Altruism in a volatile world

Appendix A | Derivation

A1 | General stochastic Hamilton’s rule

This Appendix provides a derivation of Inequality (1) in the main text. We start with the general condition for evolutionary change, the Price equation\(^{\text{31}}\). Note that the bet-hedging literature often makes use of the geometric mean approximation (which we derive from the stochastic Hamilton’s rule in section A3 below); unless otherwise stated, when we use the unqualified term ‘mean’ we refer to the arithmetic mean.

The change in the mean value \(\bar{z}\) of a trait in a population is a function of the reproductive success \(w_x\) associated with the trait value \(z_x\) (across individuals \(x \in N\)) and the average reproductive success \(\bar{w}\) across the population:

\[
\Delta \bar{z} = \mathbb{C}_x \left[z_x, \frac{w_x}{\bar{w}}\right] + \mathbb{E}_x \left[\left(\frac{w_x}{\bar{w}}\right) \Delta z_x\right]
\]

(A1)

\(\mathbb{C}_x \left[z_x, \frac{w_x}{\bar{w}}\right]\) is the component of evolutionary change due to selection (the ‘selection covariance’). The fraction \(\frac{w_x}{\bar{w}}\) within this covariance is individual \(x\)’s relative fitness, which captures the intuition that natural selection favours the alleles that enable their bearer to outcompete conspecifics. \(\mathbb{E}_x \left[\left(\frac{w_x}{\bar{w}}\right) \Delta z_x\right]\) deals with non-selective contributions to evolutionary change (such as biased transmission of alleles between parents and offspring). We are interested in the action of selection, so we will focus on the first term.

The Price equation in its form in Equation (A1) is retrospective: it looks back over the change that has happened and provides a convenient way of dividing it into its contributory components. A prospective (forward-looking) Price equation, on the other hand, would be an expectation of \(\Delta \bar{z}\) over the possible states of nature into which the population may enter. \(\Delta \bar{z}\) might be very different in a drought than in a year of plenty. Let the current environmental conditions be denoted \(\pi\), of a set of possible environmental conditions \(\Pi\) into which the population may enter. Grafen\(^{\text{22}}\) and later Rice\(^{\text{32}}\) have noted that the expectation over \(\Pi\) of the selection covariance provides the information required for the expectation of \(\Delta \bar{z}\):

\[
\mathbb{E}_\pi[\Delta \bar{z}] = \mathbb{C}_x \left[z_x, \mathbb{E}_\pi \left[\frac{w_x}{\bar{w}}\right]\right]
\]

(A2)
We are interested in the fate of genes in the population. The ‘trait’ we address is the organism’s genetic value, \(G_x\), a quantity that captures the alleles that an individual carries (allele frequency within the individual). Accordingly, \(z_x = G_x\). See Extended Data Table E1 for a list of all parameters used in the model.

Both \(w_x\) and \(\bar{w}\) are random variables with their own probability distributions across environmental states. Equation (A2) states that the expected change in \(\bar{G}\) in the population will depend on how closely genetic values covary with the expectation of relative fitness. This fraction is the expectation of a ratio of random variables, which is not equal to the ratio of the expectations of each variable when \(w_x\) and \(\bar{w}\) are correlated:

\[
\mathbb{E}[w_x] \neq \frac{\mathbb{E}[w_x]}{\mathbb{E}[\bar{w}]}.
\]

The expectation of a ratio of random variables can be expressed using the Taylor series, where the notation \(\ll k \bar{w} \gg\) denotes the \(k\)th central moment of \(\bar{w}\) across \(\Pi\) and \(\ll w_x, k \bar{w} \gg\) denotes the \(k\)th mixed moment of \(w_x\) and \(\bar{w}\) across \(\Pi\) (assuming \(\bar{w} < 2\mathbb{E}[\bar{w}]\)):

\[
\mathbb{E}[w_x] = \frac{\mathbb{E}[w_x]}{\mathbb{E}[\bar{w}]} + \sum_{k=1}^{\infty} (-1)^k \frac{\mathbb{E}[w_x] \ll k \bar{w} \gg + \ll w_x, k \bar{w} \gg}{\mathbb{E}[\bar{w}]^{k+1}}.
\]

As Queller \(3^3\) does for relative fitness in a non-stochastic environment, we express the individual’s expected reproductive success (number of surviving offspring) in a stochastic environment, \(\mathbb{E}[w_x]\), in the form of a multiple regression equation. Part of an individual’s reproductive success will be due to the genes it carries itself: thus, one partial regression slope must relate the individual’s genetic value \(G_x\) to its expected reproductive success \((\beta_{\mathbb{E}[w_x], G_x})\). Another part of its reproductive success will be due to the genetic value \(G_y\) of actors serving as social partners \((\beta_{\mathbb{E}[w_x], G_y})\). The expected reproductive success of individual \(x\) is:

\[
\mathbb{E}[w_x] = \alpha_{\mathbb{E}[w_x]} + \beta_{\mathbb{E}[w_x], G_x} G_x + \beta_{\mathbb{E}[w_x], G_y} G_y + \epsilon_{\mathbb{E}[w_x]}.
\]

The intercept of the regression slope \((\alpha_{\mathbb{E}[w_x]})\) is the ‘baseline’ expected reproductive success the organism expects before taking into account its own genotype and that of its social partners. \(\epsilon_{\mathbb{E}[w_x]}\) captures noise around the regression line.

Equation (A4) contains the central moments characterising the probability distribution of the average reproductive success in the population (\(\bar{w}\)) across environmental states:

\[
\ll k \bar{w} \gg = \mathbb{E}[((\bar{w} - \mathbb{E}[\bar{w}])^k)]
\]
The shape of the distribution from which a focal individual samples its reproductive success appears in Equation (A4) within the mixed moments:

$$\ll w_x^k \bar{w} \gg = E_\pi [(w_x - E_\pi [w_x]) (\bar{w} - E_\pi [\bar{w}])^k]$$ \hspace{1cm} (A7)

The most familiar of the mixed moments is the covariance, $C_\pi [w_x, \bar{w}]$, which arises when $k = 1$. Higher mixed moments, such as the coskewness and cokurtosis, appear at higher values of k. Because each mixed moment can potentially be influenced by the organism's own genotype and its social partners, we can describe each one using linear regression equations:

$$\ll w_x^k \bar{w} \gg = \alpha_{\ll w_x^k \bar{w} \gg} + \beta_{\ll w_x^k \bar{w} \gg} G_x + \beta_{\ll w_x^k \bar{w} \gg} \bar{G_y} + \epsilon_{\ll w_x^k \bar{w} \gg}$$ \hspace{1cm} (A8)

We now substitute these regression slopes into selection covariance of the Price equation (Equation A2):

$$E_\pi [\Delta \bar{G}] = E_\pi \left[\begin{array}{c} a_{\pi[w_x]} + \beta_{\pi[w_x]} G_x + \beta_{\pi[w_x]} \bar{G_y} + \epsilon_{\pi[w_x]} \\ + \sum_{k=1}^\infty (-1)^k \left(a_{\pi[w_x]} + \beta_{\pi[w_x]} G_x + \beta_{\pi[w_x]} \bar{G_y} + \epsilon_{\pi[w_x]} \right) \ll w_x^k \bar{w} \gg \right]$$ \hspace{1cm} (A9)

The expected value of the population average reproductive success across states of nature is a constant (i.e. for all individuals $x \in N$, it is identical). As a constant, it does not covary with the genetic values of individuals, so can be moved outside of the selection covariance (a covariance with a constant is by definition 0). By the linearity rule for covariances $C[X, Y + Z] = C[X, Y] + C[X, Z]$, we also expand the selection covariance:

$$E_\pi [\Delta \bar{G}] = \frac{1}{E_\pi [\bar{w}]} \left[C_x [G_x, \alpha_{\pi[w_x]}] + C_x [G_x, \beta_{\pi[w_x]} G_x] + C_x [G_x, \beta_{\pi[w_x]} \bar{G_y}] + C_x [G_x, \epsilon_{\pi[w_x]}] \\ + \sum_{k=1}^\infty (-1)^k \left(C_x [G_x, \alpha_{\pi[w_x]} \ll w_x^k \bar{w} \gg] + C_x [G_x, \beta_{\pi[w_x]} G_x \ll w_x^k \bar{w} \gg] \\ + C_x [G_x, \beta_{\pi[w_x]} \bar{G_y} \ll w_x^k \bar{w} \gg] + C_x [G_x, \epsilon_{\pi[w_x]} \ll w_x^k \bar{w} \gg] \right) \right]$$ \hspace{1cm} (A10)

$C_x [G_x, \alpha_{\pi[w_x]}]$, $C_x [G_x, \alpha_{\pi[w_x]} \ll w_x^k \bar{w} \gg]$ and $C_x [G_x, \alpha_{\ll w_x^k \bar{w} \gg}]$ can all be dropped from the equation, because they involve the covariances of the variable G_x with a constant. Similarly, we follow...
Queller33,34 in assuming that there is no covariance between individual genetic value and (in our case) the three residual error terms: \(C_x \left[G_x, e_{E_n[w_x]} \right] = C_x \left[G_x, e_{E_n[w_x]} + \varepsilon \right] = C_x \left[G_x, e_{\varv w_x, k \bar{w}} \right] = 0. \)

