Analysis of Linear Equations

Motivation – To determine the dynamics of a system of equations in more than one variable.

Consider the recursion equations for any model that describes the change in state of a population from one generation $(x_i[t])$ to the next $(x_i[t+1])$. To make it easier to write, we will use x_i to denote the variables in the current generation and x'_i to denote the variables in the next generation. In this handout, we will consider only LINEAR functions of the variables (e.g. $x'_1 = j_{11}x_1 + j_{12}x_2$ but not $x'_1 = j_{11}x_1x_2$). If there are n variables then there will be n functions describing the change in these variables:

$$x'_{1} = j_{11}x_{1} + j_{12}x_{2} + \dots j_{1n}x_{n},$$

$$x'_{2} = j_{21}x_{1} + j_{22}x_{2} + \dots j_{2n}x_{n},$$

$$\dots$$

$$x'_{n} = j_{n1}x_{1} + j_{n2}x_{2} + \dots j_{nn}x_{n}$$
(1)

(e.g. in a predator-prey model, n = 2 since we have to track both the number of predators and the number of prey). Since the equations are linear, we can also write these equations in matrix form:

$$\begin{pmatrix} x'_1 \\ x'_2 \\ \dots \\ x'_n \end{pmatrix} = \begin{pmatrix} j_{11} & j_{12} & \dots & j_{1n} \\ j_{21} & j_{22} & \dots & j_{2n} \\ \dots & \dots & \dots & \dots \\ j_{n1} & j_{n2} & \dots & j_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
(2)

Denoting the matrix by **J** and the vector of x_i by \vec{x} , we can then write equation (2) as

$$\vec{\mathbf{x}}' = \mathbf{J}\vec{\mathbf{x}}.\tag{3}$$

 \mathbf{J} is known as a transition matrix, since it describes how the population vector changes from one generation to the next. To find out where the population will be at some generation t (described by the vector $\vec{\mathbf{x}}[t]$), we can use equation (3) over and over again: $\vec{\mathbf{x}}[t] = \mathbf{J} \ \vec{\mathbf{x}}[t-1] = \mathbf{J}^2 \ \vec{\mathbf{x}}[t-2]... = \mathbf{J}^t \ \vec{\mathbf{x}}[0]$. In most cases, it will be hard to find out what \mathbf{J}^t equals directly, so we must digress for a moment to review some basic theorems from

linear algebra that can help. These will be used to determine what happens to the vector, $\vec{\mathbf{x}}$ over time.

A Digression into Linear Algebra – A number λ is an eigenvalue of matrix **J** if there exists a non-zero vector, $\vec{\mathbf{v}}$, that satisfies the equation:

$$\mathbf{J}\vec{\mathbf{v}} = \vec{\mathbf{v}}\lambda. \tag{4}$$

Every vector satisfying this relation is an eigenvector of \mathbf{J} belonging to the eigenvalue, λ . To find the eigenvalues of a matrix, note that we can rearrange¹ equation (4) as $\mathbf{J}\vec{\mathbf{v}} - \lambda\vec{\mathbf{v}} = (\mathbf{J} - \lambda \mathbf{I})\vec{\mathbf{v}} = \vec{\mathbf{0}}$, where \mathbf{I} is the identity matrix (a diagonal matrix with ones along the diagonal), and $\vec{\mathbf{0}}$ is a vector of zeros. A matrix, like $(\mathbf{J} - \lambda \mathbf{I})$, which equals zero when multiplied by some non-zero vector $\vec{\mathbf{v}}$ is called singular. Singular matrices have the property that their determinant equals zero. This means that the determinant of $(\mathbf{J} - \lambda \mathbf{I})$ equals zero, which is written as $|\mathbf{J} - \lambda \mathbf{I}| = 0$. This determinant is an n^{th} degree polynomial in λ , the roots of which are the eigenvalues of the matrix \mathbf{J} : $\lambda_1, \lambda_2, ... \lambda_n$. For example, in the n = 2 case,

$$(\mathbf{J} - \lambda \mathbf{I}) = \begin{pmatrix} j_{11} - \lambda & j_{12} \\ j_{21} & j_{22} - \lambda \end{pmatrix}$$
 (5)

so that

$$|\mathbf{J} - \lambda \mathbf{I}| = (j_{11} - \lambda)(j_{22} - \lambda) - j_{21}j_{12} = \lambda^2 - \lambda(j_{11} + j_{22}) + j_{11}j_{22} - j_{21}j_{12} = 0.$$
 (6)

The two roots² to this equation are the two eigenvalues.

The analysis of the transition matrix \mathbf{J} can be simplified by changing the coordinate system (or $basis^3$). That is, we can look at the recursions from a different vantage point and they'll look simpler, but all we've done is change our viewpoint and not the dynamical behavior of the system. If \mathbf{J} has n linearly independent eigenvectors, then \mathbf{J} can be transformed into another coordinate system in which the transition matrix is a diagonal matrix, \mathbf{D} , which is much easier to analyze and whose diagonal elements are the corresponding n

 $^{^1\}mathrm{Using}$ the distributive law for matrix multiplication.

The two roots can be found using the quadratic formula: $\lambda_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $\lambda_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

³The *basis* is the co-ordinate system in which the vectors are measured. For instance, in a regular two dimensional plot, the x-axis and the y-axis provide the co-ordinate system in which everything is measured. The basis in which measurements are taken can be changed or *transformed*. This basically superimposes a different grid onto the system of equations but doesn't change their behavior. For instance, you could transform x-y coordinates into polar coordinates, but that wouldn't change what was happening over time.

eigenvalues:

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$
 (7)

(In linear algebra terms, matrix \mathbf{J} is similar to matrix \mathbf{D} .) The advantage of performing this transformation is that while $\mathbf{J^t}$ is hard to compute, $\mathbf{D^t}$ is easy to compute.

