Designing experiments

Outline for today
e What is an experimental study
e Why do experiments
e Clinical trials
e How to minimize bias in experiments
e How to minimize effects of sampling error in experiments
e Experiments with more than one factor
e What if you can’t do experiments

e Planning your sample size to maximize precision and power



What is an experimental study

e |In an experimental study the researcher assigns treatments to units or
subjects so that differences in response can be compared.

o Clinical trials, reciprocal transplant experiments, factorial experiments on
competition and predation, etc. are examples of experimental studies.

e In an observational study, nature does the assigning of treatments to
subjects. The researcher has no influence over which subjects receive
which treatment.

Common garden “experiments”, QTL “experiments”, etc, are examples of observational
studies (no matter how complex the apparatus needed to measure response).



What is an experimental study

e In an experimental study, there must be at least two treatments

e The experimenter (rather than nature) must assign treatments to units or
subjects.

e The crucial advantage of experiments derives from the random assignment
of treatments to units.

e Random assignment, or randomization, minimizes the influence of
confounding variables, allowing the experimenter to isolate the effects of
the treatment variable.



Why do experiments

By itself an observational study cannot distinguish between two reasons behind an
association between an explanatory variable and a response variable.

For example, survival of climbers to Mount Everest is higher for individuals taking
supplemental oxygen than those not taking supplemental oxygen.

One possibility is that supplemental oxygen (explanatory variable) really does cause
higher survival (response variable).

The other possibility is that supplemental oxygen has little or no effect on survival.
The two variables are associated because other variables affect both supplemental
oxygen and survival at the same time. For example, use of supplemental oxygen
might be a benign indicator of a greater overall preparedness of the climbers that
use it, and greater preparedness rather than oxygen use is the main cause of the
enhanced survival.

Variables (like preparedness) that distort the causal relationship between the
measured variables of interest (oxygen use and survival) are called confounding
variables.



Why do experiments

e With an experiment, random assignment of treatments to subjects allows
researchers to tease apart the effects of the explanatory variable from those of
confounding variables.

e With random assignment, no confounding variables will be associated with
treatment except by chance.

e For example, assigning supplemental oxygen/no-oxygen randomly to Everest
climbers will break the association between oxygen and degree of preparedness.

e Random assignment will roughly equalize the preparedness levels of the two
oxygen treatment groups.

e In this case, any resulting difference between oxygen treatment groups in survival
(beyond chance) must be caused by treatment.

http://www.everest-2002.de/home_e.html




Clinical trials

e The gold standard of experimental designs is the clinical trial. Experimental design
in all areas of biology have been informed by procedures used in clinical trials.

e Aclinical trial is an experimental study in which two or more treatments are
assigned to human subjects.

e The design of clinical trials has been refined because the cost of making a mistake
with human subjects is so high.

e Experiments on nonhuman subjects are simply called “laboratory experiments” or
“field experiments”, depending on where they take place.



Example of an experiment (clinical trial)

e Transmission of the HIV-1 virus via sex workers contributes to the rapid spread of
AIDS in Africa.

e The spermicide nonoxynol-9 had shown in vitro activity against HIV-1, which
motivated a clinical trial by van Damme et al. (2002). They tested whether a vaginal
gel containing the chemical would reduce the risk of acquiring the disease by
female sex workers.

e Data were gathered on a volunteer sample of 765 HIV-free sex-workers in six clinics
in Asia and Africa.

e Two gel treatments were assigned randomly to women at each clinic. One gel
contained nonoxynol-9 and the other contained a placebo (an inactive compound
that subjects could not distinguish from the treatment of interest).

e Neither the subjects nor the researchers making observations at the clinics knew
who had received the treatment and who had received the placebo. (A system of
numbered codes kept track of who got which treatment.)