The partial regression slopes are constants so can be moved outside of their respective covariances with \(G_x \). We can now express the condition for an expected increase in \(\bar{G} \) (i.e. \(E_{\pi} [\Delta \bar{G}] > 0 \)) as follows:

\[
1 \frac{1}{E_{\pi} [\bar{w}]} \left(\beta_{E_n[w_x], G_x} C_x [G_x, G_x] + \beta_{E_n[w_x], G_y} C_x [G_x, G_y] \right) + \sum_{k=1}^{\infty} \frac{(-1)^k}{E_{\pi} [\bar{w}]^k} \left(\left< \left< \bar{w} \right> \right> \beta_{E_n[w_x], G_x} C_x [G_x, G_x] + \left< \left< \bar{w} \right> \right> \beta_{E_n[w_x], G_y} C_x [G_x, G_y] \right) > 0
\]

\[(A11)\]

Dividing both sides of Inequality (A11) by the variance in genetic value across individuals, \(V_x \left[G_x \right] \), obtains relatedness33,35 (\(r \equiv \frac{C_x \left[G_y, G_x \right]}{V_x \left[G_x \right]} \)):

\[
1 \frac{1}{E_{\pi} [\bar{w}]} \left(\beta_{E_n[w_x], G_y} + r \beta_{E_n[w_x], G_y} + \sum_{k=1}^{\infty} \frac{(-1)^k}{E_{\pi} [\bar{w}]^k} \left(\left< \left< \bar{w} \right> \right> \beta_{E_n[w_x], G_y} + \left< \left< \bar{w} \right> \right> \beta_{<w_x, k\bar{w}>, G_y} \right) \right) > 0
\]

\[(A12)\]

We multiply both sides of this inequality by \(E_{\pi} [\bar{w}] \). Grouping the coefficients of \(r \) gives:

\[
r \left(\beta_{E_n[w_x], G_y} + \sum_{k=1}^{\infty} \frac{(-1)^k}{E_{\pi} [\bar{w}]^k} \left(\left< \left< \bar{w} \right> \right> \beta_{E_n[w_x], G_y} + \beta_{<w_x, k\bar{w}>, G_y} \right) \right) > -\beta_{E_n[w_x], G_x} + \sum_{k=1}^{\infty} \frac{(-1)^k}{E_{\pi} [\bar{w}]^k} \left(\left< \left< \bar{w} \right> \right> \beta_{E_n[w_x], G_x} - \beta_{<w_x, k\bar{w}>, G_x} \right)
\]

\[(A13)\]

For clarity, we denote the regression slopes of the individual’s genetic value \(G_x \) and the genetic value of its social partner \(G_y \) on the different parameters of the individual’s probability distribution for reproductive success as follows:

\[
b_\mu \equiv \beta_{E_n[w_x], G_y} = \beta_{E_n[w_y], G_x} \quad (A14a)
\]

\[
b_k \equiv \beta_{<w_x, k\bar{w}>, G_y} = \beta_{<w_x, k\bar{w}>, G_x} \quad (A14b)
\]

\[
c_\mu \equiv -\beta_{E_n[w_x], G_x} \quad (A14c)
\]

\[
c_k \equiv -\beta_{<w_x, k\bar{w}>, G_x} \quad (A14d)
\]
The general expression for a stochastic Hamilton’s rule is then:

\[r \left(b \mu + \sum_{k=1}^{\infty} \frac{(-1)^k}{E_{\pi}[\bar{w}]^k} \ll k \gg b \mu + b_k \right) > c \mu + \sum_{k=1}^{\infty} \frac{(-1)^k}{E_{\pi}[\bar{w}]^k} \ll k \gg c \mu + c_k \]

which is Inequality (1) in the main text.

A2 | Approximation for the first two moments

A bet-hedging genotype reduces the variance in fitness at the expense of reducing arithmetic mean fitness. We obtain the stochastic approximation of Hamilton’s rule suitable for bet-hedging effects by ignoring \(k > 1 \) in Equation (A4) (e.g. skew) to focus only on the arithmetic mean and variance effects. This allows us to approximate the selection covariance of the Price equation as follows:

\[E_{\pi}[\Delta \bar{G}] \approx C_x \left[C_{x^t} \left(\frac{E_{\pi}[w_x]}{E_{\pi}[\bar{w}]} - \frac{C_{\pi}[w_x, \bar{w}]}{E_{\pi}[\bar{w}]^2} \right) \right] \]

(A16)

The covariance between individual fitness \(w_x \) and population average fitness \(\bar{w} \) in Equation (A16) can be alternatively expressed as:

\[C_{\pi}[w_x, \bar{w}] = \rho_x \sigma_{\pi}[w_x] \sigma_{\pi}[\bar{w}] \]

(A17)

where \(\sigma_{\pi}[w_x] \) is the standard deviation of the individual’s reproductive success, \(\sigma_{\pi}[\bar{w}] \) is the standard deviation of the population’s average reproductive success over \(\Pi \), and \(\rho_x \) is the product-moment correlation coefficient for \(w_x \) and \(\bar{w} \) as they fluctuate over \(\Pi \). Substituting these terms into the approximation of the selection covariance (Equation (A16)) obtains:

\[E_{\pi}[\Delta \bar{G}] \approx \frac{1}{E_{\pi}[\bar{w}]} C_x \left[C_{x^t} \left(E_{\pi}[w_x] - \nu \rho_x \sigma_{\pi}[w_x] \right) \right] \]

(A18)

where \(\nu \) denotes the coefficient of variation of the population’s average reproductive success:

\[\nu = \frac{\sigma_{\pi}[\bar{w}]}{E_{\pi}[\bar{w}]} \]

(A19)

\(\nu \) is independent of the organism’s decisions, and quantifies the degree to which the environment is stochastic.

The condition for expected increase in \(\bar{G} \) (\(E_{\pi}[\Delta \bar{G}] > 0 \)) is then:

\[C_x \left[C_{x^t} \left(E_{\pi}[w_x] - \nu \rho_x \sigma_{\pi}[w_x] \right) \right] > 0 \]

(A20)
Above (Equation (A5)), we have already defined $\mathbb{E}_n[w_x]$ using multiple linear regression. We follow a similar approach with standard deviation, weighted by the degree to which it correlates (ρ_x) with the fluctuating average reproductive success \bar{w} in the population:

$$\rho_x \sigma_n[w_x] = \alpha_{\rho_x} \sigma_n[w_x] + \beta_{\rho_x} \sigma_n[w_x] \bar{G}_x + \beta_{\rho_x} \sigma_n[w_x] \bar{G}_y + \epsilon_{\rho_x} \sigma_n[w_x] \tag{A21}$$

Substituting Equation (A5) and Equation (A21) into the condition for selection (Inequality (A20)), we obtain:

$$\mathbb{C}_x \left[G_x \left(\alpha_{E_n[w_x]} + \beta_{E_n[w_x]} \bar{G}_x + \beta_{E_n[w_x]} \bar{G}_y + \epsilon_{E_n[w_x]} \right) - \nu \left(\alpha_{\rho_x} \sigma_n[w_x] + \beta_{\rho_x} \sigma_n[w_x] \bar{G}_x + \beta_{\rho_x} \sigma_n[w_x] \bar{G}_y + \epsilon_{\rho_x} \sigma_n[w_x] \right) \right] > 0 \tag{A22}$$

As before, the covariances of G_x with the constants equal 0 (i.e. $\mathbb{C}_x \left[G_x, \alpha_{E_n[w_x]} \right] = \mathbb{C}_x \left[G_x, \nu \alpha_{\rho_x} \sigma_n[w_x] \right] = 0$), and the covariances with the error terms are assumed to be zero (i.e. $\mathbb{C}_x \left[G_x, \epsilon_{E_n[w_x]} \right] = \mathbb{C}_x \left[G_x, \nu \epsilon_{\rho_x} \sigma_n[w_x] \right] = 0$). For clarity, we denote the effects on the correlated variation of the recipient’s reproductive success as follows:

$$b_\sigma \equiv -\beta_{\rho_x} \sigma_n[w_x] \bar{G}_x = -\beta_{\rho_x} \sigma_n[w_y] \bar{G}_x \tag{A23a}$$

$$c_\sigma \equiv \beta_{\rho_x} \sigma_n[w_x] \bar{G}_x \tag{A23b}$$

Substituting Equations (A23a) and (A23b) into (A22) gives:

$$b_\mu \mathbb{C}_x \left[G_x, G_y \right] - c_\mu \mathbb{C}_x \left[G_x, G_x \right] - \nu \left(c_\sigma \mathbb{C}_x \left[G_x, G_x \right] - b_\sigma \mathbb{C}_x \left[G_x, G_y \right] \right) > 0 \tag{A24}$$

Dividing both sides of Inequality (A24) by $\mathbb{V}_x \left[G_x \right]$ to obtain relatedness $\left(r \equiv \frac{c_\sigma \mathbb{C}_x \left[G_x, G_x \right]}{\mathbb{V}_x \left[G_x \right]} \right)$, we can rewrite the condition for selection as follows:

$$r \left(b_\mu + \nu b_\sigma \right) > c_\mu + \nu c_\sigma \tag{A25}$$

which is Inequality (2) in the main text.

Note that a positive benefit b_σ (beneficial for the recipient) will be a *negative* regression slope, since it will be *reducing* the volatility of the recipient’s reproduction. Likewise, a positive cost c_σ (deleterious for the actor) will be a *positive* regression slope, since it will be *increasing* the volatility of the actor’s reproduction. If the actor can succeed in reducing its own reproductive volatility, c_σ will be negative (i.e. a ‘negative cost’).

