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Clonal fitness inferred from time-series 
modelling of single-cell cancer genomes
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Fatemeh Dorri1,5, Nicole Rusk3, Teresa Ruiz de Algara1, So Ra Lee1, Brian Yu Chieh Cheng1, 
Peter Eirew1, Takako Kono1, Jenifer Pham1, Diljot Grewal3, Daniel Lai1, Richard Moore6, 
Andrew J. Mungall6, Marco A. Marra6, IMAXT Consortium*, Andrew McPherson3, 
Alexandre Bouchard-Côté7, Samuel Aparicio1,2 ✉ & Sohrab P. Shah3 ✉

Progress in defining genomic fitness landscapes in cancer, especially those defined by 
copy number alterations (CNAs), has been impeded by lack of time-series single-cell 
sampling of polyclonal populations and temporal statistical models1–7. Here we 
generated 42,000 genomes from multi-year time-series single-cell whole-genome 
sequencing of breast epithelium and primary triple-negative breast cancer (TNBC) 
patient-derived xenografts (PDXs), revealing the nature of CNA-defined clonal fitness 
dynamics induced by TP53 mutation and cisplatin chemotherapy. Using a new 
Wright–Fisher population genetics model8,9 to infer clonal fitness, we found that TP53 
mutation alters the fitness landscape, reproducibly distributing fitness over a larger 
number of clones associated with distinct CNAs. Furthermore, in TNBC PDX models 
with mutated TP53, inferred fitness coefficients from CNA-based genotypes 
accurately forecast experimentally enforced clonal competition dynamics. Drug 
treatment in three long-term serially passaged TNBC PDXs resulted in 
cisplatin-resistant clones emerging from low-fitness phylogenetic lineages in the 
untreated setting. Conversely, high-fitness clones from treatment-naive controls were 
eradicated, signalling an inversion of the fitness landscape. Finally, upon release of 
drug, selection pressure dynamics were reversed, indicating a fitness cost of 
treatment resistance. Together, our findings define clonal fitness linked to both CNA 
and therapeutic resistance in polyclonal tumours.

Quantifying cellular fitness and its causal mechanisms in heterogeneous, 
polyclonal cancer cell populations remain unresolved problems, imped-
ing progress in developing effective and durable therapeutic strategies1–7. 
Despite well-documented genomic plasticity in tumours, the question of 
how CNA-induced changes in the genome architecture drive aetiological 
and drug resistance10 processes remains understudied11–13. The cancer field 
has generally lacked serial measurements from patient-derived tissues to 
directly observe cancer evolution over realistic timescales with single-cell 
resolution1,2,4,14–21. This has hindered the thorough investigation of causal 
factors driving selection, unlike in other biological systems22. Here we 
use single-genome-derived CNAs as clone-defining heritable genotypes 
to establish quantitative fitness attributes that serve as predictive meas-
ures of polyclonal growth potential. Our work has implications in at least 
three areas: predicting evolution in cancer; understanding how genomic 
instability processes leading to CNAs confer fitness; and parsing long-term 
kinetics of drug resistance in polyclonal cancer cell populations.

 
Modelling clonal fitness and selection
We developed an experimental and computational platform con-
sisting of three components: time-series sampling and single-cell 
whole-genome sequencing (scWGS) of immortal cell lines and PDX 
(Extended Data Fig. 1a, b); scalable phylogenetics for single-cell 
genomes (sitka23, Extended Data Fig. 1c); and a population genetics 
inspired (Wright–Fisher diffusion process) model of fitness (fitClone, 
Extended Data Fig. 1d, e, Supplementary Table 1). Using observed 
longitudinal clonal-abundance measurements as input, fitClone 
simultaneously estimates the growth trajectory (Zi) and fitness coef-
ficient (si) for each clone i in the population. The model can be used to 
forecast evolutionary trajectories, and its posterior probability densi-
ties can reflect evidence of positive selection in polyclonal systems. 
Details of fitClone, including theoretical assumptions and limitations 
of the model are discussed in the Supplementary Information.
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CNAs and fitness in p53-deficient cells
We first applied the framework to immortalized 184-hTERT diploid 
breast epithelial cell lines24 to measure clone-specific fitness associ-
ated with TP53 loss of function. Known to be permissive of genomic  
instability, TP53 mutations are often acquired early in breast cancer evo-
lution4,25,26 and result in alteration of the CNA genome structure5,6,21,24,27. 
We contrasted four time-series samples of wild-type TP53 (TP53WT) 
cells (60 passages over 300 days) with two isogenic null (TP53−/−) par-
allel branches28 (TP53−/−a and TP53−/−b), each passaged over 60 genera-
tions (285 and 220 days, respectively) and sampled 7 times. A median 
of 1,231 cells per passage was analysed by whole-genome sequencing, 
yielding a total of 2,713, 3,264 and 4,881 genomes for each time series, 
respectively (Supplementary Table 1). For each of TP53WT, TP53−/−a and 
TP53−/−b, we inferred CNA profiles, constructed phylogenetic trees to 
establish clonal lineages (Methods) and measured clonal abundances 
over time. Phylogenetic analysis using sitka (Extended Data Fig. 2a, b) 
and modelling of abundances with fitClone (Extended Data Fig. 2c, Sup-
plementary Tables 2, 3) revealed TP53WT clonal trajectories consistent  
with small differences in selection coefficients amongst three major clones: 
E (chromosome 11q gain), D (chromosome 20 gain) and F (diploid; and 
used as the reference clone for fitClone modelling). By contrast, TP53−/−a 
showed significant expansions of clones with aneuploid genotypes (Fig. 1a, 
Extended Data Fig. 2d) and higher selection coefficients, where the founder 
diploid population was out-competed (Fig. 1b). A second independent 

TP53-mutant time series, TP53−/−b (Extended Data Fig. 2e–g), confirmed 
that CNA-bearing clones confer higher fitness. TP53−/−a and TP53−/−b lines 
harboured 11 (size range 47 to 1,474 cells, median 204) and 10 (size range 
158 to 997 cells, median 404) distinct clones, respectively (Supplementary 
Table 2). Notably, selection coefficients were highest in clones with focal 
amplifications of known prototypic oncogenes in breast cancer6,7,25,26 
(Extended Data Fig. 2d, e), in some cases on a whole-genome-doubled 
background. Clone A, the highest-fitness clone in TP53−/−a (57% of cells 
at the last time point, 1 + s = 1.05 ± 0.09) exhibited whole-genome dou-
bling and harboured a focal, high level amplification at the MDM4 (1q) 
locus (Extended Data Fig. 2d). Clone G (27% of cells at the last time point, 
1 + s = 1.03 ± 0.03), the next highest-fitness clone in TP53−/−a remained 
diploid, with the exception of a focal high-level amplification precisely at 
the MYC locus (8q) (Extended Data Fig. 2d). By contrast clone K, chosen 
here as the reference clone for modelling, remained entirely diploid and 
exhibited a monotonically decreasing trajectory (from 90% to 0% of cells 
over the time series, Fig. 1 b). In TP53−/−b, two clones exhibited large positive 
selection coefficients (Extended Data Fig. 2 f, g): clone D (52% of cells at 
last time point, 1 + s = 1.05 ± 0.02) harboured a 20q single-copy gain with 
an additional high level amplification at the TSHZ2 locus; and clone E (35% 
of cells at the last time point, 1 + s = 1.05 ± 0.04) harboured a chromosome  
4 loss, 19p gain, 19q loss and a 20q single-copy gain (Extended Data Fig. 2e). 
As seen in TP53−/−a, the ‘root’ clone I that remained diploid was systemati-
cally outcompeted, diminishing in abundance from 68% to 0% over the 
time series (Extended Data Fig. 2g).
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Fig. 1 | Replicate branch of p53 mutant cells and engineered mixture 
experiment. a, Phylogeny of 3,264 TP53−/−a cells, grouped in 11 phylogenetic 
clades over the time series, where nodes are groups of cells with shared copy 
number genotype (sized proportional to the number of cells in the node) and 
edges represent distinct genomic breakpoints. Shaded areas represent the 
indicated clones, with numbers of cells in parentheses. The root of the tree is 
denoted by the red circle. b, Observed clonal fractions over time, inferred 
trajectories and quantiles of the posterior distributions over selection 
coefficients of fitClone model fits to TP53−/−a with respect to the reference 
clone K. In the box plots, the white line represents the median of the 

