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Abstract.—We present a nonparametric method to estimate the form of multivariate selection
on a suite of quantitative traits. Its advantages are threefold. First, the procedure is flexible and
does not force estimates of the surface to conform to a specific mathematical shape. The need
for a flexible method is illustrated by an example using quadratic regression. Second, estimates
of multidimensional surfaces can be visualized in two or three dimensions. This simplification
is accomplished by making cross sections of the surface in the few most interesting directions.
Finally, the method is designed to handle survival and other nonnormal fitness components.
We apply the procedure to two data sets. In song sparrows, the survival surface is approximated
by a ridge favoring an allometric relation between body mass and wing length. Survival in human
infants rises steeply with increasing birth mass and maternal gestation period to a broad flat
dome. Our results emphasize the ubiquity of ‘‘correlational’’ selection and illustrate how traits
jointly determine fitness.

The ‘‘surface of selective value’ is one of the most enduring representations
of the evolutionary process. Wright (1932) likened natural selection to a multidi-
mensional landscape of peaks and valleys, whose height at any point indicated
fitness of the corresponding genotype. (In later discussions he focused on a re-
lated surface, the ‘‘adaptive landscape,’” describing population mean fitness as a
function of genotype frequency; see Provine 1986 for the history of these two
concepts.) The concept of a selection surface can be extended to the continuously
varying phenotype (Pearson 1903; Simpson 1953; Lande 1979; Lande and Arnold
1983; Schluter 1988; Phillips and Arnold 1989). In this case the selection surface
or fitness function f relates survival or reproductive success W of individuals to
the m phenotypic traits z,, z,, . . . , 2,, under natural selection

W = f(z,,25,...,2,) + random error . 6))

For example, survival of individuals over some part of the life history may depend
on three traits: z;, body mass; z,, coloration intensity; and z;, running speed. In
this case W is survival (one or zero), and f(z,, z,, 23) is the probability that an
individual survives as a function of its measurements for the three traits.

The function fis a complete description of natural selection pressures on pheno-
typic traits (Schluter 1988). An estimate from field data would thus be invaluable.
Knowledge of f would allow one to make quantitative predictions of survival or
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reproductive success of individuals and to determine whether one or more fitness
peaks, valleys, or ridges occur within the range of phenotypes present in the
population. It would also indicate whether selection favors correlations between
traits (Lande and Arnold 1983). Additionally, f can be used to determine which
traits are under direct natural selection and which become modified only through
their correlation with selected traits (Lande and Arnold 1983). Finally, the surface
fcan be regarded as a feature of the external environment that determines fitness
of alternative phenotypes but exists independently of them (Schluter 1988; this
view must be modified when selection is frequency-dependent). If the ecological
importance of traits is known a priori, then f provides a description of the ecologi-
cal environment in relevant units of fitness (Schluter and Grant 1984; Schluter
1988).

A second goal when studying natural selection on several variables is to mea-
sure coefficients of directional and quadratic selection intensity (Lande and Ar-
nold 1983; Phillips and Arnold 1989). Such coefficients are necessary to predict
evolutionary response to selection (Lande 1979). However, these coefficients do
not correspond in any straightforward way to the form of the fitness surface f,
particularly when the phenotype distribution is not multivariate normal (Mitchell-
Olds and Shaw 1987; Schluter 1988). For example, whether fitness reaches a peak
within the range of phenotypes in the population cannot usually be ascertained
from the selection coefficients. For this reason, if the features of the selective
surface are of interest (e.g., peaks, ridges, or valleys), then the most reliable way
to detect them is to estimate the fitness surface directly. Here we suggest a novel
way to accomplish this objective.

In an earlier article (Schluter 1988), a nonparametric method was used to esti-
mate f from field data in the special case of a single phenotypic trait (i.e.,
m = 1). Below, we extend the method to estimating the form of selection on a
multidimensional phenotype. We use the method to reanalyze two data sets previ-
ously handled in other ways (song sparrow data: Schluter and Smith 1986; infant
mortality data: Karn and Penrose 1951). New interpretations of these data reveal
the power of the approach.

For most applications, the resulting estimate of the selection surface is suffi-
ciently interesting on its own that no further analysis is necessary. However, the
estimate can also be used as a preliminary step to finding a suitable mathematical
description of the surface, such as exponential or Gaussian.

THE FORM OF NATURAL SELECTION

Different terms are used by different authors to describe the form of natural
selection, and to avoid confusion we clarify our definitions here. To be consistent
with earlier definitions (Schluter 1988), we define fitness in terms of the pheno-
type: fitness is the mean survival or reproductive success of all individuals having
the same phenotype z;, z,, . . . , z,,. The realized survival or reproductive success
W of an individual is therefore the fitness of its phenotype plus a random error
term (eq. [1]). Survival and reproductive success are actually components of true
fitness, but for simplicity we use the general term fitness throughout.