Accordingly, the benefit term B to expected relative fitness is:
\[B \approx b_\mu + vb_\sigma \] \hspace{1cm} (A26)

The cost term \(C \) to expected relative fitness is:

\[C \approx c_\mu + vc_\sigma \] \hspace{1cm} (A27)

These are approximations of the exact benefit and cost terms captured in the general expression for Hamilton’s rule (Inequality (1) in the main text), showing that selection can favour paying a cost to expected reproductive success \((c_\mu > 0, c_\sigma = 0)\) to reduce the \(\bar{w} \)-correlated variation of a relative’s reproductive success \((b_\sigma > 0)\) even in the absence of any effect on the expected reproductive success of the recipient \((b_\mu = 0)\). In this situation:

\[\mathbb{E}_\pi[\Delta \bar{G}] > 0 \iff r > \frac{c_\mu}{vb_\sigma} \] \hspace{1cm} (A28)

The relative importance of mean effects \((b_\mu \text{ and } c_\mu)\) versus volatility effects \((b_\sigma \text{ and } c_\sigma)\) is determined by \(v \). If we denote the importance of mean effects (i.e. their power to determine the outcome of selection) with the weight \(a_\mu \) and the importance of volatility effects with the weight \(a_\sigma \), such that Inequality (A25) can be written as \(r(a_\mu b_\mu + a_\sigma b_\sigma) > a_\mu c_\mu + a_\sigma c_\sigma \), these weights are the numerator and denominator of \(v \) (i.e. \(a_\mu = \mathbb{E}_\pi[\bar{w}] \) and \(a_\sigma = \sigma_\pi[\bar{w}] \)). In short, we emphasise that the true benefits and costs in social evolution should be measured using the expectation of relative fitness\(^1\), which we decompose here into mean fecundity and volatility effects, rather than mean fecundity effects alone.

Under the definition of ‘bet-hedging’, a behaviour must incur a cost to arithmetic mean number of offspring whilst deriving a benefit by reducing the variance associated with the number of offspring\(^3\). The role of fitness variation reduction in social evolution has long attracted verbal speculation\(^9,10,13,36–39\), but has evaded formalisation. We define ‘altruistic bet-hedging’ as occurring when the cost (a reduction in arithmetic mean number of offspring) is paid by the actor whilst a recipient derives the benefit (a reduction in the variance associated with the number of offspring). It is, of course, possible that the recipient may also experience either an increase or a decrease in arithmetic mean number of offspring (a \(b_\mu \) effect). For clarity, we include such cases as ‘altruistic bet-hedging’ only if the \(b_\mu \) effect is insufficient to overcome the costs paid by the actor without the additional \(b_\sigma \) effect. A behaviour is altruistic bet-hedging if it (i) involves a cost \(c_\mu \) paid by the actor and (ii) would not evolve without a socially mediated reduction in the variation of a recipient’s reproductive success (a \(b_\sigma \) effect).

In short, each state has a mean fitness \(\bar{w} \), and a distribution of realised fitnesses for every individual. Unlike environmental stochasticity, within-genotype demographic stochasticity (inter-individual variation in fitness within the same environmental state) is shown by Inequality (2) (main text) not to matter to the outcome of selection in large populations, because the regression slopes cut through this variation to
obtain the relationship between alleles and fitness visible to natural selection. The one condition in which inter-individual variation in fitness within the same environment state does matter is when population sizes (the scale of the competitive population) are tiny, a well-known result in the bet-hedging literature that we generalise for social interactions in section A5 below (Inequality (3) in the main text).

Note that when the ‘natural’ distribution for reproductive success is sufficiently skewed (i.e. either good years or bad years are rare), Hamilton’s rule will need to be approximated to higher moments (e.g. \(k = 2 \)), using Inequality (1) in the main text, to capture effects on the asymmetry of the probability distributions from which the social partners are sampling their reproductive success (although under such conditions, organisms will tend to be specialised to the common environmental state).

A3 | Non-social bet-hedging and Hamilton’s rule

In this section, we show how the stochastic Hamilton’s rule (Inequality (A25)) captures familiar forms of bet-hedging as special cases. In the absence of social interaction \((rB = 0)\), the rule is simply:

\[
c_\mu + vc_\sigma < 0 \quad (A29)
\]

Note that \(c_\mu = -\beta E_\pi[w_x]G_x \) (Equation (A14c)), so a reduction in the reproductive success of the actor \((\beta E_\pi[w_x]G_x < 0)\) represents a positive cost \(c_\mu \). In terms of regression effects, therefore, the stochastic Hamilton’s rule shows the condition for non-social bet-hedging to be as follows, where \(\beta E_\pi[w_x]G_x < 0 \) and \(\beta \rho_x \sigma_\pi[w_x]G_x < 0 \):

\[
\beta E_\pi[w_x]G_x > v\beta \rho_x \sigma_\pi[w_x]G_x \quad (A30)
\]

To see how these results recover previous results in the non-social bet-hedging literature, consider a non-social haploid population consisting of two rival alleles, denoted \(A_1 \) and \(A_2 \). To identify whether selection is expected to favour the \(A_1 \) allele \((E_\pi[\Delta \tilde{G}] > 0)\), we ask whether there will be a change in genetic value for \(A_1 \) (individuals with the allele of interest \(A_1 \) have a genetic value \(G_x = 1 \), whilst those lacking it have a genetic value of \(G_x = 0 \)).

Each individual \(x \) has an expected number of offspring \(\mu_x \) and a standard deviation in number of offspring \(\sigma_x \). Following Frank & Slatkin\(^\text{40}\) and Starrfelt & Kokko\(^\text{3}\), set \(\mu_x \) equal to the value \(\mu_1 \) for all carriers of allele 1 (and equal to \(\mu_2 \) for all carriers of allele 2) and \(\sigma_x \) equal to the value \(\sigma_1 \) for all carriers of allele 1 (and equal to \(\sigma_2 \) for all carriers of allele 2). In other words, members of a genotype sample their fitness \(w_x \) from a probability distribution shared by all members of the genotype, but they may in principle do so in an uncorrelated fashion with other members of the genotype. The degree to which an individual’s fitness \(w_x \) correlates with fluctuations in population average reproductive success \(\tilde{w} \) is given by \(\rho_{w_x,\tilde{w}} \).
To obtain the exact expected change in gene frequency, Hamilton’s rule can be expressed in the following format:

$$E_{\pi}[\Delta G] = \frac{r(b_\mu + v b_\sigma) - c_\mu - v c_\sigma}{E_{\pi}[\hat{w}]} \cdot V_x[G_x]$$

(A31)

In Equation (A31), we derive Hamilton’s rule without dividing by the variance $V_x[G_x]$ in genetic value; see Equation (2.3) in Okasha & Martens11.

We now set b_μ and b_σ in Equation (A31) to zero to focus on non-social cases. Fitting the stochastic Hamilton’s rule (Inequality (A25)) obtains the following non-social components c_μ and c_σ:

\begin{align}
 c_\mu &= \mu_2 - \mu_1 \\
 c_\sigma &= \rho_{1,\hat{w}} \sigma_1 - \rho_{2,\hat{w}} \sigma_2
\end{align}

(A32a)

(A32b)

In other words, there are two horizontal positions (0 and 1) on a graph of μ against genetic value G_x; the two vertical positions are μ_1 and μ_2. The slope $\beta_{E_{\pi}[w_x|G_x]}$ of μ against G_x is then simply $\mu_1 - \mu_2$. The cost term c_μ is $-\beta_{E_{\pi}[w_x|G_x]}$, i.e. $\mu_2 - \mu_1$. Likewise, on the graph of \hat{w}-correlated volatility against genetic value G_x, there are two vertical positions $\rho_{1,\hat{w}} \sigma_1$ and $\rho_{2,\hat{w}} \sigma_2$, so the slope $\beta_{\rho_{x,\hat{w}} \sigma_1|G_x}$ of \hat{w}-correlated volatility against G_x is $\rho_{1,\hat{w}} \sigma_1 - \rho_{2,\hat{w}} \sigma_2$. The coefficient c_σ is equal to $\beta_{\rho_{x,\hat{w}} \sigma_1|G_x}$ (Equation (A23b)).

Recall that v is the coefficient of variation in population average reproductive success $\frac{\sigma_{[\pi|w]}}{E_{\pi}[^{\hat{w}}]}$; Equation (A19)). The variance in breeding value, $V_x[G_x]$, is equal to $q_1 q_2$, as it represents a two-point distribution (i.e. $V_x[G_x] = q_1 q_2 (1 - 0)^2 = q_1 q_2$). Equation (A31) can now be written:

$$E_{\pi}[\Delta G] = \frac{\mu_1 - \mu_2 - \frac{\sigma_{[\pi|w]}}{E_{\pi}[^{\hat{w}}]} (\rho_{1,\hat{w}} \sigma_1 - \rho_{2,\hat{w}} \sigma_2)}{q_1 q_2}$$

(A33)

As there are only two genetic values in a haploid world (0 and 1), $\rho_{1,\hat{w}} \sigma_1$ and $\rho_{2,\hat{w}} \sigma_2$ are the expected values of $\rho_{w_x,\hat{w}} \sigma_x$ for members of each genotype, obtained as a predicted value in a least-squares regression (Inequality (A25)). We denote individuals with the index i:

\begin{align}
 \rho_{1,\hat{w}} \sigma_1 &= \sigma_1 \cdot \frac{1}{q_1 N} \sum_{i=1}^{q_1 N} \rho_{w_i,\hat{w}} \\
 \rho_{2,\hat{w}} \sigma_2 &= \sigma_2 \cdot \frac{1}{q_2 N} \sum_{i=1}^{q_2 N} \rho_{1,\hat{w}}
\end{align}