distribution, box edges show 1.5× the interquartile range and whiskers extend 
to 25th and 75th percentiles. c, Clonal fraction of the diploid reference over 
time. d, Distribution over the probability of positive selection (PPS) over pairs 
of clones computed as max(P(si > sj), 1 – P(si > sj)). Purple dots denote a PPS 
above 0.9. Dot size indicates the magnitude of the expected value of the 
difference between selection coefficient of pairs of clones |E(si − sj)|.  
e, Experiment in which 75% TP53WT cells (time point X28) are cultured with 25% 
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Relative to TP53WT, rates of expansion of both TP53−/−a and TP53−/−b 
aneuploid clones were significantly higher, leading to rapid depletion of 
diploid cells (Fig. 1 c, P = 6.72 × 10−4). Copy number breakpoints per cell 
increased as a function of fitness and were higher in the TP53-mutant 
lines; however, the point mutation rate remained comparatively stable 
(Extended Data Fig. 2 h, i). In addition, both TP53-mutant lines exhibited 
higher posterior probability of positive selection (clone pairs with 
probability greater than 0.9) relative to the TP53WT setting (Fig. 1d). 
Accordingly, we sought to experimentally confirm clonal fitness in 
TP53-mutant cells associated with increased aneuploidy. We chal-
lenged higher fitness aneuploid clones (D and E, which dominated by  
passage X60) from TP53−/−b with TP53WT diploid populations in de novo 
population mixtures and collected samples over five generations in 
culture (Fig. 1 e). scWGS of the mixture samples revealed that clones 
D and E monotonically increased from 18% to 35% and 7% to 37% of 
the population by passage 5, respectively, while the TP53WT cells were 
out-competed, decreasing from 75% to 19% of the population at the 
final passage (Fig. 1f). Thus, the enforced competition resulted in the 
re-emergence of TP53-mutant aneuploid clones and relative depletion 
of diploid cells, supporting the original fitClone model fits. Together, 
these results show a broader clone fitness landscape, with overall 
higher fitness of clones harbouring whole genome, chromosomal 

and segmental aneuploidies arising in TP53-mutant cells (Extended 
Data Fig. 2d, e). Notably, high fitness clones featured high level ampli-
fication of proto-oncogenes often seen in human breast cancer (for 
example, MDM4, MYC or TSHZ2), suggesting that p53 loss is permissive 
of fitness-enhancing CNAs with aetiological roles in cancer7.

Modelling fitness in human breast cancer
We next studied time-series CNA clonal expansions of TP53-mutant 
primary human breast cancers from four PDX transplant series. We 
generated serial scWGS samples from one HER2-positive (HER2+ 
SA532) and three TNBC (TNBC-SA609, TNBC-SA1035 and TNBC-SA535) 
PDX models, sampled over 927, 619, 381 and 353 days, respectively 
(Extended Data Fig. 3), yielding a median of 303 high-quality genomes 
per sample (9,970 in total) for downstream analysis (Supplementary 
Table 1). All series exhibited progressively higher tumour growth rates 
over time (Extended Data Fig. 4b–d) and maintained hormone recep-
tor status from early to late passages (Supplementary Tables 4, 5). 
Bulk whole-genome sequencing and scWGS confirmed that all four 
tumours harboured TP53 mutations with bi-allelic and truncal distri-
bution across clones (Supplementary Table 6). Phylogenetic analysis  
indicated that all of the PDX models were polyclonal at the CNA level 
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(Fig. 2, Extended Data Fig. 4a–i), with in cis gene expression effects 
inferred from single-cell RNA-sequencing data derived from the same 
single-cell suspensions (Methods, Supplementary Table 7).

In contrast to the HER2+ SA532 model, the TNBC PDX models exhibited 
evidence of clonal dynamics and variation in selection coefficients con-
sistent with positive selection and differential fitness (Fig. 3a). Eleven 
clones were detected for TNBC-SA1035 (Extended Data Figs. 4a, b, 5);  
the reference clone A had an initial prevalence of 20% but was not detect-
able by the last time point. Clone E, which expanded to 69% at passage 
X8 from minor prevalence at the initial time point (1 + s = 1.06 ± 0.03) 
(Extended Data Fig. 4 c, d, Supplementary Table 3), formed a distinct 
clade, distinguished by a hemizygous deletion of the centromeric locus 
of 8p, gain of an extra copy of the telomeric end of 11q and a focal gain 
of 19q12 harbouring the CCNE1 locus (Extended Data Figs. 4a, 5a). In 
TNBC-SA535, three out of ten clones propagated after the initial time 
point (Extended Data Fig. 4d–f). Clone G, characterized by loss of 
chromosome X, exhibited expansion from minor prevalence at pas-
sage X5 to 76% at passage X9 (1 + s = 1.02 ± 0.01, Extended Data Fig. 4f). 
For TNBC-SA609 line 1, six clones were observed (Fig. 2a,b). Clones 
E (1 + s = 1.07 ± 0.02) and H (1 + s = 1.02 ± 0.02) had the highest selec-
tion coefficients, with growth increasing from undetectable levels 
to 59% and 32%, respectively, by time point X10. Clone C contracted 
from nearly 100% at the initial time point to undetectable levels by X10 
(Fig. 2c–e). Growth of clones E (Extended Data Fig. 6a), G and H and con-
traction of clone C (Extended Data Fig. 6b) was observed reproducibly 
in replicate transplants (Extended Data Fig. 6c–e). Notably, clones in 
the HER2+ series exhibited a maximum probability of positive selection 
of 0.67, suggesting overall clonal selection close to neutral (Extended 
Data Fig. 4i). By contrast, in all three TNBC series, at least one clone 
showed probability of positive selection greater than 0.9 (Fig. 3a).

Forecasting clonal trajectories
Next, we experimentally validated the fitness coefficients as indicators 
of positive or negative selection. We carried out forward simulations 
from fitClone using selection coefficients estimated from the original 
time series, and compared these with serially passaged physical clonal 
mixtures of late (X8) and early (X3) time points from TNBC-SA609 
(line 1). Two mixture–retransplant–serial-passage experiments were 
conducted with different initial starting conditions (Fig. 3b, Extended 
Data Fig. 7a). In the first experiment, clone E was forecast to fixate 
with the highest probability (0.39) and in the second experiment, 

clones E and H were forecast to fixate with high probability (0.14 and 
0.04, respectively) (Fig. 3c, Extended Data Fig. 7b). The two series 
were then sequenced using scWGS, yielding 6,453 and 6,730 genomes, 
respectively. In the first mixture (Extended Data Fig. 7c), we recov-
ered six clones from the original time series, with between 26 and 
767 (median 155) cells. As anticipated by the model, clone E emerged 
as a high-fitness clone (1 + s = 1.08 ± 0.03), and by the last time point, 
clones E and H had swept through to make up 94% of cells. In the sec-
ond mixture (Extended Data Fig. 7d), we recovered four clones (C, 
E, G and H) from the original time series. Clone E was the only clone 
that increased in prevalence (from 5% to 24%) and had the highest 
selection coefficient (1 + s = 1.02 ± 0.03). By contrast, clones C, G and H 
exhibited relatively stable prevalences (Extended Data Fig. 7d). Thus, 
both mixture experiments demonstrated expansion of the predicted 
highest-fitness clone (E), even when starting from low initial propor-
tions (2% or 5% of cells).

