Linear Algebra – A number λ is an eigenvalue of matrix J if there

exists a non-zero vector, ~v, that satisfies the equation:

J~v = ~vλ. (4)

Every vector satisfying this relation is an eigenvector of J belonging to the eigenvalue, λ.

To find the eigenvalues of a matrix, note that we can rearrange1 equation (4) as J~v− λ~v =

(J−λI)~v = ~0, where I is the identity matrix (a diagonal matrix with ones along the diagonal),

and ~0 is a vector of zeros. A matrix, like (J − λI), which equals zero when multiplied by

some non-zero vector ~v is called singular. Singular matrices have the property that their

determinant equals zero. This means that the determinant of (J− λI) equals zero, which is

written as |J − λI| = 0 . This determinant is an nth degree polynomial in λ, the roots of

which are the eigenvalues of the matrix J: λ1, λ2, ...λn. For example, in the n = 2 case,

(J− λI) =

 j11 − λ j12

j21 j22 − λ

 (5)

so that

|J− λI| = (j11 − λ)(j22 − λ)− j21j12 = λ2 − λ(j11 + j22) + j11j22 − j21j12 = 0. (6)

The two roots2 to this equation are the two eigenvalues.

The analysis of the transition matrix J can be simplified by changing the coordinate

system (or basis3). That is, we can look at the recursions from a different vantage point

and they’ll look simpler, but all we’ve done is change our viewpoint and not the dynamical

behavior of the system. If J has n linearly independent eigenvectors, then J can be trans-

formed into another coordinate system in which the transition matrix is a diagonal matrix,

D, which is much easier to analyze and whose diagonal elements are the corresponding n

1Using the distributive law for matrix multiplication.
2The two roots can be found using the quadratic formula: λ1 = −b+

√
b2−4ac
2a and λ2 = −b−

√
b2−4ac
2a

3The basis is the co-ordinate system in which the vectors are measured. For instance, in a regular two

dimensional plot, the x-axis and the y-axis provide the co-ordinate system in which everything is measured.

The basis in which measurements are taken can be changed or transformed. This basically superimposes

a different grid onto the system of equations but doesn’t change their behavior. For instance, you could

transform x-y coordinates into polar coordinates, but that wouldn’t change what was happening over time.
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eigenvalues:

D =



λ1 0 ... 0

0 λ2 ... 0

... ... ... ...

0 0 ... λn


(7)

(In linear algebra terms, matrix J is similar to matrix D.) The advantage of performing this

transformation is that while Jt is hard to compute, Dt is easy to compute.

To change coordinate systems so that the transition matrix is diagonal we do the follow-

ing. Let A equal the matrix whose columns are the n eigenvectors (~v) that satisfy equation

(4), then A corresponds to a transformation matrix from the original co-ordinate system

(which represented the number or frequency of each type separately), into the co-ordinate

system based on the n eigenvectors, {~v1, ~v2...~vn}. To transform a matrix from one basis

into another, the following operation is performed:

A−1JA, (8)

where A−1 is the inverse of A, which means that A−1A = AA−1 = I. Since each of the

columns in matrix A are eigenvectors, we can use equation (4) to show that JA = AD. For

instance, when n = 2, j11 j12

j21 j22


 v11 v12

v21 v22

 =

 λ1v11 λ2v12

λ1v21 λ2v22

 =

 v11 v12

v21 v22


 λ1 0

0 λ2

 (9)

where

J =

 j11 j12

j21 j22

 , A =

 v11 v12

v21 v22

 , and D =

 λ1 0

0 λ2

 (10)

This works because each of the columns in the A matrix is an eigenvector. Since JA = AD,

we can multiply both sides of the equation on the left by A−1 to get A−1JA = A−1AD = D.

In other words, in the new basis composed of eigenvectors, the transition matrix is D.

To transform a vector (e.g. ~x) from the old basis into the new basis, the following operation

is performed:

~xnew = A−1~x. (11)
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Back to Analysing a System of Linear Equations – Take the recursions described

by equations (3) and multiply both sides by A−1 on the left. We then get:

A−1~x ′ = A−1J ~x = A−1J I ~x

→ ~x ′
new = A−1J AA−1 ~x

→ ~x ′
new = D ~xnew. (12)

Equation (12) gives the recursions viewed from the new basis. The wonderous trick of all

this is that equation (12) is easy to iterate:

~xnew[t] = D ~xnew[t− 1] = D2 ~xnew[t− 2] = ... = Dt ~xnew[0], (13)

where

Dt =



λt
1 0 ... 0

0 λt
2 ... 0

... ... ... ...

0 0 ... λt
n


. (14)

It would not have been so easy to find Jt!

We can see what is happening in the original basis by noting that the equation D =

A−1JA may be multiplied by matrix A on the left and matrix A−1 on the right to give

ADA−1 = AA−1 J AA−1 = J. This is the transformation to go from the new basis

back to the old one. For instance, after an amount of time t, we can find Jt by writing it

as (ADA−1)t. This can be written as the product of (ADA−1) times itself t times, but

(ADA−1)(ADA−1) = AD(A−1A)DA−1 = AD2A−1, etc. Therefore, the transition matrix

for the population over a period of time, t, is Jt = (ADA−1)t = ADtA−1. This provides

the general solution to the recursion equations.

Summary – Although a transition matrix may be difficult to iterate to determine how

a linear system of equations changes over time, we can transform the recursions into a new

basis (specified by the eigenvectors) in which the transition matrix is a diagonal matrix. It is

then easy to iterate the diagonal matrix to find out where the population will be any time in

the future. Since a change in basis is simply a change in ‘vantage point’, this transformation

doesn’t change the behavior of the dynamics. In fact, we can back-transform to get the

general solution in the original basis from the general solution in the new basis.
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