Example of an experiment (clinical trial)

e Results of the clinical trial

Nonoxynol-9 Placebo

Number Number

Clinic n infected n infected
Abidjan 78 0 84 5
Bangkok 26 0 25 0
Cotonou 100 12 103 10
Durban 94 42 93 30
Hat Yai 2 22 0 25 0
Hat Ya1 3 56 5 59 0
Total 376 59 389 45



Design components of clinical trial

e The goal of experimental design is to eliminate bias and to reduce sampling error
when estimating and testing effects of one variable on another.

e To reduce bias, the experiment included:

o Simultaneous control group: the study included both the treatment of interest and a
control group (the women receiving the placebo).

o Randomization: treatments were randomly assigned to women at each clinic.

o Blinding: neither the subjects nor the clinicians knew which women were assigned
which treatment.

e To reduce the effects of sampling error, the experiment included:
o Replication: the study was carried out on multiple independent subjects.
o Balance: the number of women was nearly equal in the two groups at every clinic.

o Blocking: subjects were grouped according to the clinic they attended, yielding multiple
repetitions of the same experiment in different settings (“blocks”).



Simultaneous control group

e A control group is a group of subjects who are treated like all of the experimental
subjects except do not receive the treatment of interest.

e A study lacking a control group for comparison cannot determine whether the
treatment of interest is the cause of any of the observed changes.

e There are several possible reasons for this, including the following:

o Sick human subjects selected for a medical treatment may tend to “bounce back”
toward their average condition regardless of any effect of the treatment.

o Stress and other impacts associated with administering the treatment (such as surgery
or confinement) might produce a response separate from the effect of the treatment of
interest.

e The health of human subjects often improves after treatment merely because of
their expectation that the treatment will have an effect, a phenomenon known as
the placebo effect.



Simultaneous control group

e In clinical trials either a placebo or the currently accepted treatment should be
provided. A placebo is an inactive treatment that subjects cannot distinguish from
the main treatment of interest.

e In experiments requiring intrusive methods to administer treatment, such as
injections, surgery, restraint, or confinement, the control subjects should be
perturbed in the same way as the other subjects, except for the treatment itself, as
far as ethical considerations permit. The “sham operation”, in which surgery is
carried out without the experimental treatment itself, is an example.

¢ In field experiments, applying a treatment of interest may physically disturb the
plots receiving it and the surrounding areas, perhaps by trampling the ground by
the researchers. Ideally, the same disturbance should be applied to the control
plots.



Randomization

e Once treatments are chosen, the researcher should randomize assignment to units
or subjects.

e Randomization means that treatments are assigned to units at random, such as by
flipping a coin. Chance rather than conscious or unconscious decision determines
which units end up receiving the treatment of interest and which receive the
control.

e A completely randomized design is an experimental design in which treatments are
assigned to all units by randomization.



Randomization

e Randomization breaks the association between possible confounding variables and
the explanatory variable, allowing the causal relationship between the explanatory
and response variables to be assessed.

e Randomization doesn't eliminate the variation contributed by confounding
variables, only their correlation with treatment.

e |t ensures that variation from confounding variables is similar between the
different treatment groups.



Randomization

e Randomization should be carried out using a random process, for example:
o List all n subjects, one per row, in a computer spreadsheet.
o Use the computer to give each individual a random number.

o Assign treatment A to those subjects receiving the lowest numbers and treatment B to
those with the highest numbers.

Experimental unit . . . .

Random number 87 55 76 70 90 4

Treatment A A B A B B B A

e Other ways of assigning treatments to subjects are almost always inferior because
they do not eliminate the effects of confounding variables.

e “Haphazard” assignment, in which the researcher chooses a treatment while trying
to make it random, has repeatedly been shown to be non-random and prone to

bias.



Blinding

e Blinding is the process of concealing information from participants (sometimes
including researchers) about which subjects receive which treatment.

e Blinding prevents subjects and researchers from changing their behavior,
consciously or unconsciously, as a result of knowing which treatment they were
receiving or administering.

e For example, studies showing that acupuncture has a significant effect on back pain
are limited to those without blinding (Ernst and White 1998).