(A34a)

(A34b)
The summation term in Equation (A34a) contains the correlation between individual i's reproductive success w_i and the average reproductive success \bar{w} in the population. Since a correlation can be expressed in the form $\rho_{Z,Y} = \frac{C[Z,Y]}{\sigma[Z]\sigma[Y]}$, we express this summation term as follows:

$$\frac{1}{q_1 N} \sum_{i=1}^{q_1 N} \rho_{w_i,\bar{w}} = \frac{1}{q_1 N} \sum_{i=1}^{q_1 N} \frac{C[\pi, w_i, \bar{w}]}{\sigma_\pi \sigma[\bar{w}]}$$

(A35)

We then carry the summation inside the covariance:

$$\frac{1}{q_1 N} \sum_{i=1}^{q_1 N} \rho_{w_i,\bar{w}} = \frac{C[\pi, \frac{1}{q_1 N} \sum_{i=1}^{q_1 N} w_i, \bar{w}]}{\sigma_\pi \sigma[\bar{w}]}$$

(A36)

The term $\frac{1}{q_1 N} \sum_{i=1}^{q_1 N} w_i$ is the average reproductive success for carriers of allele A_1. To match notation in Starrfelt & Kokko, we call this R_1:

$$R_1 = \frac{1}{q_1 N} \sum_{i=1}^{q_1 N} w_i$$

(A37)

Equation (A37) can now be expressed more simply as:

$$\frac{1}{q_1 N} \sum_{i=1}^{q_1 N} \rho_{w_i,\bar{w}} = \frac{C[\pi, R_1, \bar{w}]}{\sigma_\pi \sigma[\bar{w}]}$$

(A38)

Likewise, since $\bar{w} = q_1 R_1 + q_2 R_2$, we substitute this formula for \bar{w} into Equation (A38) and expand the covariance (since $C[X + Z, Y] = C[X, Y] + C[Z, Y]$):

$$\frac{1}{q_1 N} \sum_{i=1}^{q_1 N} \rho_{w_i,\bar{w}} = \frac{q_1 \sigma_\pi^2 [R_1]^2 + q_2 C[\pi, R_1, R_2]}{\sigma_\pi \sigma[\bar{w}]}$$

(A39)

As Starrfelt & Kokko note in their Equations (7–9), $C[\pi, R_1, R_2] = \rho_{12} \sigma_1 \sigma_2$, and $\sigma_\pi [R_1]^2 = \rho_1 \sigma_1^2$, letting σ_1 denote the standard deviation in reproductive success of an individual carrying allele 1 and ρ_1 denote the correlation in reproductive success between individuals carrying allele 1. Therefore:

$$\frac{1}{q_1 N} \sum_{i=1}^{q_1 N} \rho_{w_i,\bar{w}} = \frac{q_1 \rho_1 \sigma_1^2 + q_2 \rho_{12} \sigma_1 \sigma_2}{\sigma_\pi \sigma[\bar{w}]}$$

(A40)

We can perform the same series of rearrangements for carriers of allele A_2:

$$\frac{1}{q_2 N} \sum_{i=1}^{q_2 N} \rho_{w_i,\bar{w}} = \frac{q_2 \rho_2 \sigma_2^2 + q_1 \rho_{12} \sigma_1 \sigma_2}{\sigma_\pi \sigma[\bar{w}]}$$

(A41)
Substituted into Hamilton’s rule (Equation (A33)), this obtains:

\[
\mathbb{E}_\pi[\Delta \bar{G}] = \frac{\mu_1 - \mu_2 + \frac{1}{\mathbb{E}_\pi[\bar{w}]}(q_2 \rho_2 \sigma_2^2 - q_1 \rho_1 \sigma_1^2 + (q_1 - q_2) \rho_{12} \sigma_1 \sigma_2)}{q_1 q_2}
\]

(A42)

If the population is neither rising nor falling in size, \(\mathbb{E}_\pi[\bar{w}] = 1\):

\[
\mathbb{E}_\pi[\Delta \bar{G}] = q_1 q_2 \left(\mu_1 - \mu_2 + (q_2 \rho_2 \sigma_2^2 - q_1 \rho_1 \sigma_1^2 + (q_1 - q_2) \rho_{12} \sigma_1 \sigma_2) \right)
\]

(A43)

Equation (A43) recovers Frank & Slatkin’s Equation (7) and Starrfelt & Kokko’s Equation (10) for the canonical bet-hedging model familiarly used in the literature (i.e. two alleles in a fixed-size population at a haploid locus in a fluctuating environment of two or more states).

From Equation (A43), we can recover the geometric mean heuristic (which provides a prediction of which allele will fixate) by assuming that there is no correlation between genotypes \((\rho_{12} = 0)\) and setting the population to equal frequencies of each allele \((q_1 = q_2 = \frac{1}{2})\). These conditions provide the well-known geometric-mean approximation (Equation (12) in Frank & Slatkin; note that, as heuristic approximations, there are at least five different estimates for the geometric mean, all of which perform roughly equally well):

\[
\mu_1 - \frac{\rho_1 \sigma_1^2}{2} > \mu_2 - \frac{\rho_2 \sigma_2^2}{2}
\]

A4 | Uncertain relatedness

The potential effects of stochasticity on relatedness have been raised by Goodnight and Lehmann & Balloux. In this section, we explore how uncertainty over relatedness influences the outcome of selection. We show that the mean relatedness of recipients is sufficient to predict the outcome of selection when there is no strong correlation (across environmental states) between the relatedness \(r\) of social partners and the average reproductive success in the population \((\bar{w})\). We denote this correlation as \(\rho_{r,\bar{w}}\). However, if the relatedness of interactants and average reproductive success are negatively correlated \((\rho_{r,\bar{w}} < 0)\), investments in social partners become more valuable as environmental stochasticity increases (i.e. at high values of \(v\)). Conversely, investments in social partners become less valuable in a stochastic environment if this correlation is positive \((\rho_{r,\bar{w}} > 0)\).

To illustrate this result, we denote the reproductive success of individual \(x\) in state \(\pi\) as \(w_x(\pi)\), and express this quantity as a function of its own genetic value \(G_x\) and the genetic value \(G_y\) of its social partner:
\[w_{x(\pi)} = \alpha w_{x(\pi)} + \beta w_{x(\pi)} G_x + \beta w_{y(\pi)} G_y + \epsilon w_{x(\pi)} \quad (A44) \]

We substitute this regression formula into the Price equation (Equation (A2)) to express the condition for selection \(\langle E_\pi[\Delta G] \rangle > 0 \) as:

\[
E_\pi \left[C_x \left(\frac{G_x, \alpha w_x + \beta w_{x,y} G_x + \beta w_{x,y} G_y + \epsilon w_x}{\bar{w}} \right) \right] > 0 \quad (A45)
\]

For a given environmental state \(\pi \), \(\bar{w} \) is a constant with respect to \(G_x \), so we move it outside the covariance, which is defined only for the environmental state \(\pi \). By the linearity of covariances \((C[X + Y, Z] = C[X, Z] + C[Y, Z]) \), this is equal to:

\[
E_\pi \left[\left(C_x[G_x, \alpha w_x] + C_x[G_x, \beta w_{x,y} G_x] + C_x[G_x, \beta w_{x,y} G_y] + C_x[G_x, \epsilon w_x] \right) \right] > 0 \quad (A46)
\]

\(C_x[G_x, \alpha w_x] = 0 \) (since \(\alpha w_x \) is a constant) and we assume \(C_x[G_x, \epsilon w_x] = 0 \). Then:

\[
E_\pi \left[\left(\beta w_{x,y} C_x[G_x, G_x] + \beta w_{x,y} C_x[G_x, G_y] \right) \right] > 0 \quad (A47)
\]

We now divide both sides of Inequality (A47) by the variance in genetic value \(\langle V_x[G_x] \rangle \) to obtain state-specific relatedness \(r_\pi = \frac{E_x[G_x G_y]}{V_x[G_x]} \).

\[
E_\pi \left[\frac{\beta w_{x,y} G_x + \beta w_{x,y} G_y r}{\bar{w}} \right] > 0 \quad (A48)
\]

Retaining the first two terms of the Taylor series expansion of Inequality (A48) gives:

\[
\frac{E_\pi[\beta w_{x,y} G_x] + E_\pi[\beta w_{x,y} G_y]}{E_\pi[\bar{w}]} \cdot \frac{E_\pi[\beta w_{x,y} G_y, \bar{w}]}{E_\pi[\bar{w}]^2} > 0 \quad (A49)
\]

We now consider the case in which the benefit conferred on a recipient and the cost paid by the actor are the same in all environmental states (\(\beta w_{x,y} G_y = b \) and \(\beta w_{x,y} G_x = -c \) for all \(\pi \)). However, we allow relatedness to the recipient to vary among states \(\pi \). This captures the possibility that actors associate with either closer or more distant relatives when the conditions change. The covariance of cost and population average fitness is zero, because cost is now a constant across states \((C_\pi[\beta w_{x,y} G_x, \bar{w}] = C_\pi[c, \bar{w}] = 0) \). Multiplying both sides by \(E_\pi[\bar{w}] \), Inequality (A49) can be simplified to:

\[
b \cdot E_\pi[r] - b \cdot E_\pi[r, \bar{w}] - c > 0 \quad (A50)
\]
We now rearrange Inequality (A50) by expanding the covariance. The covariance between relatedness and population average fitness \(\mathbb{C}_\pi [r_x, \bar{w}] \) can be written as \(\rho_{r_x, \bar{w}} \sigma_\pi [r_x] \sigma_\pi [\bar{w}] \), where \(\rho \) denotes correlation and \(\sigma_\pi \) denotes standard deviation across environmental states. We introduce \(\nu \) as the stochasticity coefficient (the coefficient of variation in population average reproductive success, \(\nu = \frac{\sigma_\pi [\bar{w}]}{\mathbb{E}_\pi [\bar{w}]} \) which we introduced earlier in Equation (A19)). We also use the following notation for clarity: we denote the expectation of relatedness across environmental states as \(r_\mu \), and we denote the standard deviation of relatedness across environmental states as \(r_\sigma \):

\[
\begin{align*}
 r_\mu &= \mathbb{E}_\pi [r] \\
 r_\sigma &= \sigma_\pi [r]
\end{align*}
\] (A51a, b)