The fitness cost of platinum resistance
Using CNA clone-specific fitness measurements, we next tested how 
drug treatment with cisplatin (standard therapy for primary TNBC) per-
turbs the fitness landscape of the three PDX series. For each time series, 
we propagated a separate branch treated with cisplatin (Methods,  
Extended Data Figs. 1b, 3) to induce gradual onset of resistance to 
platinum-based chemotherapy (platinum resistance), physically con-
firmed with a progressive reduction in tumour growth inhibition29  
(per cent tumour growth inhibition from first to last cycle: TNBC-SA609, 
77% to 4.7%; TNBC-SA1035, 76% to 15%; TNBC-SA535, 58% to 16%; Extended  
Data Fig. 3b–d). For TNBC-SA609 a total of five independent transplant  
lineages were surveyed with technical replicates for lines 1 and 2 (Methods).  
In each series, emergent clones following treatment were distinct in 
phylogenetic origin from those with high fitness in the untreated set-
ting, indicating an inversion of the clone fitness landscapes (Fig. 4a, 
Extended Data Fig. 8a). Suppression of high-fitness clones that domi-
nated in the absence of treatment and expansion of low-fitness and/or 
previously unobserved genotypes led to a substantially altered rank 
order of selection coefficients in treated samples relative to untreated 
samples (Fig. 4b, Extended Data Fig. 8 b, c). Samples were coded U or 
T for previous and present passages depending on whether they had 
received no treatment or treatment, respectively, during that pas-
sage. For TNBC-SA609 line 2, growth dynamics at X3 (U), X4 (UT), X5 
(UTT), X6 (UTTT) and X7 (UTTTT), showed expansion of clone B and 
its derivative clones (A and R), from a starting population comprising 
primarily clones C, D and B (Extended Data Fig. 9) in three replicate 
transplants. Notably, resistant clones in all three replicate treated 
lines were phylogenetically distinct from clone H—the highest-fitness 
clone in the treatment-naive setting (Extended Data Figs. 8a–c (left), 
9a, e). The other two TNBC series also supported a fitness inversion, 
exhibiting monotonically decreasing prevalence of treatment-naive 
high-fitness clones and increasing prevalence of low-fitness clones. Of 
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note, in both TNBC-SA535 and TNBC-SA1035, both high- and low-fitness 
clones were observed in initial conditions, ruling out sampling bias as 
a strict determinant of selection dynamics (Extended Data Figs. 5, 10). 
Specifically, the numbers of low-fitness clones in the untreated series 
all increased, with the fittest clones under no treatment decreasing 
to near zero prevalence (for example, TNBC-SA535 clone G (Extended 
Data Fig. 10a) and TNBC-SA1035 clone E). The probability of positive 
selection increased in the treatment series (Extended Data Fig. 8d), 
indicating that there were more clones under positive selection in the 
cisplatin setting, and selection coefficients exhibited a wider variance 
between clones.

Finally, we tested the effect of lifting the drug selective pressure at 
each time point, with drug holiday replicate transplants (Extended 
Data Figs. 1b, 3a–e). In TNBC-SA609, inverted fitness was reversible in a 
short interval (Extended Data Fig. 9). In the first drug holiday, X5-UTU, 
clonal composition reverted to consist predominantly of precursor 
clone B with 90% abundance, and only 10% abundance from clone A 
(Extended Data Fig. 9c–e). However, clone A comprised more than 99% 
of X6-UTTU and X7-UTTTU, similar to their on-treatment analogues, 
and no reversion was detected. Thus, when clonal competition was 
possible in the absence of drug, cells derived from the precursor B 
clade outcompeted clone A, indicating that clone-specific cisplatin 
resistance has a fitness cost. Moreover, the specificity of reversion 
between X4-UT and X5-UTU reflects selection of predefined clones with 
differential fitness. The TNBC-SA1035 series exhibited more moderate 
reversibility. Clone G growth was attenuated from 10% at X5-UT to 9% 
at X6-UTU, compared to 20% at X6-UTT (Extended Data Fig. 5b–e). 
Similarly, in TNBC-SA535 (Extended Data Fig. 10c–e) growth attenu-
ation of the highest-fitness clone (A) (Extended Data Fig. 10b) in the 
treatment setting was observed in the holiday setting, and clone E 
exhibited clonal fractions similar to treated time points at X7-UTU, 
X8-UTTU, and X9-UTTTU. However, clone E increased to 32% of cells 
in X10-UTTTTU from 10% in X9-UTTTT. Thus, in all series, treatment 
selective pressure was reversible with drug holidays, consistent with 
a fitness cost of platinum resistance.

Discussion
In population genetics, the repeated observation of dominance or 
decline in clones, defined here by CNA genotypes, implies that either 
the genotype or a factor heritably linked to the genotype (such as 
single-nucleotide variants or epigenetic states) is a determinant of 
fitness. We expect that additional variation due to single-nucleotide 
variants, structural variations from genomic rearrangements or rare 
CNAs beyond first-approximation estimates will additively affect 
fitness. However, deeper population sampling would be required to 
appropriately capture these effects. Our results, decoded by measur-
ing single-cell time series, suggest that fitness linked to CNAs may be 
under-appreciated. This has implications for interpreting aetiological 
processes of tumour-suppressor-driven cancers, shown by inducing 
TP53 loss, where rates of structural variation acquisition and deviation 
away from diploid configurations conferred fitness advantages. Over 
successive generations in vitro with TP53 mutational perturbation and 
in three TNBC PDX lines in the context of cisplatin drug treatment, emer-
gent CNA measurably contributed to the fitness landscape, consistent 
with a continuously diversifying mechanism that induces competitive 
clonal advantages.

Our results demonstrate that time-series fitness mapping is a real-
istic initial approach for studying how the effect of driver mutations 
inducing genomic instability leads to clonal expansions and evolution-
ary selection. The ability to genetically manipulate the systems we 
describe provides a future path to mechanistically dissecting fitness 
effects of individual CNA regions. Furthermore, as the impact of drug 
intervention on CNA-driven cancer evolution is a key determinant of 
patient outcomes across all human cancers20,21,30–32, forecasting the 

trajectories of cancer clones is of immediate importance to under-
standing therapeutic response in cancer, and for deploying adaptive 
approaches10. We suggest that the presence of resistant genotypes that 
have a chemotherapeutic fitness cost may define time windows within 
which clonal competition could be exploited. Future investigations 
in patients with time-series tumour or cell-free DNA-based popula-
tion genetics modelling may therefore enable evolution-informed 
approaches to clinical management33.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-03648-3

1. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128  
(2020).

2. Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing 
data. Nat. Genet. 50, 895–903 (2018).

3. Salichos, L., Meyerson, W., Warrell, J. & Gerstein, M. Estimating growth patterns and 
driver effects in tumor evolution from individual samples. Nat. Commun. 11, 732 (2020).

4. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative 
breast cancers. Nature 486, 395–399 (2012).

5. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 
112–121 (2020).

6. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome 
sequences. Nature 534, 47–54 (2016).

7. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours 
reveals novel subgroups. Nature 486, 346–352 (2012).

8. Wright, S. The distribution of gene frequencies in populations. Proc. Natl Acad. Sci. USA 
23, 307–320 (1937).

9. Tataru, P., Simonsen, M., Bataillon, T. & Hobolth, A. Statistical inference in the Wright–
Fisher model using allele frequency data. Syst. Biol. 66, e30–e46 (2017).

10. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 
299–309 (2019).

11. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 
44–62 (2020).

12. Sunshine, A. B. et al. The fitness consequences of aneuploidy are driven by 
condition-dependent gene effects. PLoS Biol. 13, e1002155 (2015).

13. Sheltzer, J. M., Torres, E. M., Dunham, M. J. & Amon, A. Transcriptional consequences of 
aneuploidy. Proc. Natl Acad. Sci. USA 109, 12644–12649 (2012).

14. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of 
neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

15. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).
16. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 

171, 1029–1041.e21 (2017).
17. Khan, K. H. et al. Longitudinal liquid biopsy and mathematical modeling of clonal 

evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer 
clinical trial. Cancer Discov. 8, 1270–1285 (2018).

18. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas 
defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

19. Jamal-Hanjani, M. et al. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. 
Med. 376, 2109–2121 (2017).

20. López, S. et al. Interplay between whole-genome doubling and the accumulation of 
deleterious alterations in cancer evolution. Nat. Genet. 52, 283–293 (2020).

21. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in 
high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

22. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of 
molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

23. Dorri, F. et al. Efficient Bayesian inference of phylogenetic trees from large scale, 
low-depth genome-wide single-cell data. Preprint at https://doi.org/10.1101/2020.05.06.058180  
(2020).

24. Burleigh, A. et al. A co-culture genome-wide RNAi screen with mammary epithelial cells 
reveals transmembrane signals required for growth and differentiation. Breast Cancer 
Res. 17, 4 (2015).

25. de la Vega, M. R., Chapman, E. & Zhang, D. D. NRF2 and the Hallmarks of cancer. Cancer 
Cell 34, 21–43 (2018).

26. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast 
tumours. Nature 490, 61–70 (2012).

27. Patch, A.-M. et al. Whole-genome characterization of chemoresistant ovarian cancer. 
Nature 521, 489–494 (2015).

28. Laks, E. et al. Clonal decomposition and DNA replication states defined by scaled 
single-cell genome sequencing. Cell 179, 1207–1221 (2019).

29. Hather, G. et al. Growth rate analysis and efficient experimental design for tumor 
xenograft studies. Cancer Inform. 13, 65–72 (2014).

30. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced 
cancers. Nat. Genet. 50, 1189–1195 (2018).

31. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA 
response. Nature 553, 467–472 (2018).

https://doi.org/10.1038/s41586-021-03648-3
https://doi.org/10.1101/2020.05.06.058180


590 | Nature | Vol 595 | 22 July 2021

Article
32. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers 

of immune evasion and with reduced response to immunotherapy. Science 355, 
eaaf8399 (2017).

33. Acar, A. et al. Exploiting evolutionary steering to induce collateral drug sensitivity in 
cancer. Nat. Commun. 11, 1923 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

IMAXT Consortium

Gregory J. Hannon9, Giorgia Battistoni9, Dario Bressan9, Ian Gordon Cannell9, 
Hannah Casbolt9, Atefeh Fatemi9, Cristina Jauset9, Tatjana Kovačević9, Claire M. Mulvey9, 
Fiona Nugent9, Marta Paez Ribes9, Isabella Pearsall9, Fatime Qosaj9, Kirsty Sawicka9, 
Sophia A. Wild9, Elena Williams9, Samuel Aparicio1,2, Emma Laks1,2, Yangguang Li1, 
Ciara H. O’Flanagan1, Austin Smith1, Teresa Ruiz1, Daniel Lai1,2, Andrew Roth2,4, 
Shankar Balasubramanian9,10,11, Maximillian Lee9,10, Bernd Bodenmiller12, Marcel Burger12, 
Laura Kuett12, Sandra Tietscher12, Jonas Windhager12, Edward S. Boyden13, Shahar Alon13, 
Yi Cui13, Amauche Emenari13, Dan Goodwin13, Emmanouil D. Karagiannis13, Anubhav Sinha13, 
Asmamaw T. Wassie13, Carlos Caldas14, Alejandra Bruna14, Maurizio Callari9, 

Wendy Greenwood9, Giulia Lerda9, Yaniv Eyal-Lubling14, Oscar M. Rueda14, Abigail Shea14, 
Owen Harris15, Robby Becker15, Flaminia Grimaldi15, Suvi Harris15, Sara Lisa Vogl15, 
Joanna Weselak15, Johanna A. Joyce16, Spencer S. Watson16, Sohrab P. Shah3, 
Andrew McPherson3, Ignacio Vázquez-Garćıa3, Simon Tavaré9,17,18, Khanh N. Dinh17, 
Eyal Fisher9, Russell Kunes17, Nicholas A. Walton19, Mohammad Al Sa’d19, Nick Chornay19, 
Ali Dariush19, Eduardo A. González-Solares19, Carlos González-Fernández19, 
Aybüke Küpcü Yoldas19, Neil Millar19, Tristan Whitmarsh19, Xiaowei Zhuang20,21,22, Jean Fan20,21,22, 
Hsuan Lee20,21,22, Leonardo A. Sepúlveda20,21,22, Chenglong Xia20,21,22 & Pu Zheng20,21,22

9Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, 
Cambridge, UK. 10Department of Chemistry, University of Cambridge, Cambridge, UK. 
11School of Clinical Medicine, University of Cambridge, Cambridge, UK. 12Department of 
Quantitative Biomedicine, University of Zurich, Zurich, Switzerland. 13McGovern Institute, 
Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts 
Institute of Technology, Cambridge, MA, USA. 14Department of Oncology and Cancer 
Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. 15Súil Interactive 
Ltd, Dublin, Ireland. 16Department of Oncology and Ludwig Institute for Cancer Research, 
University of Lausanne, Lausanne, Switzerland. 17Herbert and Florence Irving Institute for 
Cancer Dynamics, Columbia University, New York, NY, USA. 18New York Genome Center, New 
York, NY, USA. 19Institute of Astronomy, University of Cambridge, Cambridge, UK. 20Howard 
Hughes Medical Institute, Harvard University, Cambridge, MA, USA. 21Department of Physics, 
Harvard University, Cambridge, MA, USA. 22Department of Chemistry and Chemical Biology, 
Harvard University, Cambridge, MA, USA. 



Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized. The investigators were not blinded 
to allocation during experiments and outcome assessment.

All methods are detailed in the Supplementary Information. We 
studied normal human breast epithelial cells24 in vitro and in breast 
cancer PDX, sequencing >129,500 whole genomes from single cells over 
interval passaging (scWGS DLP+ method28; Extended Data Fig. 1 a, b,  
Supplementary Table 1). After read-coverage based quality control 
and omission of replicating cells, we retained >42,000 genomes from 
113 libraries across cell lines and PDX transplants for analysis (average 
995,000 reads/cell, 0.022x coverage). We calculated phylogenetic trees 
over cells to identify genotypic clones and their relative abundances 
as a function of time.

Human mammary cell lines and serial passaging and mixtures
The human mammary epithelial cell line 184-hTERT wild type and iso-
genic 184-hTERT-P53 KO cell line, generated from 184hTERT WT-L9, 
were grown as previously described24,28. TP53 was knocked out by using 
CRISPR–Cas9 technology and one clone (99.25) was serially passaged 
to further subdivided at passage 10 into ‘branch a’ and ‘branch b’ par-
allel knockout branches (NM_000546(TP53):c.[156delA];[156delA]), 
p.(GIn52Hisfs*71), and the absence of P53 protein was confirmed 
with western blot (Supplementary information). Two branches of 
184-hTERT-TP53−/− (clone 95.22) along with the counterpart wild-type 
branch were serially passaged over ~55–60 generations, by seeding 
~1 million cells into a new 10 cm tissue culture treated dish (Falcon 
CABD353003) and cryopreserving every fifth passage. Mammary 
Epithelial Cell SingleQuot Kit Supplements (MEGMTM), Growth Fac-
tors (Lonza CC-4136), with 5 μg ml−1 transferrin (Sigma) and 2.5 μg ml−1 
isoproterenol (Sigma) were used as a growth medium as previously 
described24. Cells were grown to around 85–90% confluence, trypsi-
nized for 2 min (Trypsin/EDTA 0.25%,VWR CA45000-664), re-suspended 
in cryopreservation medium (10% DMSO-Sigma-D2650, 40% FBS-GE 
Healthcare SH30088.03, 50% media) and frozen to −80 °C at a rate of 
−1 °C min−1. Cells were cultured continuously from passage 10 (post 
initial cloning24) to passage 60 for 184-hTERT WT and upto passage 
57 and passage 55 for the TP53−/− branches a and b, respectively, from 
initial cloning/isolation. Genome sequencing was undertaken at pas-
sages 25, 30, 51 and 60 from the wild type branch, passages 10, 15, 25, 
30, 40, 50 and 57 from TP53−/− branch a and passages 20, 30, 35, 40, 45, 
50 and 55 from TP53−/− branch b. Also, the transcriptome sequencing 
was carried out on passages 11 and 57 of TP53−/− branch a and passages 
15, 30 and 50 of TP53−/− branch b. All cell line cultures were tested nega-
tive for mycoplasma by PCR Mycoplasma contamination detection test 
(Genetica Cell Line Testing). The initial conditions of the mixtures were 
biased in favour of diploid cell populations in a 3:1 ratio of 184-hTERT 
WT p28 (SA039) and TP53−/− clone 95.22 (SA906b) passage 61. Prior 
to plating in the culture, an aliquot was analysed by DLP+ to measure 
the baseline clonal composition labelled as X0, and 2,701 single cell 
genomes were generated. At 80% confluence on the plate, cells from 
X1 were harvested and serially passaged up to the 20th passage. scWGS 
data from three time points X0, X1 and X5 with a median of 898 cells 
per time point were collected.