Directional selection occurs on a single trait when average fitness is higher on
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one side of the population mean than on the other side. In pure directional selec-
tion, fis nonincreasing or nondecreasing over the specified range of phenotypes.
Stabilizing (or disruptive) selection occurs on a single trait when the fitness func-
tion f has a peak (or valley) within the range of phenotypes in the population.
These definitions are the traditional ones (Endler 1986; Schluter 1988). Lande and
Arnold (1983) provided new definitions for directional, stabilizing, and disruptive
selection; but as they refer to coefficients rather than to features of f, the tradi-
tional terminology is preferred (Schluter 1988; Phillips and Arnold 1989).

Possible forms of selection in two and higher dimensions are so varied that a
detailed classification would be laborious. To simplify, we classify multivariate
selection by the form of the fitness surface fin specific cross sections. Each cross
section j defines a new compound trait x; that is a linear combination of the
original traits z;:

m

X;=0a;2) T a;2, +apzyt .o+ a2, = Z a;z;,

i=1
which in vector notation is
=az,

where ' indicates transpose. The a;; are constants representing the contributions
of each trait z; to the compound trait x;. Since x; is a single variable, selection
on it may be directional, stabilizing, or disruptive as defined above. We define
correlational selection to be the presence of stabilizing or disruptive selection on
any linear combination x; of the original traits, other than the trivial combinations
(i.e., at least two of the |aj,~| >0,i=1,..., m). This definition departs from
the original one (Lande and Arnold 1983; Phillips and Arnold 1989). We preferred
it because we felt that correlational selection, like other forms of selection, should
be based on features of the fitness surface rather than on parameters of a specific
equation (e.g., the quadratic). The two definitions may conflict: for example,
“‘correlational selection’’ by the original definition (Lande and Arnold 1983) en-
compasses forms of selection that we would classify instead as purely directional

(fig. 1).

ESTIMATING THE FORM OF NATURAL SELECTION

One possible way to estimate the true selection surface is to use quadratic
regression (Karn and Penrose 1951; Lande and Arnold 1983; Phillips and Arnold
1989). This method is effective if the surface is indeed quadratic (Phillips and
Arnold 1989) but may mislead if the true surface has another mathematical form
(e.g., truncation [fig. 1], exponential, asymptotic, asymmetric, bell-shaped, or
polymodal selection; Schluter 1988). Hence, a more flexible method to explore
the surface is desired. We propose the use of nonparametric regression to achieve
this flexibility.

Another difficulty of estimating fitness surfaces is an abundance of variables
(traits). For example, the number of parameters in any mathematical description
of the surface becomes prohibitive when the number of traits increases beyond
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Fi16. 1.—An example of pure directional selection on the multivariate phenotype. Lef?,
truncation selection applied to a linear combination of two uncorrelated standard normal
traits (mean = 0, variance = 1). Individuals survived if the sum of their two traits was
=V2; otherwise they died. Right, the best-fit quadratic approximation to the surface on the

left. Quadratic regression coefficients suggest ‘‘disruptive’” (y; = vy, = 0.76) and corre-
lational (y;; = 0.76) selection on the traits by the Lande and Arnold (1983) definitions;
n = o,

three or four. Additionally, the multidimensional surface cannot be visualized
easily in two or three dimensions. An ad hoc solution to the problem of many
traits is to carry out a principal components analysis to locate the most variable
phenotype dimensions (see, e.g., Lande and Arnold 1983; Schluter and Smith
1986). Estimates of selection are then applied to the first one or two principal
components rather than to the larger number of original traits. Yet, there is no
reason to believe that selection is confined to, or acts most strongly on, the one
or two components chosen. Indeed, the approach must be regarded as arbitrary
because the procedure chooses the components while disregarding the relation-
ship between the multidimensional phenotype and fitness. For example, a compo-
nent with large variability may have little influence on fitness.

Below, we describe a flexible nonparametric technique that overcomes the
problems of many traits. We first describe the case of selection on a single trait.
We then extend the method to explore surfaces of many dimensions.

Estimating Functions Using the Cubic Spline

A nonparametric procedure, the cubic spline, could be used to estimate the
form of selection on a single trait (Schluter 1988). The cubic spline is a regression
curve named for its resemblance to the mechanical spline, a pliable stick used
for interpolation by draftspeople. Mathematically, the cubic spline is a collection
of cubic polynomial pieces joined seamlessly end to end (Wahba 1990). The curve
allows one to estimate a wide variety of possible fitness functions including the
straight line, the bell-shaped curve, and even bimodal forms of selection (Schluter
1988; Smith 1990).