Accordingly, Inequality (A50) can be expressed as:

\[
(r_\mu - \rho_{r_x, \bar{w}} \nu r_\sigma) b > c
\] (A52)

Inequality (A52) shows that uncertainty over relatedness \((r_\sigma) \) only influences selection if relatedness fluctuates strongly in either a positively or negatively correlated fashion with population average reproductive success. A negative correlation, across environmental states, between relatedness and average reproductive success \((\rho_{r_x, \bar{w}} < 0) \) results in an actor’s most valuable investments being focused on closer relatives. These investments are the ‘most valuable’ because an increase in recipient fecundity of a given size \(b \) is more valuable when competitors are underperforming (low \(\bar{w} \)): the recipient will enjoy a proportionally greater market share of reproduction than if the increase had occurred when competitors were overperforming (high \(\bar{w} \)). Mean relatedness \(r_\mu \) is sufficient to capture the outcome of selection when population mean reproductive success does not fluctuate \((\nu \approx 0) \), even if actors face high levels of uncertainty \(r_\sigma \) about the kinship of recipients.

A5 | Demographic stochasticity

We now consider the role of risk in a ‘static’ environment, for which the environment does not fluctuate between states (the influence of the environment is identical across the set \(\Pi \)). In a population of size \(N \) in which organisms sample their reproductive success independently \((\mathbb{C}_\pi [w_x, w_{j\neq x}] = 0) \), the covariance (defined across possible fitness outcomes) between the focal individual’s reproductive success \((w_x) \) and the average reproductive success in the population \((\bar{w}) \) is:
\[
\mathbb{C}[w_x, \bar{w}] = C_e \left[w_x, \sum_{j}^{N} w_j \right] = \frac{1}{N} \sum_{j}^{N} \mathbb{C}[w_x, w_j] = \frac{1}{N} \left(\mathbb{C}[w_x, w_x] + \sum_{j \neq x} \mathbb{C}[w_x, w_j] \right) = \frac{V_e[w_x]}{N}
\]

We substitute this into the selection covariance of the Price equation (and multiply out \(E_\pi[\bar{w}]\)):

\[
C_x \left[G_x \left(E_\pi[w_x] - \frac{\sigma_\pi[w_x]^2}{N E_\pi[\bar{w}]} \right) \right] > 0 \quad (A54)
\]

Applying Queller’s 33 regression method (as in Appendix A2) to this equation, we obtain Inequality (3) in the main text (where \(b^{\sigma^2}\) is the effect of the partner’s genotype on the organism’s within-generation variance in reproductive success \((-\beta_{\pi}[w_x], G_x)\), and \(c^{\sigma^2}\) is the effect of the organism’s genotype on its own variance in reproductive success \((\beta_{\pi}[w_x], G_x)\):

\[
r \left(b_\mu + \frac{b^{\sigma^2}}{N E_\pi[\bar{w}]} \right) > c_\mu + \frac{c^{\sigma^2}}{N E_\pi[\bar{w}]} \quad (A55)
\]

A6 | Environmental granularity and dispersal in Hamilton’s rule

In this section, we show how the spatial scale at which environments fluctuate influences the role of \(b_\sigma\) and \(c_\sigma\) in selection.

The magnitude of the stochasticity coefficient \(\nu\) depends on the correlation among individuals in their exposure to all conditions of the environment. Accordingly, when individuals are distributed across different microenvironments, the degree of correlation in environmental state across microenvironments influences the magnitude of \(\nu\). Here, we illustrate this principle in a population divided into multiple microenvironments.

Let the population undergoing global competition be distributed across a total of \(M\) microenvironment patches, each of which samples its local environmental ‘microstate’ from an identical distribution. Population-wide environmental state \(\pi\) is, in effect, a specific combination of microstates across a network of spatial patches inhabited by a population. Assuming there are equal numbers of individuals in each patch, the whole-population average reproductive success \(\bar{w}\) is equal to the mean of the mean reproductive success \(\bar{w}_m\) in each patch \(m\):

\[
\bar{w} = \frac{1}{M} \sum_{m=1}^{M} \bar{w}_m \quad (A56)
\]
Since the scale of competition is the whole population, the stochasticity coefficient v is obtained as the coefficient of variation in whole-population average reproductive success \bar{w} (Equation (A19)):

$$v = \frac{\sigma_{\pi}[\bar{w}]}{E_{\pi}[\bar{w}]} = \frac{\sigma_{\pi} \left[\frac{1}{M} \sum_{m=1}^{M} \bar{w}_m \right]}{E_{\pi} \left[\frac{1}{M} \sum_{m=1}^{M} \bar{w}_m \right]} \quad (A57)$$

We assume that every patch samples its microstate from an identical distribution with a mean of $E_{\pi}[\bar{w}_m] = E_{\pi}[\bar{w}]$ and a variance of $\mathbb{V}_{\pi}[\bar{w}_m]$, but patches can be correlated or uncorrelated in their samples from this distribution. The variance of \bar{w} (i.e. $\sigma_{\pi}[\bar{w}]^2$) can then be obtained using the general formula for the variance of a mean (since \bar{w} is the mean of a total of M patches, each with its own \bar{w}_m in a particular state π of the population):

$$\mathbb{V}_{\pi}[\bar{w}] = \mathbb{V}_{\pi} \left[\frac{1}{M} \sum_{m=1}^{M} \bar{w}_m \right] = \left(\frac{1}{M} + \frac{M-1}{M} \bar{\rho} \right) \mathbb{V}_{\pi}[\bar{w}_m] \quad (A58)$$

$\bar{\rho}$ denotes the average between-patch correlation in average reproductive success \bar{w}_m. As patch number M approaches infinity, this whole-population variance $\mathbb{V}_{\pi}[\bar{w}]$ converges to a simple function of $\bar{\rho}$ and the within-patch variance $\mathbb{V}_{\pi}[\bar{w}_m]$ in average reproductive success:

$$\lim_{M \to \infty} \mathbb{V}_{\pi}[\bar{w}] = \bar{\rho} \cdot \mathbb{V}_{\pi}[\bar{w}_m] \quad (A59)$$

$\mathbb{V}_{\pi}[\bar{w}]$ is the square of the numerator of v. Therefore, in a population distributed over many patches, v is as follows, where v_m is the coefficient of variation in average reproductive success within a single patch (i.e. patch-level stochasticity, $v_m = \frac{\sigma_{\pi}[\bar{w}_m]}{E_{\pi}[\bar{w}_m]}$):

$$\lim_{M \to \infty} v = \frac{\sqrt{\bar{\rho} \cdot \mathbb{V}_{\pi}[\bar{w}_m]}}{E_{\pi}[\bar{w}_m]} = \frac{\sigma_{\pi}[\bar{w}_m]}{E_{\pi}[\bar{w}_m]} \sqrt{\bar{\rho}} = v_m \sqrt{\bar{\rho}} \quad (A60)$$

Equation (A60) shows that whole-population stochasticity v approaches within-patch stochasticity v_m as between-patch correlation approaches 1 (full correlation). This illustrates the fundamental point, emphasised by Starrfelt & Kokko\(^3\) for non-social bet-hedging, that selection on variation effects (b_σ and c_σ in Inequality (A25)) is driven by whole-population environmental fluctuation when the scale of competition is at the level of the whole population (global competition), and that the ‘grain size’\(^3\) of environmental fluctuation (the size of completely correlated areas of the population) is key in determining the strength of selection (Main Text Fig. 1b).
Appendix B | Deriving regression effects

Here, we describe how the benefit and cost terms are obtained in a specific model (implemented as a simulation in MATLAB, for which code is given in Appendix D).

B1 | Discrete environment states

Let a haploid asexual population consist of two genotypes, with genetic values 0 and 1, at a single locus. Genotype 0 is non-cooperative, whilst genotype 1 pays a cost c to reduce the volatility of its recipients’ reproductive success to a proportion η of its natural level. The frequency of genotype 1 in the population is p (and so the frequency of genotype 0 is $1 - p$). The environment fluctuates between two states (‘good’ and ‘bad’).

Following the assortment rules in the first model in Gardner et al.\(^1\) (p. 1030), we assume that individuals preferentially pair with same type (cooperators or noncooperators) with the probabilities in Table B1.