Establishment and serial passaging of patient derived 
xenografts
The Ethics Committees at the University of British Columbia approved 
all the experiments using human resources. Donors in Vancouver, Brit-
ish Columbia were recruited, and samples were collected under the 
tumour tissue repository (TTR-H06-00289, H16-01625) and trans-
planted in mice under the animal resource centre (ARC) bioethics 
protocol (A19-0298-A001) approved by the animal care committee 
(University of British Columbia) and BC Cancer Research Ethics Board 

H20-00170 and H18-01113 protocols. After informed consent, tumour 
fragments from patients undergoing excision or diagnostic core biopsy 
were collected. Tumour materials were processed as described in ref. 34  
and transplanted in 8- to 12-week-old female mice approved by the 
animal care committee. In brief, tumour fragments were chopped 
finely with scalpels and mechanically disaggregated for 1 min using a 
Stomacher 80 Biomaster (Seward) 1 ml to 2 ml cold DMEM/F-12 with 
glucose, l-glutamine and HEPES (Lonza 12-719F). An aliquot of 200 μl of 
medium (containing cells/clumps) from the resulting suspension was 
used equally for 4 transplantations in mice. Tumours were transplanted 
subcutaneously in mice as previously described34 in accordance with 
SOP BCCRC 009.

Serial passaging of PDX
Tumours were serially passaged as previously described34. In brief, for 
serial passaging of PDX, xenograft-bearing mice were euthanized when 
the size of the tumours approached 1,000 mm3 in volume (combining 
together the sizes of individual tumours when more than one was pre-
sent). The tumour material was excised aseptically, and processed as 
described for primary tumour. In brief, the tumour was harvested and 
minced finely with scalpels then mechanically disaggregated for one 
minute using a Stomacher 80 Biomaster (Seward) in 1 ml to 2 ml cold 
DMEM-F12 medium with glucose, l-glutamine and HEPES. Aliquots 
from the resulting suspension of cells and fragments were used for 
xenotransplants in the next generation of mice and cryopreserved. 
Serially transplanted aliquots represented approximately 0.1–0.3% of 
the original tumour volume. HER+ SA532 and TNBC-SA609 PDX were 
passaged upto 10 generations and scDNaseq was carried out at each 
time point. The other three untreated and treated PDX time series were 
generated in the same way for 4–5 passages.

TNBC PDX tumour-mixing experiments
Frozen vials from the untreated TNBC PDX passages three (X3) and eight 
(X8), were thawed and physically remixed in two different volumetric 
proportions of X3:X8 by tumour weight. The ratio of approximately 
1:1 and 1:0.4, labelled as mixture branch a and branch b, respectively. 
From each of different dilutions, 200 μl of aliquot was transplanted 
in two mice each using the same protocol described above. Before 
transplantation, a small proportion of the physical mixture of cells 
from the 1:1 ratio, was subjected to whole genome single cell sequenc-
ing to measure the baseline clonal composition labelled as M0 and 
its subsequent PDX as M1. The tumour cell mixture was then serially 
passaged over 4 generations for branch a and 5 generations for branch 
b, designating the transplants as M1–M4 and M1–M5, respectively. 
Tumours from serial passages (X3:X8) from both mixtures branches 
were collected and analysed with scWGS (DLP+) as for other samples.

TNBC PDX time-series treatment with cisplatin
Female NRG mice of 8–12 weeks of age and genotype were used for 
randomized controlled transplantation treatment experiments. Drug 
treatment with cisplatin, an analogue of platinum salts was commenced 
when the tumour size reached approximately 300–400 mm3. Cisplatin 
(Accord DIN: 02355183) was administered intraperitoneally at 2 mg kg−1 
every third day for 8 doses maximum (Q3Dx8). The dosage schedule 
was adjusted to 50% the dose used in the literature35,36 and around one 
third of the maximum tolerated dose (MTD) calculated in immunode-
ficient female mice of 8–12 weeks of age (Supplementary Information). 
Low-dose cisplatin pulse and tumour collection timings were optimized 
to achieve the experimental aims of tumour resistance. The aim was to 
collect the tumour at around 50% shrinkage (from the starting tumour at 
the time treatment started) in size when measured with a caliper. Cispl-
atin (1 mg ml−1) was diluted in 0.9% NaCl to obtain concentrations 200 μl  
per 20 g of mouse weight and kept in glass vials at room temperature. 
Quality control drug samples were prepared freshly on each day before 
the dosing. For all three TNBC PDX, 8 female mice at initial passage were 
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transplanted in parallel for the treatment per treatment holiday study 
group. The choice of sample size was made to get at least 3 mice in the 
treatment group. Half of the mice were treated with cisplatin when 
tumours exhibited ~50% shrinkage, the residual tumour was collected 
as above and re-transplanted for the next passage in the group of eight 
mice. Again, half of the mice at X5 were randomly kept untreated while 
the other half were exposed to cisplatin following the same dosing 
strategy. Four cycles of cisplatin treatment were generated, with a 
parallel drug holiday group at each passage. Cisplatin treated tumours 
were coded as UT, UTT, UTTT, UTTTT for each of the four cycles of drug 
respectively, while the tumours on drug holiday were labelled as UTU, 
UTTU and UTTTU for the three time points. The number of Ts in the 
coded label shows the number of cycles of drug exposure. scWGS and 
single-cell RNA sequencing (scRNA-seq) was carried out on each tumour 
during the time-series treatment with counterpart drug holiday and 
untreated controls (Extended Data Fig. 3a). In particular, TNBC-SA609 
PDX was processed to establish 5 independent lines to explore the 
biological and technical replicate tumours as well as treatment series. 
All five lines from TNBC-SA609 were passaged identically after initial 
establishment. Line 1 untreated samples were seeded (X3 to X4) from 
a freshly dissociated tumour, whereas 4 other lines (all treated and 
line 2 untreated) were seeded (X3 to X4) from a frozen vial of tumour. 
Technical replicates were collected and sequenced for lines 1 and 2.

