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A) Note on version 1.3

Version 1.3 is only a slight modification of version 1.2 but is provided here because newer PC’s
were having difficulty running the old version. Small wonder: version 1.2 was compiled in 1993
for DOS machines. Version 1.3 makes use of extended and expanded memory of Windows and
hence is free of the conventional memory restriction that limited the size of data sets that could
be handled by version 1.2 (and that in some cases prevented the program from running at all on
Windows machines). Version 1.3 is compiled to handle up to 10,000 cases. This value can be
increased if necessary by modifying the source code and recompiling (instructions given below).

The only other difference is that lambda has been rescaled in version 1.3 to match that now used
in the most recent version of the univariate program, GLMS.

B) Outline of method

This section assumes some prior familiarity with univariate regression using cubic splines. The
univariate program GLMS is available from D.S. at www.zoology.ubc.ca/~schluter/splines.html.
Example applications of the univariate method are given in Schluter (1988). The present method
is based on Schluter and Nychka (1994) which should be consulted for details.

The present program estimates fitness surfaces (and other regression surfaces) using the
projection pursuit approximation. The true surface f'is a function of the independent variables z =
[z1, 22, 3, .... zx]’ such that

Y =f{z) + random error.

Y is individual survival or reproductive success. Our goal is to estimate the surface f without
making any prior assumptions about its shape.

The projection pursuit approximation of the surface is the additive model
flm) =fi @'y + 1> (a7) + .. fu (an'2)
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where xi, xy, ..., X, are new 1-dimensional variables created as linear combinations of the original
set. The coefficients of these combinations are the m vectors ay, a,, ... a,,, known as the
projections (’ indicates transpose). The above approximation simplifies the task of estimating the
full multivariate surface to one of estimating a small number of univariate functions f}, f5, ... fi, in
the directions described by the coefficients a;, ay, ... a,,. The x, x, ..., x,, are new 1-dimensional
variables created as linear combinations of the original set. The coefficients may be loosely
though of as "principal components," but they are not chosen to maximize explained variation in
z; instead they are chosen to maximize explained variation in Y. The ay, a,, ... a,, then contain the
"factor loadings" for the components.
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To estimate each univariate function fi, f, ... f,, we use the cubic spline, a flexible method of
nonparametric regression. For simplicity, we use the same value of the smoothing parameter A
for each function. We choose aj, ay, ... a,,, to minimize the weighted residual sum of squares

WSS =3 (Y- Yn) /0%y

Where Yy is the Y-value predicted by the spline fit and 6 2y is the variance in Y. The method
thus estimates the true surface by taking cross sections in only the few most interesting directions
(the directions that explain maximal variation in Y). These directions, and the functions f}, f, ...
Jfms, are estimated simultaneously using an iterative algorithm known as backfitting. The first
minimization for each direction is done using a coarse search over many randomly-constructed
projections. Subsequent steps refine the search using a simplex algorithm.

Survival or reproductive success Y is not assumed to be normally distributed for a given
phenotype z. Survival is binary, taking on the values 0 or 1. Mating or reproductive success may
be approximately Poisson (0, 1, 2, ....). To accomodate these possibilities, estimates of the
surface use the iterative methods of generalized linear models. For example, for survival data
fitness g(z) is the probability of survival as a function of z

g(z) = Prob(Y | z) = exp{f(z)} / (1 + exp{f(z)})

For Poisson data (e.g., number of mates),

g(2) = expif(z);.

C) What’s included in this package

pp.exe — The main compiled program.

surface.exe — A program that prompts the user for desired parameter settings, and then runs
pp.exe.

pp13.f — Source code for the main program. These two files must be linked when compiling.
surface11.f — Source code for the program surface.exe

demo.dat — Example data set, taken from Karn and Penrose. Data are survival to 28 days of
male human infants, their gestation time, and their birthweights. A single outlying observation
(birthweight 13 lbs) has been deleted. Both variables were standardized to mean 0 and variance
1. Variables are listed in columns as Y, Z,, Z,, N, where N is the number of individuals having the
same gestation and birthweight, and y is their mean survival.

demo.in — An example input file to analyse demo.dat with example parameter settings. The
parameter settings are explained in the following section. Demo.in was initially created using
the program surface. In this example, the program is instructed to find a single projection a,
describing a linear combination of gestation and birthweight. The value -2 is used for the



smoothing parameter A (natural log scale).
demo.out — Output from the program pp.exe using demo.in as input file.

pp.manual.pdf —The present manual.

D) Running pp.exe

To run the program pp.exe using the demonstration data set, open a command window and type
pp < demo.in

to see output on screen, or
pp < demo.in > outfile

to send results to a file. Until you are proficient at editing the input file, it is best to begin a new
analysis by running surface.exe. This will create an input file for your data, which you can edit
later if you wish to rerun the analysis with altered parameter settings. The following section
explains the input parameters.