Without cooperation, individuals have a fecundity of z_1 in a good year and z_2 in a bad year. Good years occur with probability d and bad years with probability $1 - d$. The standard deviation of a genotype 0 individual with a genotype 0 social partner is then:

$$\sigma_{00} = \sqrt{(1 - d)d(z_1 - z_2)^2} \quad (B1)$$

Supplementary Table B1 | Mean and variation of reproductive success as a function of social partners in a world fluctuating unpredictably between two states

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Probability of interaction</th>
<th>Mean reproductive success $$(\mu_{xy})$$</th>
<th>Volatility of reproductive success $$(\sigma_{xy})$$</th>
<th>p if $\eta \neq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal (x)</td>
<td>Partner (y)</td>
<td>$p^2 + ap(1 - p)$</td>
<td>$d(x_1 - c) + (1 - d)(x_2 - c)$</td>
<td>$\eta \sqrt{d(1 - d)(x_1 - c - (x_2 - c))^2}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$(1 - a)p(1 - p)$</td>
<td>$d(x_1 - c) + (1 - d)(x_2 - c)$</td>
<td>$\eta \sqrt{d(1 - d)(x_1 - c - (x_2 - c))^2}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$(1 - a)p(1 - p)$</td>
<td>$dx_1 + (1 - d)x_2$</td>
<td>$\eta \sqrt{d(1 - d)(x_1 - x_2)^2}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>$(1 - p)^2 + ap(1 - p)$</td>
<td>$dx_1 + (1 - d)x_2$</td>
<td>$\sqrt{d(1 - d)(x_1 - x_2)^2}$</td>
</tr>
</tbody>
</table>

Assortment rules follow the first model in Gardner et al.\(^1\), leading to $r = \alpha$.

WWW.NATURE.COM/NATURE | 16
A focal individual encountering a genotype 1 social partner experiences a reduction in its fecundity variation by the coefficient η.

From Inequality (A25), Hamilton’s rule (approximated to the first two central moments) is:

$$r(b_\mu + \nu b_\sigma) > c_\mu + \nu c_\sigma \quad (B2)$$

To find the four partial regression slopes $(b_\mu, b_\sigma, c_\mu, c_\sigma)$, we fit the following equations to Supplementary Table B1:

$$E_{\pi}[w_x] = \alpha + \beta G_x + \gamma G_y + \epsilon_{E_{\pi}[w_x]} \quad (B3)$$

$$\rho_x \sigma_{\pi}[w_x] = \alpha \rho_x \sigma_{\pi}[w_x] + \beta \rho_x \sigma_{[w_x]} G_x + \gamma \rho_x \sigma_{[w_x]} G_y + \epsilon_{\rho_x \sigma_{\pi}[w_x]} \quad (B4)$$

Thus, we solve two linear regression equations: one for expected reproductive success ($E_{\pi}[w_x]$) and one for the correlated variation of reproductive success ($\rho_x \sigma_{\pi}[w_x]$). The partial regression slopes m_1 and m_2 in a multiple regression with two predictors h_1 and h_2 of l can be found by solving the following simultaneous equations:

$$m_1 = \frac{C[l, h_1]}{V[h_1]} - m_2 \frac{C[h_1, h_2]}{V[h_1]} \quad (B5)$$

$$m_2 = \frac{C[l, h_2]}{V[h_2]} - m_1 \frac{C[h_1, h_2]}{V[h_2]} \quad (B6)$$

To find b_μ and c_μ, we simultaneously solve:

$$m_1 = \frac{C[E_{\pi}[w_x], G_x]}{V[G_x]} - m_2 \frac{C[G_x, G_y]}{V[G_x]} \quad (B7)$$

$$m_2 = \frac{C[E_{\pi}[w_x], G_y]}{V[G_y]} - m_2 \frac{C[G_x, G_y]}{V[G_y]} \quad (B8)$$

The components of Equations (B7) and (B8) fitted to Table B1 are:

$$\frac{C[E_{\pi}[w_x], G_x]}{V[G_x]} = -c \quad (C9)$$

$$\frac{C[G_x, G_y]}{V[G_x]} = \alpha \quad (B10)$$

$$\frac{C[E_{\pi}[w_x], G_y]}{V[G_y]} = -c\alpha \quad (B11)$$

$$\frac{C[G_x, G_y]}{V[G_y]} = \alpha \quad (B12)$$
We therefore simultaneously solve:

\[m_1 = -c - m_2 \alpha \] \hspace{1cm} (B13)

\[m_2 = - (m_1 + c) \alpha \] \hspace{1cm} (B14)

This obtains \(m_1 = -c \) and \(m_2 = 0 \), which are the partial regression slopes \(\beta E_{\pi} [w_x, g_x] \) and \(\beta E_{\pi} [w_x, g_y] \), respectively. Since the components \(c_\mu \) and \(b_\mu \) in Inequality (A25) are \(c_\mu = -\beta E_{\pi} [w_x, g_x] \) and \(b_\mu = \beta E_{\pi} [w_x, g_y] \), these components are therefore:

\[c_\mu = c \] \hspace{1cm} (B15)

\[b_\mu = 0 \] \hspace{1cm} (B16)

We solve an equivalent pair of simultaneous equations to find \(b_\sigma \) and \(c_\sigma \):

\[m_3 = \frac{C [\sigma_{\pi} [w_x], g_x]}{V [g_x]} - m_4 \frac{C [g_x, g_y]}{V [g_x]} \] \hspace{1cm} (B17)

\[m_4 = \frac{C [\sigma_{\pi} [w_x], g_y]}{V [g_y]} - m_3 \frac{C [g_x, g_y]}{V [g_y]} \] \hspace{1cm} (B18)

Simultaneously solving Equations (B17) and (B18) obtains:

\[m_3 = 0 \] \hspace{1cm} (B19)

\[m_4 = (\eta - 1) \sigma_{oo} \] \hspace{1cm} (B20)

\(m_3 \) is the partial regression slope \(\beta_{p_c} \sigma_{\pi} [w_x], g_x \), which provides the component \(c_\sigma \) in Inequality (A25). \(m_4 \) is the partial regression slope \(\beta_{p_c} \sigma_{\pi} [w_x], g_y \). The component \(b_\sigma \) in Inequality (A25) is equal to \(-\beta_{p_c} \sigma_{\pi} [w_x], g_y \). Accordingly, these two components are:

\[c_\sigma = 0 \] \hspace{1cm} (B21)

\[b_\sigma = (1 - \eta) \sigma_{oo} \] \hspace{1cm} (B22)

\(\nu \) is a simple function of allele frequency \(p \):

\[\nu \equiv \frac{\sigma_{\pi} [\bar{w}]}{E_{\pi} [\bar{w}]} = \frac{(p \eta + (1 - p)) \sigma_{oo}}{\mu_{oo} - p c} \] \hspace{1cm} (B23)

This is an intuitive measure of stochasticity in this environment fluctuating unpredictably between two states: the numerator is the standard deviation of two completely correlated random variables (i.e. the sum of \(\eta \sigma_{oo} \) and \(\sigma_{oo} \), weighted by the frequency of each allele), whilst the denominator is the average number of offspring across states (again, weighted by allele frequency).
Since p appears in the equation for v, v is frequency-dependent. Differentiating stochasticity (v) with respect to the frequency of altruistic bet-hedgers (p), v decreases with rising p when:

$$1 - \eta > \frac{c}{\mu_{oo}}$$ \hspace{1cm} (B24)

Accordingly, stochasticity v falls as frequency p rises (Extended Data Fig. E2) if the effect of variation reduction $(1 - \eta)$ is greater than the relative size of mean-fecundity reduction $(\frac{c}{\mu_{oo}})$.

When this condition (Inequality (B24)) is met, as the frequency p rises the bet-hedgers begin to render the environment effectively stable. At high frequency, the value of volatility-reducing altruism b_σ therefore falls, because v is low. The result is that the population can be reinvaded by familiar mean-fecundity-maximisers, much as a ‘conspiracy of doves’ in the well-known hawk–dove game is vulnerable to invasion by hawks\(^{44}\). (At low costs (c), intermediate levels of variation reduction η are less constrained from reaching fixation.) Connections between coexistence and bet-hedging have been analysed in non-social settings\(^{45}\), although not interpreted in terms of frequency-dependent effects on whole-population stochasticity.

B2 | Frequency at which expected change due to selection is zero

We now have all the components of Hamilton’s rule ($r = \alpha$, $c_{\mu} = c$, $b_{\mu} = 0$, $c_\sigma = 0$, $b_\sigma = -\eta \sigma_{00}$, $v = \frac{(p\eta + (1-p))\sigma_{00}}{\mu_{oo} - pc}$). Putting these components together, we solve for the frequency p^* at which there is no expected change due to selection ($\mathbb{E}_\pi[\Delta \bar{G}] = 0$):

$$p^* = \frac{\alpha(\eta - 1)\sigma^2_{00} + c\mu_{oo}}{\epsilon^2 - (\eta - 1)^2\sigma^2_{00}\alpha}$$ \hspace{1cm} (B25)

When $0 < p^* < 1$, the expected frequency of the social bet-hedgers is intermediate. If $rB > C$ for all p, then the population is expected to tend to $p^* = 1$. Likewise, if $rB < C$ for all p, the population is expected to tend to $p^* = 0$.

B3 | Individual-based simulation

To ensure that gene frequency makes incremental changes through generations in numerical simulation for the system in Table B1, we let offspring production across the population be driven by social interactions, and then sample a random 1% of the adult population for replacement in proportion to the
balance of genotypes amongst the offspring (i.e. each environmental state, 1% of the breeding spots become available for offspring produced that generation).