PDX tumour growth measurement curves
NRG mice received sub-cutaneous inoculation of tumour cells (150 μl) 
on day 0. The tumours were allowed to grow to palpable solid nodules. 
Around 7–9 days after they were palpable, their size was measured with 
calipers every 3rd day. Tumours were measured in two dimensions using 
a digital caliper and expressed as tumour volume in mm3; defined as: 
[volume = 0.52 × (length) × (width) × (width)]. Record of patient derived 
xenografts 10 generations time series, HER2+ SA532 and TNBC-SA609 
exhibited progressively higher tumour growth rates in later passages 
(Extended Data Fig. 3b–d) and took fewer days to reach the humane 
end point. Tumour growth inhibition percentage range29 was defined 
as: [1 − (mean volume of treated tumours)/(mean volume of control 
tumours) × 100%].

scWGS and library construction with DLP+

All libraries, including metrics on number of cells, average number 
of reads per cell and quality control metrics are listed in Supplemen-
tary Table 1 . Tumour fragments from PDX samples were incubated 
with collagenase/hyaluronidase, 1:10 (10X) enzyme mix (Stem Cell 
Technologies, 07912) in 5 ml DMEM/F-12 with glucose, l-glutamine 
and HEPES (Lonza 12-719F) and 1% BSA (Sigma) at 37 °C. Intermittent 
gentle pipetting up and down was done every 30 min for 40–60 s, dur-
ing the first hour with a wide bore pipette tip, and every 15–20 min for 
the second hour, followed by centrifugation (1,100 rpm, 5 min) and 
supernatant removal. The tissue pellet was resuspended in 1 ml of 0.25% 
trypsin-EDTA (VWR CA45000-664) for 1 min, superadded by 1 ml of 
DNase/dispase (100 μl/900 μl), (StemCell 07900,00082462) pipet-
ted up and down for 2 min, followed by neutralization with 2% FBS in 
HBSS with 10 mM HEPES (Stem Cell Technologies, 37150). Undigested 
tissue was removed by passing through a 70 μM filter and centrifuged 
for 5 min at 1,100 rpm after topping it up to 5 ml with HBSS. The single 
cell pellet was resuspended in 0.04% BSA (Sigma) and PBS to achieve 
approximately 1 million cells per 500 μl for robot spotting for DLP+.

Robot spotting of single cells into the nanolitre wells and library 
construction
DLP+ library construction was carried out as described28. In brief, single 
cell suspensions from cell lines and PDX were fluorescently stained 
using CellTrace CFSE (Life Technologies) and LIVE/DEAD Fixable Red 
Dead Cell Stain (ThermoFisher) in a PBS solution containing 0.04% 
BSA (Miltenyi Biotec 130-091-376) incubated at 37 °C for 20 min. Cells 

were subsequently centrifuged to remove stain, and resuspended in 
fresh PBS with 0.04% BSA. This single cell suspension was loaded into 
a contactless piezoelectric dispenser (sciFLEXARRAYER S3, Scienion) 
and spotted into the open nanowell arrays (SmartChip, TakaraBio) 
preprinted with unique dual index sequencing primer pairs. Occu-
pancy and cell state were confirmed by fluorescent imaging and wells 
were selected for single cell CN profiling using the DLP+ method28. In 
brief, cell dispensing was followed by enzymatic and heat lysis. After 
lysis, tagmentation mix (14.335 nl TD Buffer, 3.5 nl TDE1, and 0.165 nl 
10% Tween-20) in PCR water were dispensed into each well followed 
by incubation and neutralization. Final recovery and purification of 
single cell libraries was done after 8 cycles of PCR. Cleaned up pooled 
single-cell libraries were analysed using the Aglient Bioanalyzer 2100 
HS kit. Libraries were sequenced at UBC Biomedical Research Centre 
(BRC) in Vancouver, British Columbia on the Illumina NextSeq 550 (mid- 
or high-output, paired-end 150-bp reads), or at the GSC on Illumina 
HiSeq2500 (paired-end 125- bp reads) and Illumina HiSeqX (paired-end 
150-bp reads). The data was then processed to a quantification and 
statistical analysis pipeline28.

Processing of cell lines and PDXs for scRNA-seq data
All libraries generated using 10x scRNA-seq are listed in Supplemen-
tary Table 8. Suspensions of 184-hTERT TP53WT and TP53−/− cells were 
fixed with 100% ice-cold methanol before preparation for scRNA-seq. 
Single cell suspensions were loaded onto the 10x Genomics single cell 
controller and libraries prepared according to the Chromium Single 
Cell 3′ Reagent Chemistry kit standard protocol. Libraries were then 
sequenced on an Illumina Nextseq500/550 with 42bp paired-end reads, 
or a HiSeq2500 v4 with 125 bp paired-end reads. 10x Genomics Cell-
Ranger, V3.0.2 (V3 chemistry), was used to perform demultiplexing, 
alignment and counting.

Viable frozen tumour clumps and fragments were incubated with 
digestion enzymes as with DLP+ single cells preparation (as above) 
and the cells were resuspended in 0.04% BSA in PBS. Dead cells were 
removed using the Miltenyi MACS Dead Cell Removal kit and cells were 
processed as previously described37. To avoid processing artefacts and 
dissociation methods, the timings were tightly controlled between the 
samples. Library construction of the samples at the same time point 
was performed on the same chips. Library construction sample batch 
groupings are listed in Supplementary Table 7.

Phylogenetic tree inference, clone determination and clonal 
abundance measurements
We developed a single cell Bayesian tree reconstruction method based 
on copy number change point binary variables called sitka23 to fit phylo-
genetic trees to the copy number profiles. In the output of sitka, cells are 
the terminal leaf nodes of the phylogenetic topology. The inferred trees 
were post-processed to identify clonal populations from major clades. 
With clonal populations defined, their abundances were counted as a 
function of time series and these were used for fitness inference (see 
below). Clones were constructed by identifying connected components 
(each a clade or a paraphyly) in the phylogenetic tree reconstruction. 
The tree was ’cut’ into discrete populations according to the following 
procedure. The inputs to the algorithm are the rooted phylogenetic tree 
and the copy number states of its cells and the minimum and maximum 
allowed clone sizes. A clone is defined as connected components (each 
a clade or a paraphyly) in the graph tree composed of cell of sufficient 
genomic homogeneity. The degree of homogeneity can be tuned 
by limiting the number of loci and the difference in copy number of 
sub-clades in a clone. The algorithm works by first finding the coarse 
structure, that is dividing the tree into major clades and then looking 
for fine structures within each clade by traversing the tree in a bottom 
up manner and merging loci that are sufficiently similar. The remaining 
loci constitute the roots of detected clades. See the Supplementary 
Information for more details.



For the cell lines datasets, namely TP53WT and TP53−/−a and TP53−/−b, 
we opted to also split clades by the ploidy of their constituent cells, 
where ploidy is defined as the most recurrent copy number state in the 
cell. Once clones are identified, we set the abundance of each clone at 
a specific time point as the fraction of cells in that clone from that time 
point. We note that for the data from whole-genome bulk sequenc-
ing34, we used the following procedure to estimate clonal fractions: 
(1) let v denote the mutational cellular prevalence (rows) estimated 
over multiple time points (columns) using the multi-sample PyClone38 
model; (2) define β as the genotype matrix (which mutation-cluster 
(rows) is present in which clones (columns)); (3) then we set βγ = v, 
where γ = β−1v are the clonal fractions over time; and (4) we solve for γ 
using QR-decomposition.

Fitness modelling
We describe in this section a Bayesian state-space model (fitClone) 
based on the Wright–Fisher8 diffusion with selection. For simulation 
studies see the Supplementary Information.

fitClone: a Bayesian fitness model for time-series data
We developed a Bayesian model and associated inference algorithm 
based on a diffusion approximation to K-allele Wright–Fisher model 
with selection.

We start with time-series clonal abundance measurements over a 
fixed number of clones and estimate two key unknown parameters of 
interest: fitness coefficients si for clone i which represents a quantita-
tive measure of the growth potential of a given clone; and distributions 
over continuous-time trajectories, a latent (unobserved) population 
structure trajectory in ‘generational’ time. After briefly reviewing 
and setting notation for Wright–Fisher diffusions with selection, we 
introduce the Bayesian model we used to infer quantitative fitness of 
clones from time-series data. We then describe our posterior inference 
method and ancillary methods for effective population size estima-
tion, and reference clone selection. A key difference of fitClone with 
methods that use a transformation of allele fractions to infer the exist-
ence of clones and focus on attempting to infer dynamics from bulk 
sequencing and single time points (for example, the method in ref. 2) 
is that the inputs and outputs are fundamentally different, addressing 
fundamentally non-overlapping analytical problems. In particular, (1) 
fitClone models explicitly defined clones and their timecourse data, 
and (2) fitClone is a generative model which allows for forecasting 
and prediction. See ref. 9 for more background on the Wright–Fisher 
model and refs. 39–47 for previous work on inference algorithms for 
Wright–Fisher models.