Blinding

e In a single-blind experiment, the subjects are unaware of the treatment that they
have been assigned. Treatments must be indistinguishable to the subjects, which
prevents subjects from responding differently according to their knowledge of their
treatment.

e Not much of a concern in non-human studies.

e In a double-blind experiment the researchers administering the treatments and
measuring the response are also unaware of which subjects are receiving which
treatments.

o Researchers sometimes have pet hypotheses, and they might treat experimental
subjects in different ways depending on their hopes for the outcome.

o Many response variables are difficult to measure and require some subjective
interpretation, which makes the results prone to a bias.

o Researchers are naturally more interested in the treated subjects than the control
subjects, and this increased attention can itself result in improved response.



Blinding

e Reviews of medical studies have revealed that studies carried out without double-
blinding exaggerated treatment effects by 16% on average compared with studies
carried out with double-blinding (Juni et al. 2001).

e Experiments on non—human subjects are also prone to bias from lack of blinding.

e Bebarta et al. (2003) reviewed 290 two-treatment experiments carried out on
animals or on cell lines. The odds of detecting a positive effect of treatment were
more than threefold higher in studies without blinding than in studies with
blinding. (This probably overestimates the effects of a lack of blinding, because the
experiments without blinding also tend to have other problems such as a lack of
randomization.)

e Blinding can be incorporated into experiments on nonhuman subjects using coded
tags that identify the subject to a “blind” observer without revealing the treatment
(and who measures units from different treatments in random order).



[break]



Minimizing the effects of sampling error

e The goal of experiments is to estimate and test treatment effects against the
background of variation between individuals (“noise”) caused by other variables.

e One way to reduce noise is to make the experimental conditions constant. Fix the
temperature, humidity, and other environmental conditions, for example, and use
only subjects that are the same age, sex, genotype, and so on. In field experiments,
however, highly constant experimental conditions might not be feasible.

e Constant conditions might not be desirable, either. By limiting the conditions of an
experiment, we also limit the generality of the results—that is, the conclusions
might apply only under the conditions tested and not more broadly.

e Another way to make treatment effects stand out is to include extreme treatments.



Replication

e Replication is the assignment of each treatment to multiple, independent
experimental units.

e Without replication, we would not know whether response differences were due to
the treatments or just chance differences between the treatments caused by other
factors.

e Studies that use more units (i.e., that have larger sample sizes) will have smaller
standard errors and a higher probability of getting the correct answer from a
hypothesis test.

e Larger samples mean more information, and more information means better
estimates and more powerful tests.



Replication

e Replication is not about the number of plants or animals used, but the number of
independent units in the experiment. An “experimental unit” is the independent

unit to which treatments are assigned.

e The figure shows three experimental designs used to compare plant growth under
two temperature treatments (indicated by the shading of the pots). The first two

designs are unreplicated.
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Replication

e An experimental unit might be a single animal or plant if individuals are randomly
sampled and assigned treatments independently.

e Or, an experimental unit might be made up of a batch of individual organisms
treated as a group, such as a field plot containing multiple individuals, a cage of
animals, a household, a Petri dish, or a family.

e Multiple individual organisms belonging to the same unit (e.g., plants in the same
plot, bacteria in the same dish, members of the same family, and so on) should be
considered together as a single replicate. This is because they are likely to be more
similar on average to each other than to individuals in separate units (apart from
the effects of treatment).

e Erroneously treating the single organism as the independent replicate when the
chamber or field plot is the experimental unit is pseudoreplication



Replication

e From the standpoint of reducing sampling error, more replication is always better.

e As proof, examine the formula for the standard error of the difference between
two sample mean responses to two treatments, Y, —Y,
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e Increasing n, and n, directly reduces the standard error, increasing precision.

e Increased precision yields narrower confidence intervals and more powerful tests
of the difference between means.

e On the other hand, increasing sample size also has costs in terms of time, money,
and even lives.