\(p^\ast \) is the gene frequency at which \(rB - C = 0 \) (Extended Data Fig. E1). The equilibrium frequency around which the population is expected to fluctuate over the long run, \(p' \), is equal to \(p^\ast \) when the changes in gene frequency that occur each generation are small and the sign changes from \(rB > C \) below \(p^\ast \) to \(rB < C \) above \(p^\ast \) (Extended Data Fig. E1c). The first condition reduces displacement from equilibrium: when the population takes extreme leaps in gene frequency each generation, gene frequencies can enter random cycles for which \(p^\ast \) is not the midpoint (\(p^\ast \neq p' \)), as gene frequency moves between extremely different values at which the slope of selection differs. Under a regime of weak selection, \(p^\ast = p' \).

B4 | Effects of chance and autocorrelation in the fluctuating environment

Even if both states are equally probable, the environment may by chance have a run of several good or several bad states. At the predicted equilibrium \(p^\ast \), the change \(\Delta G \) from a good state is exactly opposite to the change from a bad state, so the expected change in average genetic value is zero (\(\mathbb{E}_\pi[\Delta G] = 0 \)). However, the magnitude of the effect is important. If the two types of change \(\Delta G \) have a very large effect, the frequency of altruists may alter rapidly due to a chance sequence of many of the same states: a chance run of five bad years, for instance, might cause one genotype to crash completely. Sustained runs of the same environmental state are more probable when the environment fluctuates in a temporally autocorrelated fashion.

A stochastic population is predicted to occupy its polymorphic position \(p^\ast \) when \(\mathbb{V}_\pi[\Delta G] \approx 0 \) (i.e. \(\mathbb{V}_\pi \left[\mathbb{C}_x \left[C_x, \frac{w_x}{W} \right] \right] = 0 \) and \(p^\ast \) is convergence-stable (i.e. the frequency-dependent stochasticity coefficient \(v \) favours altruists at frequencies \(p_t \) below \(p^\ast \) but selects against it above). Since selection favours altruists when \(v(r\sigma - c\sigma) > c\mu - r\mu \), as long as \((r\sigma - c\sigma) > 0 \) we can divide by \((r\sigma - c\sigma) \) without changing the sign of the inequality to find the conditions for a globally convergence-stable population in terms of the magnitude of the stochasticity coefficient \(v \) at a given frequency \(p_t \) (denoted \(v_{p_t} \)):

\[
\begin{align*}
 p_t < p^\ast & \Rightarrow v_{p_t} > \frac{c\mu - r\mu}{r\sigma - c\sigma} \\
 p_t > p^\ast & \Rightarrow v_{p_t} < \frac{c\mu - r\mu}{r\sigma - c\sigma}
\end{align*}
\]

In the individual-based simulation, we focus on weak selection, where only 1% of the population’s genotype frequencies are available to change each generation. Under weak selection, even high levels of
temporal autocorrelation (leading to frequent runs of the same environmental states across years) do not necessarily deter the population from its convergence point. In general, we emphasise that the Price equation — and its derivation, Hamilton’s rule — focuses on generational changes: accordingly, both the non-stochastic version familiarly used in the literature and the stochastic version presented here can predict the frequency at which there is no change or no expected change (respectively) due to selection. Under appropriate conditions, including low-amplitude fluctuations in allele frequency between generations, this frequency will be realised as an equilibrium state for the population; outside these conditions, the frequency at which there is no expected change due to selection need not represent an equilibrium state.

B5 | Inducible altruism

An actor in a fluctuating environment does not necessarily need to produce a ‘constitutive’ strategy (e.g. help in all states or defect in all states). If the actor possesses information about the current state π, it may be able to tailor its response to produce an optimal strategy for the given state. In principle, this form of phenotypic plasticity may produce ‘inducible’ altruism in a stochastic world: help relatives if you know that a drought is imminent, for instance. In this section, we show how the reliability of information in a stochastic world determines whether cooperation should be constitutive or inducible.

We introduce to the population a plastic allele I, such that there are three alleles in competition:

- **S**: ‘Selfish’: carriers never cooperate
- **C**: ‘Constitutive cooperator’: carriers cooperate in all states
- **I**: ‘Inducible cooperator’: carriers cooperate only when they believe they are in the ‘bad’ state

These alleles have frequencies p_S, p_C, and p_I respectively (i.e. $p_S + p_C + p_I = 1$).

Let an act of cooperation incur a cost c to the actor’s fecundity. In ‘bad’ states (such as drought), receiving cooperation increases an individual’s fecundity by δ_+. In ‘good’ states, we allow the presence of a cooperator to be detrimental to the recipient’s fecundity: the cooperator reduces recipient fecundity by δ_- (note that δ_- can equal zero, or even be negative if the co-operator always benefits the recipient).

Let the plastic allele I pay an additional cost (c_{plastic}) as the ‘cost of plasticity’, determined by both the costs of information gathering and utilisation and the costs of maintaining behavioural flexibility. The quality of the information available to carriers of the plastic allele is determined by its accuracy A: the environmental state π is what the actor thinks it is with probability A.

The frequency of each type of pairing is as follows (Supplementary Table B2):
We can define the fecundity of each of the types of focal individual described in Supplementary Table B2 as follows (Supplementary Table B3):

Supplementary Table B3 | Fecundities of types of focal individual

<table>
<thead>
<tr>
<th>Focal individual x</th>
<th>Partner individual y</th>
<th>Fecundity in good years $(Good_{xy})$</th>
<th>Fecundity in bad years (Bad_{xy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>$A z_1 + (1 - A)(z_1 - c - \delta_-) - c_{\text{plastic}}$</td>
<td>$(z_2 + \delta_+ - c)(1 - A)z_2$</td>
</tr>
<tr>
<td>I</td>
<td>S</td>
<td>$A z_1 + (1 - A)(z_1 - c) - c_{\text{plastic}}$</td>
<td>$(z_2 - c)(1 - A)z_2$</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
<td>$A(z_1 - \delta_-) + (1 - A)(z_1 - c - \delta_-) - c_{\text{plastic}}$</td>
<td>$(z_2 + \delta_+ - c)(1 - A)z_2$</td>
</tr>
<tr>
<td>S</td>
<td>I</td>
<td>$A z_1 + (1 - A)(z_1 - \delta_-)$</td>
<td>$(z_2 + \delta_+ - c)(1 - A)z_2$</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>z_1</td>
<td>z_2</td>
</tr>
<tr>
<td>S</td>
<td>C</td>
<td>$z_1 - \delta_-$</td>
<td>$z_2 + \delta_+$</td>
</tr>
<tr>
<td>C</td>
<td>I</td>
<td>$A(z_1 - c) + (1 - A)(z_1 - c - \delta_-)$</td>
<td>$(z_2 + \delta_+ - c)(1 - A)z_2 - c$</td>
</tr>
<tr>
<td>C</td>
<td>S</td>
<td>$z_1 - c$</td>
<td>$z_2 - c$</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>$z_1 - c - \delta_-$</td>
<td>$z_2 - c + \delta_+$</td>
</tr>
</tbody>
</table>

In Fig. 4 of the main text, we plot the expected direction of change in allele frequency under selection for this population. Note that the stochastic Hamilton’s rule identifies the points in frequency space \{p_S, p_C, p_I\} at which each allele is expected to increase in frequency under selection.
An instructive empirical example is found in the temperate paper wasp *Polistes annularis*: field data for foundresses suggest that inclusive fitness is positive in a ‘bad’ state (characterised by drought) but negative in a ‘good’ state (when drought is absent)⁴⁶. The existence of cooperative foundress groups in the ‘good’ state, when cooperation is predicted to be deleterious, implies that foundresses do not take up the theoretically-plausible option of being socially-plastic ‘bad-year specialists’. In general, constitutive cooperation (cooperation in all states) can outcompete plastic cooperation (‘bad-year specialists’) when information is insufficiently reliable or the costs of plasticity are too high.
Appendix C | Feasibility of $b_\sigma > 0$

Hamilton’s rule is predictive in the sense that it provides a falsifiable criterion to be applied to any specific hypothesis: a proposed combination of measured fitness effects must conform to the rule if they are to explain a given adaptation. In this section, we explore the potential for b_σ effects in social evolution.

In the main text and Appendix A, we highlight that the magnitude of v depends on the extent to which environmental fluctuations are correlated across patches in a matrix or metapopulation, and the extent to which temporal fluctuations within the organism’s reproductive lifespan are correlated. Our intention here is to highlight the feasibility of b_σ-driven sociality, in principle, in the real world; at present, empirical data on the direct links between stochasticity and sociality are sparse. Direct empirical tests of the principle should aim to quantify the factors influencing v.

C1 | Elimination of parasite pressure

Recently, Rehan et al.28 have found that observed mean fecundity effects ($rb_\mu - c$) are unable to explain the evolution of cooperation between sisters ($r = 0.75$) in a facultatively social bee (\textit{Ceratina australensis}). This species inhabits a fluctuating environment, and Rehan et al.38 have previously suggested that bet-hedging could drive the evolution of cooperation: parasite numbers rise and fall between generations, generating ‘periods of extreme parasite pressure’38, but social nests are better able to evade brood loss to parasites. Bees may be effectively blind to environmental state (ambient level of brood loss to parasitism), since parasitoid activity38 occurs only once larvae and pupae are available for ovipositing. Whether pupae have been parasitized may be essentially unknowable, as they are sealed within the stem nest.

In this section, we model the evolution of sister-to-sister cooperation in a fluctuating world. Although we necessarily remain agnostic about the drivers of cooperation in the particular species \textit{C. australensis}, we show that, in principle, highly stochastic environments (high v) can be more hospitable than static environments for sister–sister cooperation in such species when sociality buffers parasite pressure.