The smoothness of the spline curve fit to any set of data is controlled by a
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nonnegative constant, A (Craven and Wahba 1979). If \ is nearly zero, then the
curve will be extremely rough, rising and falling many times as it passes through
all the individual data points. Conversely, when \ is large, the curve is a simple
linear regression. Other curves lie between these two extremes. Often termed the
‘‘smoothing parameter,”” \ acts similarly to the sliding interval of & points used
in calculations of moving averages. The effect of alternative values of \ on esti-
mates of a fitness function has been demonstrated (Schluter 1988).

The best N\ for the data at hand is determined objectively by the predictive
power of the corresponding function using the method of cross validation. The
procedure involves deleting observations one at a time from the data set and
predicting survival or reproductive success of the missing individual from the
cubic spline curve fit with the remaining points. The generalized cross validation
(GCV) score is a measure of the overall prediction error associated with a given
value of N\ (Craven and Wahba 1979). The best \ is that value minimizing the
GCYV score (see Schluter 1988 for examples).

A multivariate extension of the cubic spline can be used to estimate a selection
surface involving many traits (Wahba 1990). O’Sullivan et al. (1986) present some
biological examples involving two variables. The approach is flexible but has
several disadvantages (Friedman and Stuetzle 1981). For our purposes, its main
drawbacks are the large sample size needed and the difficulty of visualizing the
surface when the number of traits exceeds two. We overcome these problems
with a simpler method that combines a small number of univariate splines.

Projection Pursuit Regression

Definition.—The procedure we recommend is founded on the premise that
selection does not act strongly on all phenotype dimensions, and hence the entire
fitness surface is not worth looking at. We take cross sections of the surface in the
directions of strongest selection using the method of projection pursuit regression
(Friedman and Stuetzle 1981). We are then able to visualize the surface in reduced
form.

The projection pursuit approximation of the true selection surface f'is

flz)=fi(ajz) + f(a2) + ... + f,(a,2) = fi(x) + fo(x;) + ... + f,(x,). (2

Here, f, f;, . . . , f, are each single-variable regressions referred to as ridge
functions, and z is the vector of original phenotypic traits with means set to zero.
Each x; is a single variable computed as a linear combination of the original traits.
By projections we mean the vectors of constants a; that identify the directions of
each cross section; pursuit refers to the computational steps needed to find them.
Surfaces of general form can be represented with this method, including those
involving interactions between traits (Friedman and Stuetzle 1981). To standard-
ize the directions we fix aja; = 1.

Simple example.—The essence of projection pursuit can be made clear using
the simplest case: Imagine that selection acts mainly in one direction a,, on the
linear combination of traits x, = a;z:

f(2) = fi(ajz) = fi(x).
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This implies that fitness is unvarying along directions orthogonal to a;. In this
case all the important features of the surface may be seen by making a cross
section in the single direction a,. Assume further that the form of selection on
this direction is linear

W-W=fi(x)+e=bx;+e.

Here b is the slope of the line, W is mean survival or reproductive success, and
e is random error.

The problem of estimating the selection surface is now reduced to finding the
single direction a, and the constant b. This search may be carried out by iterating
between two steps: first, search over possible values for a; subject to the con-
straint aja; = 1; then for each choice of a;, find » to minimize the weighted
residual sum of squares:

_ & (Wk - ba;zk)z
WRSS = ; AR

where n is the number of observations, z, is the vector of measurements for the
kth individual, and var(W,) is the variance of the residuals at z = z;. It can be
shown that, when the estimates converge, the resulting vector of coefficients 4,
when multiplied by the estimate of b, is identical with the coefficients g obtained
from a multiple linear regression of W — W on the traits z. That is, multiple
regression is analogous to identifying the single direction on which linear selection
uniquely acts (Lande 1979) and is therefore a special case of projection pursuit
regression. The iterative algorithm is simply a very inefficient way to find B.

The single direction a, under selection may also be interpreted as representing
a ‘‘latent variable.”” Such an interpretation would be analogous to viewing the
first principal component of variation in morphology as representing an underly-
ing latent variable called ‘‘size’’ (Crespi and Bookstein 1989). The advantage of
projection pursuit is that it does not restrict attention a priori to size; all potential
directions are considered.