Wright–Fisher diffusions with selection
Let K denote the number of clones obtained using the tree cutting 
procedure described above, and denote by Z Z Z= ( , …, )t t t

K1   the relative 
abundance of each of the K clones at time t in the population. The pro-
cess Zt satisfies, for all t, the constraints Z∑ =i

K
t
i

=1 1 and Z ≥ 0t
i  for 

i K∈ {1, …, }. We would like to model the process Zt using a Wright–Fisher  
diffusion with selection.

A Wright–Fisher diffusion can be written in stochastic calculus nota-
tion as

Z μ Z t σ Z Wd = ( )d + ( )d , (1)t
s N

t t t
, e

where W{ }t  is a K-dimensional Brownian motion, and the functions μ 
and σ, defined below, respectively control the deterministic and sto-
chastic aspects of the dynamics.

For z z z z= ( , , …, )K1 2 , the vector-valued function R Rμ : →s N K K, e  is 
defined as

μ z μ z μ z( ) = ( ( ), …, ( ))s N s N
K
s N,

1
, ,e e e

μ z N z s s z( ) = ( − , ),i
s N i

i
,

e
e

where x y,  is the inner product of vectors x and y, Ne, the effective 
population size, discussed in more detail below, and the parameters 
s s s s= ( , , …, )K1 2  are called fitness coefficients. The interpretation of 
the fitness parameters is that if s s>i j, then subpopulation i has higher 
growth potential compared to subpopulation  j. The matrix-valued 
function σ : →K K 2

R R is defined as

σ z σ z( ) = ( )i j i j K
2

,
2

, ∈{1,…, }

σ z z δ z( ) = ( − ),i j
i

i j
j

,
2

,

where δi j,  is the Kronecker delta. Given an initial value z, we denote the 
marginal distribution of the process at time t by Z s N t z~ WF( , , , )t e .

The fitClone model
Given as input time-series data measuring the relative abundances 
of K populations at a finite number of time points, the output of the 
fitClone model is a posterior distribution over the unknown parameters 
of interest: the fitness parameters s described in the previous section, 
and the continuous-time trajectories interpolating and extrapolating 
the discrete set of observations.

To do this, fitClone places a prior on the fitness parameters s, and 
uses a state space model in which the latent Markov chain is distributed 
according to a Wright–Fisher diffusion, and the observation model 
encodes noisy sampling from the population at a discrete set of time 
points.

Each component of the fitness parameter, now a random variable Si, 
is endowed with a uniform prior over a prior range I,

S I k~ Uniform( ), > 1,k

where we set S = 01   to make the model identifiable. We used  I = (− 10, 10) 
in our experiments. Note that the posterior is contained far from the 
boundaries of this prior range in all experiments.

The initial distribution, that is, the distribution of the value of the 
process at time zero, is endowed a Dirichlet distribution with 
hyper-parameter (1, 1, …, 1),

Z ~ Dirichlet(1, 1, …, 1).0

This can equivalently be seen as a uniform distribution over the 
K-simplex.

Let t t t t< < … < <T T1 2 −1  denote a set of process times at which meas-
urements are available. Ideally, we would like the latent transition ker-
nels to be given by the marginal transitions of the Wright–Fisher 
diffusion from last section,

Z Z S S N t t Z| , ~ WF( , , − , ), (2)t t m m te −1m m m−1 −1

where Ne is estimated as a pre-processing step. In practice we resort to 
approximating the distribution in equation (2) via an Euler–Maruyama 
scheme.

Finally, for each t t t t∈ { , , …, }T1 2 , let Y Y Y= ( , … )t t t
K1  denote a noisy 

observation of the population prevalences at process time t. In the 
single-cell context, this is obtained by counting, for each clone, the 
number of cells coming from each passage, and normalizing by the 
number of cells sequenced in that passage. For simplicity, in both cases 
we use a normal observation model, that is, NY Z Z σ| ~ ( , )t

i
t
i

t
i

obs
2 , where 

σ np p= (1 − )i iobs
2   and n Y= ∑j t

j  and p Y n= /i t
i .

Estimating the effective population size
Following ref. 48, we use F ′s an unbiased moment-based estimator of 
the Ne where N = ′Fe

1

S
; and t is the number of generations between each 

passage.
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F t
F n n

F n
′ = (1/ )

(1 − 1/(2 ~)) − 1/ ~

(1 + /4)(1 − 1/ )
, (3)s

s

s y

where F =s
x y

z z
( − )

(1 − )

2
, z x y= ( + )/2 and n =

n n

n n

2

+
y x

y x

∼ , the harmonic mean of the 

sample size (initial population size at the passage) nx and ny at the two 
time points. Here x and y are the minor allele frequencies at the two 
time points.

In the multi-allelic case, we have:

∑F
K

x y

z z
=

1 ( − )

(1 − )
.s

i

K
i i

i i=1

2

This is equivalent to plan 2 in ref. 48, sampling before reproduction and 
without replacement.

We used the sum of clone sizes as the approximate initial population 
size at each time point/passage. Supplementary Table 3 lists the result-
ing Ne estimates. Since fitClone is robust to the choice of Ne in this range, 
we set N = 500.0e  for all datasets analysed in this paper. We note that 
in our model we assume that the effective population size remains 
constant over all time points.

Probability of positive selection
To infer evidence of positive selection, we computed a posterior dis-
tribution over the difference in selection coefficients between pairs of 
clones. Here, higher probability reflects the posterior density that one 
clone has higher fitness than another. As such, the higher the mass of 
this distribution, the more likely positive selection is operating over 
the time series.

Distribution of the probability of positive selection over pairs of 
clones was computed as P s s P s smax( ( > ), 1 − ( > ))i j i j  for all pairs of clones 
i, j such that i > j. Let s s s s= ( , , …, )M M1: 1 2  be the M post burn-in MCMC 
samples for the selection coefficients where s s s s= { , , …, }m m m m K,1 ,2 , −1  
are the sampled selection coefficients of clones 1 to K – 1 at iteration 
m. Define P s s s s( > ) = Σ ( > )i j m

M
m i m j=1 , ,I   for i j K, ∈ {1, …, − 1}  be the poste-

rior probability of clone i having a larger coefficient than clone j. We 
computed the effect size as the absolute value of the expected differ-
ence between the selection coefficients of clones i, j, that is 
E s s s s| ( − )| = |Σ ( − )|i j m

M
m i m j=1 , , .

Selecting the reference clone
In our formulation of the Wright–Fisher diffusion one reference clone 
with selection coefficient of zero has to be chosen. The selection coeffi-
cient of the other clones are reported relative to this value. For instance, if 
the fittest clone is chosen as reference, the other clones will have negative 
selection coefficients. We chose to set the reference to a clone with an 
approximately monotonically decreasing trajectory (clonal abundance 
over time). This choice was motivated by a desire to infer a non-negative 
value for the fittest clones. The model is robust to the choice of the ref-
erence clone. We run the inference procedure over the same data set 
multiple times, each time changing the reference. The posterior ordering 
of clones over different choices of clones remained mostly identical.

Forecasting clonal trajectories
We forward-simulated trajectories from fitClone using the sam-
ple median of the estimated selection coefficients in TNBC-SA609 
(line 1) (B = 1.00 ± 0.01, D = 1.00 ± 0.01, G = 1.01 ± 0.01, H = 1.02 ± 0.02, 
E = 1.07 ± 0.02). We compared two independent starting clonal pro-
portions of (B = 0.08, C = 0.25, D = 0.51, E = 0.02, G = 0.08, H = 0.07) and 
(C = 0.02, D = 0.00, E = 0.05, G = 0.06, H = 0.87), derived by physically 
mixing cells from a late (X8) and an early (X3) passage of the TNBC-SA609 
(line 1) series in mixture-retransplant-serial passage experiments (Fig. 3b).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw sequencing data for DLP+ and 10x scRNA-seq are available from  
the European Genome-Phenome under study ID EGAS00001004448.  
Single-cell data from this report may be visualized in an instance of our  
scWGS exploration platform, Alhena, available at https://www.cellmine.org.  
Source data are provided with this paper.