We obtain matching results through an individual-based haplodiploid simulation and an application of Inequality (A25) to the life-history parameters of Supplementary Table C1. To simplify the interpretation, we first consider a single diallelic haploid locus, with assortment following Gardner et al.1: individuals are matched with a social partner identical at the focal locus with probability α and a random partner with probability $1 - \alpha$. This obtains $r = \alpha$, which allows us to set $\alpha = 0.75$ to recover assortment levels.
between haplodiploid sisters. We let the environment fluctuate between high and low parasite states; a solitary individual has \(z_G \) offspring in a ‘good year’ (low parasite pressure) and \(z_B \) offspring in a ‘bad year’ (high parasite pressure, \(z_B < z_G \)). We let the presence of social partners buffer the breeder from parasite pressure, so that breeders with helpers attain \(z_G \) offspring regardless of environmental state.

Supplementary Table C1 | Life history

<table>
<thead>
<tr>
<th>(G_x)</th>
<th>(G_y)</th>
<th>Power</th>
<th>Result</th>
<th>Frequency in the population of this focal individual</th>
<th>Mean fecundity (across environmental states) of focal individual</th>
<th>Standard deviation (across environmental states) of focal individual’s fecundity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Dominant</td>
<td>Queen</td>
<td>(\frac{1}{2} (p^i + ap(1-p)))</td>
<td>(z_G)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Subordinate</td>
<td>Worker</td>
<td>(\frac{1}{2} (p^i + ap(1-p)))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Dominant</td>
<td>Solitary</td>
<td>(\frac{1}{2} (1-a)p(1-p))</td>
<td>(dz_G + (1-d)x_B)</td>
<td>(\sqrt{d(1-d)(z_G - z_B)^2})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Subordinate</td>
<td>Worker</td>
<td>(\frac{1}{2} (1-a)p(1-p))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Dominant</td>
<td>Queen</td>
<td>(\frac{1}{2} (1-a)p(1-p))</td>
<td>(z_G)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Subordinate</td>
<td>Solitary</td>
<td>(\frac{1}{2} (1-a)p(1-p))</td>
<td>(dz_G + (1-d)x_B)</td>
<td>(\sqrt{d(1-d)(z_G - z_B)^2})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Dominant</td>
<td>Solitary</td>
<td>(\frac{1}{2} ((1-p)^i + ap(1-p)))</td>
<td>(dz_G + (1-d)x_B)</td>
<td>(\sqrt{d(1-d)(z_G - z_B)^2})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Subordinate</td>
<td>Solitary</td>
<td>(\frac{1}{2} ((1-p)^i + ap(1-p)))</td>
<td>(dz_G + (1-d)x_B)</td>
<td>(\sqrt{d(1-d)(z_G - z_B)^2})</td>
</tr>
</tbody>
</table>

Solving for the coefficients in Inequality (2) of the main text obtains the following, where \(\mu^\star \) and \(\sigma^\star \) are the average and standard deviation respectively (across the two states) of a solitary individual’s number of offspring. Detail about obtaining regression coefficients for social effects is provided in Appendix B.

\[
b_\mu = \frac{(1-d)(z_G - z_B)}{2} \quad \text{(C1a)}
\]
\[
c_\mu = \frac{\mu^\star}{2} \quad \text{(C1b)}
\]
\[
b_\sigma = \frac{\sigma^\star}{2} \quad \text{(C1c)}
\]
\[
c_\sigma = -\frac{\sigma^\star}{2} \quad \text{(C1d)}
\]

The means-based Hamilton’s rule implies that cooperation will not evolve by mean fecundity effects alone for this system. The condition for the evolution of altruism by mean fecundity effects is:

\[
r(1-d)(z_G - z_B) > \mu^\star. \quad \text{(C2)}
\]

When high-parasite and low-parasite years occur with equal frequency \((d = 0.5) \), the critical ratio of \(z_G : z_B \) is negative: even with helpers conferring substantial gains in fecundity on breeders in high-parasite years (Table B1), cooperation cannot evolve by mean fecundity effects. When low-
parasite states occur in 40% of years ($d = 0.4$), cooperation only evolves due to mean fecundity effects if individuals have at least 21 times more offspring without parasites than with parasites.

However, incorporating volatility effects increases the scope for cooperation when the environment is stochastic (high v):

$$r((1 - d)(z_G - z_B) + v \cdot \sigma_x) > \mu - v \cdot \sigma_x$$ \hfill (C3)

In Fig. 3 of the main text, we illustrate this increased scope for the evolution of cooperation, both in terms of Inequality (A25) and individual-based simulation. For instance, whilst equal frequencies of high- and low-parasite years are unable to sustain cooperation by mean fecundity effects at any level of z_G and z_B, Fig. 3a reveals a high-stochasticity region in which cooperation invades a solitary population due to volatility effects. The 21-fold difference in fecundity between high-parasite and low-parasite states required for the evolution of cooperation by mean fecundity effects when low-parasite states occur in 40% of years shrinks to a 3-fold difference with the addition of volatility effects. Volatility effects can, accordingly, extend the region of the adaptive landscape in which social traits evolve, and in principle reduce the gap between B and C in paradoxical cases where Hamilton’s rule appears to fail. Not all social species evolve from solitary ancestors inhabiting a highly stochastic world, but those that do may in principle obtain hidden b_σ and c_σ effects that increase the payoff from cooperation. Note that when high-parasite states are very frequent, b_μ effects rise in power: when parasites constantly threaten the population, and helpers eliminate parasite pressure, mean fecundity is increased; in this situation, the environment is no longer stochastic (low v). Incorporating volatility effects means that cooperation can still evolve when high-parasite states are not extremely frequent.

C2 | Galapagos mockingbirds

Empirical data are sorely lacking for testing the effects of b_σ. One encouraging dataset, however, comes from the cooperatively breeding Galapagos mockingbird (Mimus parvulus). Curry and Grant recorded demographic information over an 11-year period on Isla Genovesa (Ecuador). Helping is polymorphic in M. parvulus (occurring at 34% of nests), allowing a comparison of cooperative and non-cooperative nesting attempts.

Using the relevant summary statistics in Curry and Grant (based on 153 helper-present nests and 297 helper-absent nests), we estimate partial regressions of expected recipient fecundity against actor phenotype (helper or non-helper). We play the ‘phenotypic gambit’, and adopt a phenotypic (as opposed to genotype) variant of the stochastic Hamilton’s rule. We therefore regress fitness components against
the focal individual’s phenotype P_x and the phenotype of a social partner P_y, and we assign the phenotypic values 0 and 1 for non-helping and helping respectively:

$$b_\mu = \beta E_{\pi [w_x]} P_y = 0.3$$ \hspace{1cm} (C6)

Sample size varies considerably between years (from two helper-attended nests in 1984 to 33 in 1987). We cannot calculate b_σ directly from the data, therefore, as we cannot distinguish ‘true’ population variance from sampling variance. Instead, our approach is to ask whether a b_σ component can significantly change the estimated benefits of cooperation.

Galapagos mockingbirds inhabit a stochastic environment: Curry and Grant47 report a coefficient of variation in fledgling production of 0.92 across years, a proxy for the coefficient of variation in average reproductive success $\left(v = \frac{\sigma_{\pi[w]}}{E_{\pi[w]}} \right)$ across states of nature. We assume that helping has no effect on the volatility of the helper’s own reproductive success ($c_\sigma = 0$), and we consider the payoff for a sibling helper-at-the-nest ($r = 0.5$):

$$0.5(0.3 + 0.92b_\sigma) > c_\mu$$ \hspace{1cm} (C7)

The cost of cooperation remains to be quantified in $M. parvulus$. If helpers suffer a loss of expected reproductive success exactly equal to the amount they increase the reproductive success of their recipients (i.e. $c_\mu = b_\mu = 0.3$), then (to two decimal places):

$$b_\sigma > 0.33$$ \hspace{1cm} (C8)

The regression of recipient fecundity volatility against actor phenotype ($\beta_{P_x\pi [w_x]} P_y$) must have a slope of at least -0.33 to justify altruism if $b_\mu - c_\mu = 0$. The upshot is that, in principle, b_σ can provide missing components of B in a sufficiently stochastic environment. Conclusively demonstrating altruistic bet-hedging in Galapagos mockingbirds will require (as with any empirical test of such models) elucidating how mockingbird-specific demography and population structure determines the relation between phenotype and the separate components of fitness.

Risk plays an important role in behavioural ecology. A stochastic approach is useful even if risk-management strategies affect the mean reproductive successes40 of actors or their social partners (c_μ and b_μ respectively) without affecting the reproductive variation of either individual. In the social insects, for instance, the so-called ‘Wenzel-Pickering effect’ proposes that larger groups are able to reduce the variation in the supply of food for the brood, preventing shortfalls in which brood would otherwise die27,48. Whether the Wenzel-Pickering effect in real organisms derives its benefit from a consequent reduction in the variation of the production of offspring13 ($b_\sigma > 0$), an increase in mean offspring production48 ($b_\mu > 0$), or a combination of both ($b_\mu > 0$ and $b_\sigma > 0$) remains unknown. Similarly, in the mockingbirds,
nesting attempts may be more ‘risky’ in a given state π: this risk may mean that only a proportion of nests will succeed. This more proximate form of ‘risk’ differing between years influences the payoffs from social behaviour in each type of year, and therefore can affect both expected fecundity and the volatility of fecundity across states. Classifying benefits accruing to different statistical parameters in the stochastic Hamilton’s rule offers a framework for diagnosing these diverse forms of risk-management benefits and costs.

Additional References