General case.—True projection pursuit generalizes the above simple case in
two ways. First, we let the functions f; be of any form, including linear, exponen-
tial, bell shaped, bimodal, or other. We use nonparametric regression (the cubic
spline) to estimate these functions. Second, we allow for selection in more than
one direction. In practice we will assume that the surface can be approximated
using only one or a small number of directions.

METHODS

Projection pursuit approximates the true surface f (eq. [2]) using p directions:

p p
f@=~> faz = > fix).
j=1 =1

To approximate f we must solve two computational problems. First, the direc-
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tions a; must be found. Second, the functions f; must be estimated. Below, we
outline how these problems were solved.

Directions.—We found the directions a, using the iterative steps given earlier,
minimizing the weighted residual sum of squares:

(w; - f(Zk))2
WRSS—Z PEUARE 3)

where f(zk) is the predicted survival or reproductive success of individual &,
based on its phenotype z,. If the residuals W, — f (z,) have a normal distribution
with equal variance, then var(W,) is a constant. If Wk is survival (i.e., is zero or
one), var(W,) is estimated by the binomial variance f(zk)(l — f(zk)) Similarly, if
W, is Poisson distributed (e.g., number of mates), we estimate var(W,) by f(zk)

Functions.—For each fixed direction a; we estimated f; from the data using the
cubic spline regression. If survival or reproductive success W, corresponding to
a given phenotype z, is normally distributed, then for each prOJectlon a; the
estimate f is calculated as a univariate regression of W — (Z,..; J f,) on x; = ajz.
This procedure is modified slightly if the fitness measurement is bmomlal (e.g.,
survival) or Poisson (e.g., number of mates) using the tools of generalized linear
models (see Appendix; McCullagh and Nelder 1983; O’Sullivan et al. 1986). For
simplicity, we applied the same value of the smoothing parameter N to each
function f; in f.

Algorithm.—Unfortunately, there was no analytical route to estimating the
selection surface in the general case, and a computer-intensive search for the
directions a; and functions f; was required. Our search was done efficiently by
employing an iterative algorithm known as ‘‘backfitting,”” which involves two
steps. For a predetermined number of directions p, loop through the directions
a;, j = 1,...,p. Then, holding all a, fixed, [ # j, estimate a; by minimizing
WRSS of equation (3). These steps are repeated until the estimates converge.
For each direction j the first part of the minimization inspects a large number of
possible values for a; created using random numbers. Subsequent iterations refine
this direction (i.e., to find the one minimizing WRSS) using a simplex algorithm
(Nelder and Mead 1965). Note that at any stage the WRSS is only being minimized
over the jth direction. However, if this procedure converges on a solution, it
must be a local minimum of the WRSS. This strategy is called backfitting because,
having found a candidate a; for a given direction j, one cycles back and reestim-
ates the other directions.

An interactive computer program to carry out projection pursuit regression can
be obtained from us on request. The program was written in FORTRAN77 and
is available as source code or a compiled program for the Sun workstation or
PC-compatible microcomputer.

Data

We analyzed two data sets. The first consisted of measurements of overwinter
survival (recruitment) of 152 juvenile male song sparrows (Melospiza melodia)
over 5 yr on Mandarte Island, British Columbia (Schluter and Smith 1986). Six
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external morphological traits were measured: mass (grams); wing length; tarsus
length; and length, depth, and width of the beak (all millimeters).

The second data set provided measurements of survival to 28 d of 7,037 new-
born male human infants (Karn and Penrose 1951). Two traits were available,
infant mass at birth (pounds) and maternal gestation period (days). We obtained
virtually identical results when the data were analyzed with and without a single
outlying point at large birth mass. Results presented here exclude the point.

Karn and Penrose (1951) visualized the fitness surface for the human infant
data using quadratic regression. The results suggested stabilizing selection on
birth weight and correlational selection on weight and gestation period. These
data are a classic example of selection in our own species, and they suggest how
a maternal trait (gestation) and an offspring trait (mass) interact to determine
offspring fitness.

In each data set we hunted for the projection(s) using a series of fixed values
of the smoothing parameter A. We then chose the value of \ such that the corre-
sponding estimate minimized the GCV score (Craven and Wahba 1979). In the
case of a single projection (i.e., p = 1), we used the standard formula for this
score. When hunting for two dimensions (i.e., p = 2), we calculated the GCV
score using a modification of the standard formula (see Appendix). In all cases
we also checked the repeatability of estimated directions a; by carrying out the
analysis several times using different random number seeds for the initial search
(see first step described earlier).

All phenotypic traits were standardized to mean zero and variance one prior
to analysis. In both data sets, individual measurements of survival were either
zero or one, and we used the cubic spline method appropriate for binary data
(see Appendix; O’Sullivan et al. 1986; Schluter 1988). Our computer program for
projection pursuit regression provides estimates of fitness f(z,) for each individual
k in the sample. These values were then imported into a graphics program that
drew surfaces by interpolation.