To change coordinate systems so that the transition matrix is diagonal we do the following. Let \mathbf{A} equal the matrix whose columns are the n eigenvectors ($\vec{\mathbf{v}}$) that satisfy equation (4), then \mathbf{A} corresponds to a transformation matrix from the original co-ordinate system (which represented the number or frequency of each type separately), into the co-ordinate system based on the n eigenvectors, $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2...\vec{\mathbf{v}}_n\}$. To transform a matrix from one basis into another, the following operation is performed:

$$\mathbf{A}^{-1}\mathbf{J}\mathbf{A},\tag{8}$$

where \mathbf{A}^{-1} is the *inverse* of \mathbf{A} , which means that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$. Since each of the columns in matrix \mathbf{A} are eigenvectors, we can use equation (4) to show that $\mathbf{J}\mathbf{A} = \mathbf{A}\mathbf{D}$. For instance, when n = 2,

$$\begin{pmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{pmatrix} \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix} = \begin{pmatrix} \lambda_1 v_{11} & \lambda_2 v_{12} \\ \lambda_1 v_{21} & \lambda_2 v_{22} \end{pmatrix} = \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
(9)

where

$$\mathbf{J} = \begin{pmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix}, \quad \text{and} \quad \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
 (10)

This works because each of the columns in the **A** matrix is an eigenvector. Since $\mathbf{J}\mathbf{A} = \mathbf{A}\mathbf{D}$, we can multiply both sides of the equation on the left by \mathbf{A}^{-1} to get $\mathbf{A}^{-1}\mathbf{J}\mathbf{A} = \mathbf{A}^{-1}\mathbf{A}\mathbf{D} = \mathbf{D}$. In other words, in the new basis composed of eigenvectors, the transition matrix is **D**.

To transform a vector (e.g. \vec{x}) from the old basis into the new basis, the following operation is performed:

$$\vec{\mathbf{x}}_{\text{new}} = \mathbf{A}^{-1} \vec{\mathbf{x}}.\tag{11}$$

Back to Analysing a System of Linear Equations – Take the recursions described by equations (3) and multiply both sides by A^{-1} on the left. We then get:

$$\mathbf{A}^{-1}\vec{\mathbf{x}}' = \mathbf{A}^{-1}\mathbf{J} \vec{\mathbf{x}} = \mathbf{A}^{-1}\mathbf{J} \mathbf{I} \vec{\mathbf{x}}$$

$$\rightarrow \vec{\mathbf{x}}'_{\text{new}} = \mathbf{A}^{-1}\mathbf{J} \mathbf{A} \mathbf{A}^{-1} \vec{\mathbf{x}}$$

$$\rightarrow \vec{\mathbf{x}}'_{\text{new}} = \mathbf{D} \vec{\mathbf{x}}_{\text{new}}.$$
(12)

Equation (12) gives the recursions viewed from the new basis. The wonderous trick of all this is that equation (12) is easy to iterate:

$$\vec{\mathbf{x}}_{\text{new}}[\mathbf{t}] = \mathbf{D} \ \vec{\mathbf{x}}_{\text{new}}[\mathbf{t} - 1] = \mathbf{D}^2 \ \vec{\mathbf{x}}_{\text{new}}[\mathbf{t} - 2] = \dots = \mathbf{D}^t \ \vec{\mathbf{x}}_{\text{new}}[\mathbf{0}], \tag{13}$$

where

$$\mathbf{D^{t}} = \begin{pmatrix} \lambda_{1}^{t} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{t} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n}^{t} \end{pmatrix}.$$
 (14)

It would not have been so easy to find J^t !

We can see what is happening in the original basis by noting that the equation $\mathbf{D} = \mathbf{A}^{-1}\mathbf{J}\mathbf{A}$ may be multiplied by matrix \mathbf{A} on the left and matrix \mathbf{A}^{-1} on the right to give $\mathbf{A}\mathbf{D}\mathbf{A}^{-1} = \mathbf{A}\mathbf{A}^{-1}\mathbf{J}\mathbf{A}\mathbf{A}^{-1} = \mathbf{J}$. This is the transformation to go from the new basis back to the old one. For instance, after an amount of time t, we can find \mathbf{J}^t by writing it as $(\mathbf{A}\mathbf{D}\mathbf{A}^{-1})^t$. This can be written as the product of $(\mathbf{A}\mathbf{D}\mathbf{A}^{-1})$ times itself t times, but $(\mathbf{A}\mathbf{D}\mathbf{A}^{-1})(\mathbf{A}\mathbf{D}\mathbf{A}^{-1}) = \mathbf{A}\mathbf{D}(\mathbf{A}^{-1}\mathbf{A})\mathbf{D}\mathbf{A}^{-1} = \mathbf{A}\mathbf{D}^2\mathbf{A}^{-1}$, etc. Therefore, the transition matrix for the population over a period of time, t, is $\mathbf{J}^t = (\mathbf{A}\mathbf{D}\mathbf{A}^{-1})^t = \mathbf{A}\mathbf{D}^t\mathbf{A}^{-1}$. This provides the general solution to the recursion equations.

Summary — Although a transition matrix may be difficult to iterate to determine how a linear system of equations changes over time, we can transform the recursions into a new basis (specified by the eigenvectors) in which the transition matrix is a diagonal matrix. It is then easy to iterate the diagonal matrix to find out where the population will be any time in the future. Since a change in basis is simply a change in 'vantage point', this transformation doesn't change the behavior of the dynamics. In fact, we can back-transform to get the general solution in the original basis from the general solution in the new basis.