Don’t be surprised if the program takes a long time to finish. Running the program using
demo.dat and demo.in as input took about 50 seconds on my 300 MHz Pentium II. Expect the
time required to increase with the number of variables, cases, projections, and iterations.

E) Running surface.exe to input parameters

Type
surface

and reply to the prompts. This section explains the input requested, and other parameter settings.
The values are written to the file pp.in which is created by this program.

File structure—Data should be listed in columns beginning with Y (survival or reproductive
success), and followed by the z-variables (measured traits). An optional final column is for N, the
number of individuals having the same values of the z-variables. In this case, Y is the mean
survival or reproductive success of the N individuals.

The maximum number of cases that can be read from a file is set to 10000 in the general version
of the program. See the program compilation notes below for information on how to increase this
number.

Z-variables—These refer to the measured phenotypic traits. If the different traits are not in the



same units, or have very different variances, then they should probably be standardized prior to
analysis. Presently, the maximum number of traits that can be analysed is 12.

Number of projections—The desired number of directions, or cross-sections of the surface. For
any data set it is best to begin with 1 projection in order to keep things tractable. This is
especially important if you intend to test and compare a series of values of A . In later analyses
you can add extra dimensions if you are curious or the data seem to warrant further analysis. We
strongly recommend that you use a fixed value of A when more than one direction is sought (use
the best A obtained from the preliminary analysis that sought only 1 projection) otherwise
matters get very complex. The maximum number of directions that can be sought is presently set
to 4.

Number of random directions—To find the best directions (those minimizing WSS) the program
begins by evaluating the fit at a specified number of random directions. If the specified number
is too small, then the search will not reliably find the best direction, and separate searches using
different random number seeds will not converge. Hence the number of random directions
should be large. When there are only two traits, and only a single projection is sought (as in the
example data set demo.dat), we have found that at least 2000 random directions is needed.
When looking for 2 projections from 6 original variables we found 6000 to be a minimum. A
good strategy is to start with a reasonable number (e.g., 5000), and run the program several times
using different random number seeds. If the final solutions from different seeds are not close to
one another, then it would be a good idea to increase the number of random directions until you
get convergence.

Integer seed—Input an integer to begin the random projection search. Searches begun with the
same seed (and the same number of random directions and projections) will be identical.

Model type—Choose option 1 if the residuals are approximately normally distributed with equal
variance. Choose option 2 if the data are survival (between 0 and 1). Choose option 3 if the data
are number of mates, recruits, etc—i.e., always greater than 0, with the variance of the residuals
increasing with increasing mean Y. Note that if option 2 is chosen then Y must be between 0 and
1 (inclusive), and if option 3 is chosen then Y must be greater than or equal to 0.

One vs range of lambdas—A range of A-values may be tested (natural log scale), and their GCV
scores compared. This is recommended only when fitting a single projection (if you are fitting
more than one projection then we recommend that you use one fixed value of A in order to keep
things as simple as possible). To begin, try —10 to 10 in intervals of 2. Most data sets will not
warrant A values smaller than —14. One can get a feeling for the complexity of an estimate by the
"effective number of parameters" provided in the output (see below).

Statistical inference using the bootstrap—W e have included routines to carry out statistical tests
and compute standard errors. The power and reliability of these quantities are unknown, and so
the method should be used with caution.

The first option calculates standard errors for the predicted values Y1, and for the coefficients of
the directions a,, a,, ... a,,. The output also lists the number of bootstrap replicates in which the
estimated coefficient was of different sign than in the original estimate calculated from the actual
data. If this number, when divided by the total number of bootstrap replicates, is less than 0.05,



then the coefficient may be deemed statistically significant (i.e., nonzero) at approximately the
5% level.

The second option allows testing the significance of an added direction. For example, if you
chose 2 directions (cross sections) in the options above, then you may test whether fitting 2
directions results in a significantly better fit to the data than fitting only 1. If you chose to search
for only 1 direction, then this option will test whether a regression based on 1 direction yields a
significantly better fit to the data than would be expected if no natural selection were present at
all. In other words, this second option, with 1 projection, is a test of whether or not the fitness
surface is merely a flat plane. The number of bootstrap replicates should always be as large as
possible, and should not be less than 100. This means that you should expect the analysis to take
a great deal of computer time. Note that while the bootstrap approach is better than completely
foregoing statistical testing, its validity in projection pursuit regression has not been thoroughly
checked using simulation, nor has its statistical power been evaluated. Hence we recommend that
the results be interpreted with caution. This routine will also give unpredictable results if the
distribution of Y-values for a given value of z does not follow the distribution assumed (i.e.,
using the Poisson option when Y for each z is not in fact Poisson).