RESULTS

Song Sparrows

Because of small sample size (n = 152), we restricted the search to a single
cross section of the surface. That is, we assumed that selection was strong in
one direction only and hence that the true selection surface in seven dimensions
could be approximated by a simple univariate function. The best single direction,
that explaining most of the variation in survival among individuals, is given in
table 1. The estimated form of selection in this single direction is illustrated in
figure 2.

The contributions of the six traits to the best direction were not equal (table
1). Body mass and wing length contributed most of all, and we tentatively con-
clude that variation among individuals in probability of survival was determined
chiefly by these two traits. Their effects, though similar in magnitude, were oppo-
site in sign. This result has interesting biological significance and is interpreted
below.



TABLE 1

THE SINGLE DIRECTION a; OF STRONGEST NATURAL
SELECTION ON JUVENILE MALE SONG SPARROWS

Trait Direction a,
Mass .61
Wing length -.73
Tarsus length .10
Beak length .19
Beak depth .07
Beak width 22

Note.—Coefficients measure the contributions
of each standardized trait to the direction. The
smoothing parameter used was that minimizing the
GCV score: In(\) = —6; n = 152.
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FiG. 2.—Survival (recruitment) of juvenile male song sparrows as a function of morphol-
ogy. Direction 1 is the linear combination a, of the six original traits (standardized) described
in table 1. This combination is the direction estimated to be experiencing strongest selection.
Vertical marks are the original observations. In(A\) = —6; n = 152.
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FiG. 3.—Survival (recruitment) of juvenile male song sparrows in relation to wing length
and body mass. Symbols on left panel indicate measurements of individuals and whether
they survived (filled) or disappeared (open). Fitness contours describe a ridge oriented from
lower left to upper right, with survival decreasing to either side. Right panel gives a three-
dimensional perspective of the surface. In(A\) = —6;n = 152.

Natural selection was stabilizing in this single best direction (fig. 2). Males with
intermediate morphology had highest mean survival, whereas extreme males had
lowest survival. Because at least two of the original traits are represented in the
linear combination x, (i.e., wing length and body mass; table 1), stabilizing selec-
tion on it implies correlational selection on the multivariate phenotype. Males
with lowest survival were those of large mass and short wings and of low mass
and long wings. In effect, stabilizing selection acted on a measure related to
“‘wing loading.”’

Correlational selection on song sparrow morphology is most easily visualized
by plotting survival against the two most important traits, wing length and body
mass. The resulting fitness surface is a ridge over the distribution of individual
measurements (fig. 3). The ridge is oriented at an angle to both traits, such that
selection worked against individuals whose bodies were too heavy or too light
for a given wing length. Selection thus favored a positive correlation between
wing length and body mass. We emphasize that the simple structure of the fitness
surface (fig. 3) results from our allowing only a single cross section. More complex
surface estimates may result when more than one direction is allowed, as in the
larger data set analyzed next.

Human Infants

We began the analysis of human infants by hunting for the single phenotype
dimension on which selection was strongest (table 2). Both traits, maternal gesta-
tion period and infant mass, contributed to the best direction, but the latter trait
was most influential. Selection in this direction was chiefly directional (fig. 4):



TABLE 2

THE SINGLE DIRECTION a; BEST EXPLAINING
VARIATION IN SURVIVAL AMONG MALE HuMAN

INFANTS
Trait Direction a; (SE)
Maternal gestation period 44 (.12)
Infant birth mass .90 (.07)

Norte.—Coefficients measure the contributions
of each standardized trait to the direction. The
smoothing parameter was the value minimizing the
GCV score: In(A\) = —10. Standard errors were
based on 100 bootstrap replicates; n = 7,036.
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FiG. 4.—Survival probability of male human infants as a function of variation in the
direction a; experiencing strongest selection (solid curve). The direction is determined chiefly
by infant mass but also duration of maternal gestation (table 2). Dashed curves are =1 SE
of the predicted probability of survival. Vertical marks indicate the average survival of
infants in each mass and gestation class. Arrows indicate mean (left) and optimum (right)
values for the x variable. The most extreme observation at large size was excluded from the
analysis. In(\) = —10; n = 7,036.
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TABLE 3

THE Two DIRECTIONS a; AND a, THAT JOINTLY BEST EXPLAIN
VARIATION IN SURVIVAL AMONG MALE HUMAN INFANTS

Trait Direction a; Direction a,
Maternal gestation period .59 .70
Infant birth mass .80 -.71

Note.—Elements (coefficients) of a; and a, measure the contribu-
tions of each standardized trait to the two directions. The smoothing
parameter was that minimizing the GCV score: In(\) = —10; n =
7,036.

survival probability increased steeply with increasing x,, rising to a broad plateau
before dipping slightly at the upper extreme. The decline in survival at the upper
end of the distribution indicates that stabilizing selection is also present. Correla-
tional selection on mass and gestation is therefore also implied, since x, is a linear
combination of them.