Balance

e A study design is balanced if all treatments have the same sample size. Conversely,
a design is unbalanced if there are unequal sample sizes between treatments.

e Balance is a second way to reduce the influence of sampling error on estimation
and hypothesis testing. To appreciate this, look again at the equation for the
standard error of the difference between two treatment means. For a fixed total

number of experimental units, n; + n,, the standard error is smallest when the
quantity
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is smallest, which occurs when n; and n, are equal.

e Balance has other benefits. For example, ANOVA is more robust to departures from
the assumption of equal variances when designs are balanced or nearly so.



Blocking

e Blocking is the grouping of experimental units that have similar properties. Within
each block, treatments are randomly assigned to experimental units.

e Blocking essentially repeats the same, completely randomized experiment multiple
times, once for each block.

e Differences between treatments are only evaluated within blocks, and in this way
the component of variation arising from differences between blocks is discarded.

Chamber 1 Chamber 2
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Blocking: Paired design

e For example, consider the design choices for a two-treatment experiment to
investigate the effect of clear cutting on salamander density.

e In the completely randomized (“two-sample”) design we take a random sample of
forest plots from the population and then randomly assign each plot to either the
clear-cut treatment or the no clear-cut treatment.

¢ In the paired design we take a random sample of forest plots and clear-cut a
randomly chosen half of each plot, leaving the other half untouched.
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Blocking: Paired design

e In the paired design, measurements on adjacent plot-halves are not independent.
This is because they are likely to be similar in soil, water, sunlight, and other
conditions that affect the number of salamanders.

e As aresult, we must analyze paired data differently than when every plot is
independent of all the others, as in the case of the two-sample design.

e Paired design is usually more powerful than completely randomized design because
it controls for a lot of the extraneous variation between plots or sampling units that
sometimes obscures the effects we are looking for.
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Blocking: Randomized Complete Block design

e RCB design is analogous to the paired design, but may have more than two
treatments. Each treatment is applied once to every block.

e As in the paired design, treatment effects in a randomized block design are
measured by differences between treatments exclusively within blocks, a strategy
that minimizes the influence of variation among blocks.

e By accounting for some sources of sampling variation, such as the variation among
trees, blocking can make differences between treatments stand out.

e Blocking is worthwhile if units within blocks are relatively homogeneous, apart
from treatment effects, and units belonging to different blocks vary because of
environmental or other differences.



Blocking: Randomized block design

e For example, Srivastava and Lawton (1998) made artificial tree holes from plastic
that mimicked the buttress tree holes of European beech trees to examine how the
amount of decaying leaf litter affected the number of insect eggs deposited (mainly
by mosquitoes and hover flies) and the survival of the larvae.

e In one treatment (LL), a low amount of leaf little was provided. In a second
treatment (HH), a high level of debris was provided. In the third treatment (LH),
leaf litter amounts were initially low but were then made high after eggs had been
deposited.

e A randomized block design was used in which
artificial tree holes were laid out in triplets
(blocks). Each block consisted of one LL tree hole,
one HH tree hole, and one LH tree hole.

[
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e The location of each treatment within a block was
randomized.




Blocking: Randomized block design

e For example, Blaustein et al. (1997) used a field experiment to investigate whether
UV-B radiation was a cause of amphibian deformities. They measured long-toed
salamanders either exposed to natural UV-B radiation or under UV-B shields. It was
not possible to carry out all replicates simultaneously, so the researchers carried

them out over several days.

e They made sure that both treatments were included on each day. In their analysis
they grouped replicates together that were carried out on the same day into
blocks.




Example of pseudoreplication

e For example, Visscher et al. (1996) compared the effects of two methods of
removing the barbed stinger, poison sac, and muscles left behind after a honeybee
stings its victim, and that continue to pump venom into the wound: scraping off
with a credit card or pinching off with thumb and index finger.

e A total of 40 stings was induced on volunteers. Twenty were removed with the
credit card method, and 20 were removed with the pinching method. The size of
the subsequent welt by each sting was measured after 10 minutes. All 40
measurements were combined to estimate means, standard errors, and the P-
value for a two-sample t-test of the difference between treatment means. Pinching
led to a slightly smaller average welt, but the difference between methods was not
significant.

e However, all 40 measurements came from two volunteers (both
authors of the study), each of whom received one treatment ten §
times on one arm and the other treatment ten times on the other =4
arm.

e Pseudoreplication will lead to calculations of standard errors and P-values that are
too small.