Other parameter settings—Default values are listed in the resulting file pp.in. The number of
backfit iterations, the number of iterations in the simplex search, and the maximum number of
iterations for the spline fit are all set to 5. Iterations for the spline fit are explained in the
univariate program GLMS. They are needed to fit splines when the data are binary (0 or 1) or
poisson (0, 1, 2, ...). Five iterations is usually adequate, but 7 or more may be needed if A is small
(e.g., less than 10). To increase the number of iterations, edit the input file pp.in and rerun as
shown above. Other default parameter settings are: size of search regions for coarse and fine
simplex (eps and eps2), convergence tolerance for spline fit (Stop), a parameter to control
starting values for spline fit (job), and a parameter to control the volume and detail of output

(iprint).

F) Interpretation of output

This section explains the output provided by the minimal setting. The output begins with a list
the data file name and several of the most important parameters (these are explained in the
previous section).

WSS —The next part of the output lists the weighted residual sum of squares (WSS) attained at
each backfit, for each projection (cross section). Projection pursuit regression seeks to minimize
this quantity. As the program proceeds the WSS should converge, such that subsequent backfit
iterations do not greatly improve the fit. If convergence is not observed, then the number of
backfit iterations (and possibly the number of iterations in the simplex search) should be
increased above the default settings in the input file pp.in. If only one projection is sought, then
the program stops after 2 backfits, the extra ones are not needed.

Results from separate runs in which different random number seeds are used will rarely yield
identical values for WSS. This may occur for either of two reasons. First, a given run of the



program may only find a local minimum WSS rather than the global minimum. To circumvent
this problem it is best to elevate the number of random directions sought in the search for the
best directions. Second, even though separate runs of the program may be converging on the
same single solution to minimize WSS the program stops before the minimum is attained, as
determined by practical limits to the number of backfit iterations and other parameter settings. It
is best to choose parameter settings that yield solutions after a reasonable but not exorbitant
amount of computer time and in which the difference in WSS values from separate runs is
tolerably low.

Note that as the program proceeds the WSS may sometimes increase with successive backfit
iterations rather than decrease, but this is expected. The program is indeed converging on an
estimate of f minimizing WSS, subject to the additive model described above. However, the
additive assumption is not met until the later backfit iterations and until that time the WSS may
appear to increase.

Iterations for spline fit—The number of iterations used in the spline fit (with non-normal data)
is given to the right of the WSS. The default maximum number of iterations is set to 5. If the
maximum number is actually used (as in the example data set) then it is likely that the spline fit
itself has not yet converged. In this case you may wish to increase the maximum number of
iterations for the spline fit to 7 (e.g.) to see if the results are greatly affected. To increase the
number of iterations it will be necessary to edit the input file pp.in.

Projections—The next section of output gives the projections, each one listed in a separate
column. A column contains the coefficients describing the direction of the corresponding cross
section of the surface. The magnitude of the coefficient for any variable indicates its contribution
to variation in fitness in that direction. The variables are listed in the same order in which they
appear in the data file (i.e., variable 1 =z, etc.). The coefficients are scaled such that for each
projection the sum of squared coefficients equals 1.

Coefficients are given without any attention paid to sign. A projection a; and the projection
produced by multiplying each element of a; by —1 are considered to be the same. Thus

Variable Projection 1
1 .21844
2 .55300
3 —.80404
and
Variable Projection 1
1 —.21844
2 —.55300
3 .80404

are identical solutions.



When bootstrap replicates are carried out in order to estimate standard errors for the coefficients,
then the signs of different replicates are altered in order to conform with one another. For
example, if the above two projections were obtained from different bootstrap replicates, then the
sign of one of them would be changed before standard errors were computed.

If more than one projection is provided, then they will usually be listed in order of importance.
The quantity GCV(i) is provided to ascertain this. This quantity is the GCV score calculated using
the corresponding projection alone, and is a measure of how well each projection fits the data on
its own (smaller GCV score = better fit; the meaning of a GCV score is explained again below,
and in Schluter 1988). However, if both of two directions fit the data nearly equally well, then
the order of projections may sometimes be reversed. In this case the following two solutions
should be considered identical:

Variable Projection1 Projection2
1 21844 —.34311
2 .55300 —.90354
3 —.80404 .25669
and
Variable Projection1 Projection2
1 —.34311 .21844
2 —.90354 .55300
3 .25669 —.80404

Results from separate runs in which different random number seeds are used will rarely yield
identical projections. If this happens, first check whether WSS is nevertheless similar in the
different runs—if not, see the section above on WSS for the remedy. If WSS is similar between
runs but the projections are not, then there may be two reasons. First, there may be more than
one minimum WSS (rare). Second, and more likely, is that the variables in the data set are highly
correlated with one another. When variables are highly correlated, many different linear
combinations of them are able to predict the Y-values nearly equally well. This is the same
problem as "multicollinearity" that plagues multiple regression analysis. If variables are highly
correlated, then it will not be possible to reliably determine which of them most strongly
determine fitness. However, not all is lost: One may nevertheless use the predicted Y-values to
estimate the fitness surface, as these may not vary greatly from run to run even when the trait
coefficients vary substantially.