We carried the analysis one step further by repeating it and searching for two
cross sections of the surface rather than just one. That is, we investigated the
relationship between male infant survival and its mass and gestation period by
hunting for the pair of directions, a, and a,, under strongest selection. The coeffi-
cients of the first of these two directions, a, (table 3), were similar to those from
the previous analysis (table 2), although they were not identical. This is to be
expected because the backfitting algorithm essentially estimates the two direc-
tions simultaneously rather than sequentially. Hence, the two directions that to-
gether best explain variation in survival may not include the direction that is best
when used alone.

Both mass and gestation also contributed to the second direction a,. This sec-
ond direction was also determined by both traits, mass and gestation, but the
coefficients were of opposite sign (table 3). This axis thus distinguishes individuals
with large mass and low gestation from those with low mass and long gestations.
As shown in figure 4, selection on this axis is weakly stabilizing; hence, it is a
second source of correlational selection. Note that the two directions are not
orthogonal (perpendicular), as we have not so constrained them.

The estimated bivariate selection surface is a relatively flat dome with a steep
descent at low mass and short gestation (fig. 5). Selection clearly acted jointly on
both mass and gestation, rather than on each trait separately, such that an individ-
ual with low mass but moderate gestation had the same fitness as one with greater
mass but shorter gestation. Survival declined slightly to the right of the dome at
the greatest masses (fig. 5). Survival also declined above the dome at long gesta-
tion, although more weakly (a weak decline at the edges of the dome occurred
whether or not the single observation at large mass was included). The environ-
ment thus appeared to be relatively tolerant of long gestation periods unless
accompanied by large mass.
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Fic. 5.—Survival probability of male human infants as a function of birth mass (pounds)
and gestation period (days). The surface was approximated using two directions (table 3)
indicated by the dashed lines. Fitness contours in the left panel are in increments of 0.5.
They describe a dome rising steeply from lower left to a broad plateau above and right of
center, declining slightly along its outer edges. Right panel gives three-dimensional perspec-
tive. Symbol size increases with increasing average survival of individuals in each mass
(rounded to nearest 0.5 1b.) and gestation class (rounded to nearest 5 d); differences in
symbol size are exaggerated in the range 0.90-1.00 to highlight slight survival differences.
The most extreme observation at large mass was excluded from the analysis. In(\) = —10;
n = 7,036.

Sampling Variability and Significance Tests

The sampling distributions of fitness surface estimates are unknown, but one
may calculate approximate standard errors and significance levels using the boot-
strap (Efron and Tibshirani 1986). Here we illustrate the procedure using the
human infant data. We have not carried out simulations to test the validity of the
bootstrap for inference of this kind or to assess its power. Results should thus
be interpreted cautiously.

We calculated standard errors for the single direction a, using 100 bootstrap
replicates (table 2). Each replicate was created by assigning every individual &
a new survival measurement W, (zero or one) generated randomly, where the
probability that W, = 1 was its predicted survival f(z,) in the original estimate
of the fitness surface (fig. 4). Projection pursuit regression was then carried out
on each bootstrap replicate using a constant value for the smoothing parameter,
In(A\) = —10. The standard error was computed as the standard deviation of the
100 replicate directions. These errors were relatively low (table 2). For each of
the coefficients of a,, we also counted the fraction of bootstrap replicates in
which the coefficient was of different sign than the original estimate. This fraction
provides an approximate P value for a test of the null hypothesis that the true
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coefficient is zero. None of the bootstrap coefficients was of different sign than
the original estimates. Hence, both coefficients of a, (table 2) are significant at
level P < .01.

We additionally recorded the predicted survival probabilities of every individ-
ual in all 100 of the above bootstrap replicates. The standard deviation of the
replicate values for a given individual is the standard error of its survival probabil-
ity. These standard errors are plotted against the original direction a, in figure 4.
Standard errors are small, which indicates that predicted survival probabilities
are relatively accurate.