Experiments with more than one factor

e A factor is a single treatment variable whose effects are of interest to the
researcher.

e One reason to consider experiments with multiple factors is that the factors might
interact.

e The factorial design is the most common experimental design used to investigate
more than one treatment variable, or factor, at the same time. In a factorial design
every combination of treatments from two (or more) treatment variables is
investigated.

e The main purpose of a factorial design is to evaluate possible interactions between
variables. An interaction between two explanatory variables means that the effect
of one variable on the response depends on the state of a second variable.

e Even if there are no interactions, a factorial design can be an efficient way to collect
information on the effects of more than one treatment variable.



Factorial experiments

e For example, Relyae (2003) looked at how a moderate dose (1.6 mg/L) of a
commonly used pesticide, carbaryl (Sevin), affected bullfrog tadpole survival. In
particular, the experiment asked how the effect of carbaryl depended on whether a
native predator, the red-spotted newt, was also present. The newt was caged and
could cause no direct harm, but it emitted visual and chemical cues that are known
to affect tadpoles.

e The experiment was carried out in 10-L tubs (experimental units), each containing
10 tadpoles. The four combinations of pesticide treatment (carbaryl vs. water only)
and predator treatment (present or absent) were randomly assigned to tubs. For
each combination of treatments, there were four replicate tubs.




Factorial experiments

e The results showed that survival was high except when pesticide was applied
together with the predator—neither treatment alone had much effect. Thus, the
two treatments, predation and pesticide, seem to have interacted
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What if you can't do experiments?

e Experimental studies are not always feasible, in which case we must fall back upon
observational studies.

e The best observational studies incorporate as many of the features of good
experimental design as possible to minimize bias (e.g., simultaneous controls,
blinding) and the impact of sampling error (e.g., replication, balance, blocking, and
even extreme treatments) except for one: randomization.

e Randomization is out of the question, because in an observational study the
researcher does not assign treatments to subjects. Instead, the subjects come as
they are.

e Two strategies are used to limit the effects of confounding variables on a difference
between treatments in a controlled observational study: matching; and adjusting
for known confounding variables.



Matching

e A strategy commonly used in epidemiological studies.

e With matching, every individual in the target group with a disease or other health
condition is paired with a corresponding healthy individual that has the same
measurements for known confounding variables such as age, weight, sex, and
ethnic background (Bland and Altman 1994).

e Unlike randomization, matching in an observational study does not account for all
confounding variables, only those explicitly measured. Thus, while matching
reduces bias, it does not eliminate bias.

e Matching also reduces sampling error by grouping experimental units into similar
pairs, analogous to blocking in experimental studies.

e |In a weaker version of this approach, a comparison group is chosen that has a
similar frequency distribution of measurements for each confounding variable as
the treatment group, but no pairing takes place.



Adjusting for known confounding variables

® \With adjustment, a statistical method such as analysis of covariance (a type of
linear model) is used to correct for differences between treatment and control
groups in suspected confounding variables.



Planning your sample size

e Ethics boards and animal care committees require researchers to justify the sample
sizes for proposed experiments on animals, humans.

e Sample size planning involves two objectives: to achieve a predetermined level of
precision of an estimate of treatment effect; or to achieve a predetermined power
in a test of the null hypothesis of no treatment effect.

e Planning for precision involves choosing a sample size that yields a confidence
interval of expected width. Typically, we hope to set the bounds as narrowly as we
can afford

e Planning for power involves choosing a sample size that would have a high
probability of rejecting Hy if the absolute magnitude of the difference between the
means, |l — L], is at least as great as a specified value D.