Number of parameters—The number of parameters is a useful measure of the effective
complexity of the estimated surface (the quantity does not refer to the actual number of
parameters in the equation for the cubic spline, which is large and unvarying). It can be
interpreted with reference to a polynomial with similar degree. In the case of a single projection,
2 effective parameters (the minimum number) indicates a function that is approximately linear.
Six effective parameters (as in demo.out) refers to a function with roughly the same degree of



complexity as a 5"™-order polynomial. In the case of more than one projection, the effective
number of parameters should be divided by the number of projections to give an idea of the
complexity of each univariate function making up the estimate of the surface. For example, if
two projections are fit to a set of data, then 10 effective parameters means that functions fit to
each of the two cross sections of the surface have about the same complexity as a 4™-order
polynomial. This quantity sometimes serves as a useful warning, particularly when data sets are
small (e.g., N<5000: if your estimate of f using two projections has on the order of 18 effective
projections, then something has likely gone wrong). A technical explanation of the effective
number of parameters is given in the Appendix of Schluter and Nychka (1994).

GCV score—This is a measure of prediction errors associated with a particular value of the
smoothing parameter A . It is explained in more detail in Schluter (1988) and in the information
accompanying our earlier univariate program GLMS. The GCV score provides an objective
criterion for choosing the best value of A —that is, to minimize GCV. The program computes the
overall GCV score for each of the A values requested, so that a minimum may be identified. In
some cases no minimum will be found (i.e., the minimum occurs at a very small value of In(A ),
and is accompanied by a large number of effective parameters (see above)). The cause of this
problem is not entirely clear, but it is usually associated with small data sets. In this case one
must choose an appropriate (larger) value of A subjectively, in order to produce a more
reasonable estimate of /. We have also noticed that the "best" A is often too small when we test a
range of A values while searching for two or more projections. (This is why we usually
recommend that a range of A's be tested only when a single projections is fit to the data. Once the
best A is found using 1 projection, the same (fixed) value can then be used when search for extra
projections.) Another problem that sometimes arises is that more than one minimum GCV may be
found when A is varied. The most conservative solution in this case is to choose the largest of the
A values corresponding to a GCV minimum (alternatively, both estimates of the surface may be
presented). These problems are discussed in more detail in the GLMS package.

Predicted values for Y—These are provided as output only when a single value of A is chosen.
The following variables are listed in separate columns: Y is the observed survival or reproductive
success of individuals. Y}, is the corresponding predicted value (probability of survival, mean
number of mates, etc.). pX1 is each individual’s measurement along the first cross section of the
surface. It is computed as a linear combination of the original z-variables using the coefficients
of the first projection a,. f; is the "ridge function" corresponding to the first projection. It
contains the predicted values of Y along the first cross section of the surface. In the case of a
single projection, and normally-distributed residuals, f; and Y1, will be identical. With a single
projection and survival (0 or 1) data f; will be the predicted value of ¥ on the logit scale (i.e., f; =
In(Yhat /(1- Yhat)). In the case of Poisson data (e.g., number of mates), f; = In(Yhar).

If two or more projections are requested, the output also includes individual measurements (p.X)
along the corresponding directions and the associated predicted values.

G) Program compilation notes




I compiled the source code using the GNU Fortran 77 compiler g77 for Windows included in the
distribution package gcc-2.95. g77 is just a front-end for gcc, the GNU C/C++ compiler. The
package consisting of gcc and g77 is available free at
http://www.xraylith.wisc.edu/~khan/software/gnu-win32/gcc.html. I used the Mingw32 version
of the CRTDLL runtime libraries, gcc-2.95.2-crtdll.exe. More recent versions of the compiler
are available at http://gcc.gnu.org/.

If you wish to edit and recompile the source code, first install gcc on your computer by following
the instructions accompanying that program. After you install, and have modified your PATH
statement in AUTOEXEC.BAT to include the gcc command directory, compile the source code
in glms.f using the command:

g77 -fugly-assumed ppl3.f -0 pp.exe

You may wish to increase the size of the arrays, to allow analysis of larger data sets, or more
variables, or more projections. To change the number of cases, alter the parameter statements in
the source code files pp.f: change ALL instances of “nmax=10000" to "nmax=20000" or
whatever the desired new settings. When editing the source code files, it is a good idea to scan
the text for every instance of the word "parameter" to ensure that you have modified them all
consistently.

The program surface.exe is a stand-alone program that should not be linked with other code
when being compiled.

g77 -fugly-assumed surfacell.f -o surface.exe
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