The bootstrap may also be used to test the significance of added directions.
That is, one can ask whether an estimate of the surface that employs p + 1
cross sections fits the data significantly better than an estimate based on only p
directions. We used the following steps to address the question with male human
infants. First, we estimated the “‘null”’ surface using the original data and p
directions and calculated the resulting goodness of fit L(f, p) (see below). We then
generated 50 replicate data sets by resampling. Each replicate involved randomly
assigning new values of survival W (zero or one) to every individual in the sample,
where the probability that W = 1 was the predicted probability of survival from
the surface based on p directions. For each bootstrap replicate we calculated the
fitness surface using p + 1 directions and computed the resulting goodness of fit.
This step measures the improvement in fit resulting when p + 1 directions are
used on data generated randomly from a surface having only p directions. Finally,
we estimated the fitness surface from the original data using p + 1 directions and
the corresponding fit L(f, p + 1). The fraction of bootstrap replicates whose fit
exceeded L(f, p + 1) yielded an approximate P value for a test of the null
hypothesis that the true surface has only p directions. As a measure of goodness
of fit we used the binomial log-likelihood

L(F) = > Wen(f) + (1 - Woln(l - fz,).
k=1

Our tests employed a constant value of the smoothing parameter, In(A = —10).

To begin, we set the number of directions p = 0 and asked whether adding a
single direction a, led to a significant improvement in fit (table 2; fig. 4). The null
surface was estimated by a constant (the mean survival of all individuals in the
original sample), which yielded L(f; 0) = —1,358. This fit was substantially
worse than that of the estimate based on p = 1 added direction (L(f, 1) =
—1,038). The latter quantity also exceeded the log-likelihoods of all 50 bootstrap
replicates (range = —1,211 to —1,457). Hence, the first direction a, was signifi-
cant at P < Ys.

Next, we tested whether two directions (fig. 5) yielded a significantly better fit
to the original data than only one direction. Adding the second direction improved
the fit marginally (L(f, 2) = —1,028), an increase that was not significant (P =
20/50).
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DISCUSSION

Visualizing multivariate selection is a complex endeavor, but we recommend
that the task is worth the effort. Our reason is simply that natural selection acts
on suites of traits, as our examples demonstrate, and not separately on individual
traits. The most vivid example of this principle is correlational selection (figs.
2-5; Lande and Arnold 1983; Phillips and Arnold 1989). Correlational selection
is expected whenever a vital function of an organism depends jointly on two or
more traits. One example is flight performance, which should depend on mass
relative to wing form as well as to other aspects of the phenotype. Our suspicion
is that correlational selection is the most prevalent form of selection in nature.
However, univariate methods will never allow us to test this.

Our goal was to provide a compact representation of a selection surface. Rather
than attempting to visualize the full surface, our approach estimates the most
critical directions and takes cross sections, which thereby allows the surface to
be viewed in reduced form. We have presented a method that accomplishes this
reduction and have demonstrated its use. A further advantage of our method is
that it is nonparametric: our functions are not restricted to straight lines or parab-
olas but may assume any form. Finally, we outlined statistical procedures to
assess the accuracy of estimated surfaces and to test the significance of added
directions.

In song sparrows, we detected correlational selection on wing length and body
mass (fig. 3). Individuals of highest fitness were those lying along a line of allome-
try extending from low mass and short wings to high mass and long wings. Selec-
tion thus favored a positive correlation between the two traits. The pattern sug-
gests selection on wing loading, possibly through its effects on flight performance,
although the link with performance needs to be tested.

There are few other examples of correlational selection on a pair of traits. A
preliminary analysis of the same song sparrow data showed stabilizing selection
on a shape principal component (Schluter and Smith 1986). Brodie (1992) demon-
strated disruptive selection in snakes along a composite axis of color pattern and
escape behavior. Swain (1992) revealed stabilizing selective predation on the ratio
of caudal to precaudal vertebrae number in sticklebacks. Simms and Rausher
(1993) demonstrated stabilizing and disruptive selection on ratios of parasite resis-
tance traits in morning glory. Jayne and Bennett (1990) indirectly suggested corre-
lational selection in snakes by demonstrating stabilizing selection on residuals
from a regression of mass on body length. Similarly, Lindén et al. (1992) showed
stabilizing selection on residuals from a regression of mass on tarsus length in
collared flycatchers and great tits. Stabilizing or disruptive selection on size-
corrected residuals may result from correlational selection between the trait and
size.