Code availability
The software implementation of fitClone is available at https://github.
com/UBC-Stat-ML/fitclone.
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Extended Data Fig. 1 | Schematic overview of experimental design for 
quantitatively modelling clone-specific fitness. a, b, Time-series sampling 
from in vitro (a) and PDX (b) systems. Grey circles represent un-treated, blue 
represents cisplatin treated and grey with a blue outline denotes drug-holiday 
samples. c, Clonal dynamics of cell populations observed over time. Whole 
genome single cell sequencing of time-series samples gives copy number (left) 

that in turn is used to infer a phylogenetic tree (middle), and clonal fractions 
over time (right). d, fitClone: mathematical modelling of fitness with diffusion 
approximation to the K-type Wright–Fisher model. e, fitClone inputs of clonal 
dynamics measured over time series (left), and inferred trajectories (middle) 
and posterior distributions of fitness coefficients (right). Box plots are as 
defined in Fig. 1b.
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Extended Data Fig. 2 | Impact of p53 mutation on fitness in 184hTERT cells. 
a, Heatmap representation of copy number profiles of 2,713 p53WT cells, 
grouped in 6 phylogenetic clades. b, Phylogeny of cells over the time series 
p53WT where nodes are groups of cells (scaled in size by number) with shared 
copy number genotype and edges represent distinct genomic breakpoints. 
Shaded areas represent clones. Tree root is denoted by the red circle. c, 
Observed clonal fractions over time, inferred trajectories and quantiles of the 
posterior distributions over selection coefficients of fitClone model fits to 

p53WT with respect to the reference clone F. d, Analogous to a but for p53−/−a 
(n = 3,264 p53−/−a cells). e, Clonal genotypes of three representative clones for 
p53−/−b showing high level amplification of TSHZ2 in clone D, chromosome 4 
loss in clone E. Reference diploid clone I is shown for comparison.  
f, g, Analogous to b, c, but for p53−/−b (n = 4,881 p53−/−b cells; reference clone I). 
h, Number of segments per clone in hTERT WT and p53−/−a and p53−/−b branches. 
i, Number of mutations in p53−/−a and p53−/−b branches. Box plots are as defined 
in Fig. 1b.



Extended Data Fig. 3 | PDX tumour growth and clonal dynamics with 
cisplatin. a, Experimental design of cisplatin treatment in PDX. The solid blue 
colour representing cisplatin treated tumours (UT,UTT,UTTT,UTTTT); blue 
outlined in grey as drug holiday (UTU,UTTU,UTTTU); grey as untreated series. 
b–d, Tumour response curves in TNBC-SA609, TNBC-SA535 and TNBC-SA1035 
treated with Cisplatin (blue), in drug Holiday (green) and untreated (red) where 
each tumour replicate is shown in a different shade. The vertical axis on the 
right denotes the status of tumours and on the left denotes the tumour 
volumes. The top horizontal axis represents number of cisplatin cycles and at 

the bottom days from palpable tumours to collection. The red arrows indicate 
the start of treatment and the black arrows indicate the tumour sampled for 
scDNaseq. The bottom horizontal axis shows the tumour passage number. 
Each line in the big box is an individual tumour showing the growth over time.  
e, Top, clonal trajectories of the clone with the highest inferred selection 
coefficient in the treatment regime (solid black line) and the drug holiday 
counterpart (dashed red line) at each time point, in the three TNBC PDX time 
series; bottom, as the top row, but for a clone that grows back in the holiday 
regime.
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Extended Data Fig. 4 | Comparison of fitness landscapes of breast cancer 
PDX models. a, Heatmap representation of copy number profiles of 2,015 cells 
from TNBC-SA1035, grouped in 11 phylogenetic clades. b, Phylogeny for 
TNBC-SA1035. c, Observed clonal fractions, inferred fitClone trajectories and 

quantiles of the selection coefficients with respect to the reference clone A for 
the TNBC-SA1035 UnRx model. d–f, Analogous to a–c but for HER2+ SA535 
(n = 1,549 cells; reference clone C). g–i, Analogous to a–c but for HER2+ SA532 
(n = 2,193 cells; reference clone A). Box plots are as defined in Fig. 1b.



Extended Data Fig. 5 | Impact of pharmacologic perturbation with cisplatin 
on fitness landscapes in TNBC-SA1035. a, Copy number genotype of clone E 
from the untreated time series. b, Copy number genotype of clone H from 
treated time series (arrows indicate differences to clone E). c, Evolution in 

absence of treatment and as a function of drug treatment. For each sample, the 
phylogeny with clonal abundance from DLP+ is shown, reflecting selection.  
d, e, The observed clonal abundances (d) and the summarized clonal 
phylogenetic tree (e).
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Extended Data Fig. 6 | Tumour evolution in absence of pharmacologic 
perturbation in TNBC-SA609 line 1. a, b, Copy number genotype of clone E (a) 
and copy number genotype of clone C, the reference clone (arrows indicate 
differences to clone E) (b). c, Evolution in absence of treatment. For each 

sample, the phylogeny with clonal abundance from DLP+ is shown, reflecting 
selection. d, e, The observed clonal abundances (d) and the summarized clonal 
phylogenetic tree (e).



Extended Data Fig. 7 | Mixture experiment in TNBC-SA609 PDX Line 1.  
a, Clonal proportions of TNBC-SA609 Line 1 X3 and X8 used to generate the 
initial mixture M0 and subsequent serial passaging, yielding 5 samples for 
mixture experiment b (mixture b). b, Forward simulations from the original 
time series and starting population proportions in the initial experimental 
mixture b. Simulated trajectories are shown superimposed with mean 

simulation (red line) and observed clonal fractions (blue dots). The observation 
time is adjusted to match the simulation diffusion time. c, Summary 
phylogenetic tree, inferred trajectories and fitness coefficients (relative to 
reference clone C) for mixture a. d, As in c but for mixture b (relative to 
reference clone C). Box plots are as defined in Fig. 1b.
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Extended Data Fig. 8 | Fitness landscape reversal in early cisplatin 
treatment in TNBC PDX models. In each column, the left and right sub-panels 
are from the untreated and treated branches respectively. a, Phylogenetic 
trees annotated with fittest clones in −Rx and Rx. b, c, Inferred trajectories, 
first coloured by clonal assignment, and then coloured by fitness rank (b), and 

quantiles of selection coefficients of fitClone model fits to each branch with 
respect to the reference Clone C in TNBC-SA609, Clone C in TNBC-SA535, and 
clone A in TNBC-SA1035 (c). d, Distribution over the probability of positive 
selection over pairs of clones for each series. Box plots are as defined in Fig. 1b.



Extended Data Fig. 9 | Impact of pharmacologic perturbation with 
cisplatin on fitness landscapes in TNBC-SA609. a, Copy number genotype of 
clone H from untreated time series. b, Copy number genotype of clone A from 
the treated time series (arrows indicate differences to clone H). c, Evolution in 
absence of treatment (top) and as a function of treatment (bottom). For each 

sample, the phylogeny with clonal abundance from DLP+ is shown, reflecting 
selection. d, The observed clonal abundances. Starred time points are identical 
and reproduced to denote the identical starting point. e, Summarized clonal 
phylogenetic tree.
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Extended Data Fig. 10 | Impact of pharmacologic perturbation with 
cisplatin on fitness landscapes in TNBC-SA535. a, Copy number genotype of 
clone G from untreated time series. b, Copy number genotype of clone A from 
treated time series (arrows indicate differences to clone E). c, Evolution in 

absence of treatment and as a function of drug treatment. For each sample, the 
phylogeny with clonal abundance from DLP+ is shown, reflecting selection.  
d, e, The observed clonal abundances (d) and the summarized clonal 
phylogenetic tree (e).
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