Plan for precision

e For example, consider a comparison of means of two-treatments.
U1 = unknown mean of the treatment group,
U, = unknown mean of the control group.

e When the results are in we will compute the sample means 171 and 172 and use them
to calculate a 95% confidence interval for 1, — u,, the difference between the
population means of the treatment and control groups.

e To simplify, assume that the sample sizes, n are equal, and that the measurement
in the two populations are normally distributed with equal standard deviation, G.

¢ |n this case, a 95% confidence interval for 1, — 1, will take the form

Y, =Y, + uncertainty, where “uncertainty” is half the width of the confidence
interval.



Plan for precision

Planning for precision involves deciding the uncertainty we can tolerate in advance.
Once we've decided that, then the sample size needed in each group is

approximately
2
n=38 :
uncertainty

A larger sample size is needed if G, the standard deviation within groups, is large
than if it is small.

A larger sample size is needed to achieve a high precision (a narrow confidence
interval) than to achieve a lower precision

A major challenge is that key quantities like o are not known. Typically a
researcher makes an educated guess for these unknown parameters based on pilot
studies or previous investigations.

If no information is available then consider carrying out a small pilot study first,
before attempting a large experiment.



Plan for precision

e After planning, imagine that the experiment is run and you now have your data.
Will the confidence interval calculate have the precision you planned for? Probably
not for two reasons.

e You only had an educated guess for .

e Second, the within-treatment sample standard deviation s from the experiment will
not equal o because of sampling error. The resulting confidence interval will be
narrower or wider accordingly.

e The probability that the resulting confidence interval is less than or equal to the
desired precision is only about 0.5. To increase this probability you would need an
even larger sample size.



Plan for precision

e The graph below shows expected precision of the 95% confidence interval for the
difference between two treatment means. The vertical axis is given in standardized
units, uncertainty/o .

e Very small sample sizes lead to very wide interval estimates of the difference
between treatment means. More data gives better precision.

e Precision initially declines rapidly with increasing sample size, but it then declines

more slowly. Thus, we get diminishing returns by increasing the sample size past a

certain point -

Expected uncertainty/c
N

2 5 10 15 20
Sample size n in each treatment



Plan for power

Hy: ty — =0
HA.‘Ul—‘LlQ;ﬁO.

e The power of a test is the probability of rejecting H if it is false.

e Planning for power involves choosing a sample size that would have a high
probability of rejecting Hy if the absolute magnitude of the difference between the

means, | Uy — Uy |, is at least as great as a specified value D.

e D is just the minimum we care about. By specifying a value for D in a sample size
calculation we are deciding that we aren’t much interested in rejecting the null

hypothesis of no difference if | i1 — [, | is smaller than D.

e A conventional power to aim for is 0.80. That is, if Hy is false, we aim to
demonstrate that it is false in 80% of experiments.

e Power calculations made once the experiment is over, to determine in retrospect
how powerful the experiment was, are useless and should be avoided (by
definition, a test that failed to reject Hy will always be found to have had low
power).



Plan for power

Hy: ty — =0
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e If we aim for a power of 0.8 and a conventional significance level of &= 0.05, then a
quick approximation to the planned sample size n in each of two groups is

o 2
n516()
D

(Lehr 1992). This formula assumes that the two populations are normally
distributed and have the same standard deviation (o), which we are forced to
assume is known.

e For a given power and significance level, a larger sample size is needed when the
standard deviation o within groups is large, or if the minimum difference that we
wish to detect is small.



e Sample size formulas for desired precision and power are available for one- and
two-sample means, proportions, and odds ratios. We can also use R to calculate
power using simulation (workshop next week).



Plan for data loss

e The methods described here for planned sample sizes refer to sample sizes at the
end of the experiment.

e But some experimental individuals may die, leave the study, or be lost between the
start and the end of the study.

e The starting sample sizes should be made even larger to compensate.



Discussion paper:

Colegrave and Ruxton (2003). Confidence intervals are a more useful

complement to nonsignificant tests than are power calculations

(might also want to look at Hoenig and Heisey (2001), which they cite)

Download from “assignments” tab on course web site.
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