The song sparrow example gives one indication of how a univariate analysis
of selection can be misleading. The estimated surface was a ridge oriented at an
angle to both of the individual traits (fig. 3). When each of the two traits is
inspected separately, selection appears to be stabilizing. For example, when aver-
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aged over wing lengths, males of intermediate mass had higher survival than
males at the upper or lower extremes. On its own the pattern would suggest that
mass is at an evolutionary optimum, and the population is near equilibrium for this
trait. However, if the true function in higher dimensions is a ridge as illustrated in
figure 3, then there is no unique optimum phenotype or equilibrium. Instead,
there is a line all of whose infinite number of points have equal fitness and between
which the population is free to drift. Endler’s (1986) survey of the literature
revealed many examples of apparent stabilizing selection on single traits; yet,
many might represent ridges in higher dimensions.

Note, however, that the simplicity of the fitness surface in our first example
(fig. 3) is imposed by a projection pursuit model in which only one principal
direction was sought. Further wrinkles of the surface are expected to appear
when more directions are added. For example, adding a second direction to the
bivariate surface in figure 3 revealed that the ridge was slightly higher at low
mass and short wings than at the other extreme.

Selection on human infants was mainly directional, but weak stabilizing and
correlational selection was also detected (fig. 5). This example of multivariate
selection is particularly interesting because a child’s fitness appeared to be deter-
mined jointly by its own phenotype (mass) and that of its mother (gestation;
Lande and Kirkpatrick 1989). Also interesting is the large difference between
mean and optimum (fig. 4), which produces the persistent directional selection.
Two mechanisms explain how this difference might be evolutionarily stable. Zhi-
votovsky and Feldman’s (1992) polygenic model leads to a stable difference be-
tween mean and optimum under two assumptions: that the optimum differs from
the midpoint of all possible genotype values and that heterozygotes have smaller
nongenetic components of variance than homozygotes. While their proposal may
be part of the explanation, it is also likely that apparent directional selection on
mass results from the positive effects of (nonheritable) offspring nutrition on both
mass and survival (Price et al. 1988).

The infant data are from postwar England 1945-1950 (Karn and Penrose 1951).
Ullizzi and Terrenato (1987) have followed the declining intensities of selection
on infant mass over subsequent decades in association with improved medical
practices (see also Terrenato et al. 1981; Ullizi and Manzotti 1988). It would be
interesting to document further the changing joint effects of mass and gestation
on survival.

Despite its advantages, our approach does not eradicate all problems of multidi-
mensional analysis. The main problem is that unmeasured variables may also
affect fitness. Their absence from the analysis is likely to bias the estimate of the
surface as well as estimates of the direct contributions of different traits to fitness
(Lande and Arnold 1983; Mitchell-Olds and Shaw 1987). For example, the appar-
ent effect of maternal gestation on human infant survival might be mediated by
unmeasured aspects of infant phenotype such as stage of organ development
(e.g., the lungs). If so, then the observed effect of gestation period would disap-
pear once these offspring traits are included in the analysis.

Another problem is that traits may be strongly correlated with-one another,
which would lead to unstable estimates of the contributions of individual traits
to fitness (Mitchell-Olds and Shaw 1987; Crespi and Bookstein 1989). This result
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occurs because apparently very different linear combinations of highly correlated
traits may fit the data nearly equally well. Even in such cases, however, our
method will give a good estimate of the form of the selection surface, but it will
not necessarily identify the traits on which selection principally acts. Finally, if
selection acts equally strongly on many different combinations of traits, then the
method will not be able to estimate all of them. Nevertheless, we expect that in
such cases a few cross sections will give some insight into the modes of selection.

These problems emphasize that, when data are merely observational, as in the
present examples, multivariate surface estimation is ultimately an exploratory
procedure, whose results would require confirmation by experimental tests and
by investigation of trait function. The method would also be useful to test predic-
tions about the shape of the adaptive topography generated from a priori func-
tional considerations. For example, an earlier article (Schluter and Grant 1984)
predicted the adaptive landscape for beak size in Darwin’s finches from seed
abundance and known relations between seed size/hardness and beak morphol-
ogy. A subsequent article (Schluter et al. 1985) reported a preliminary test of the
shape of these functions using a field study of natural selection. Good recent
examples of this approach with bivariate data are Brodie’s (1992) prediction of
joint selection on stripedness and escape behavior in snakes and Swain’s (1992)
prediction of the form of selective predation on sticklebacks. The next step in
such studies would be to manipulate the phenotype experimentally, modifying
traits singly and together and observing the fitness consequences. In addition to
exploration, the present methods will be useful in analyzing such experimental
results.
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APPENDIX
DEeTAILS OF COMPUTATION

This appendix gives some details on computation of the projection pursuit estimate of
the fitness surface.

ADDITIVE MODEL FOR FITNESS

To begin, assume that fitness is a continuous random variable (e.g., is normally distrib-
uted). The projection pursuit model for the fitness surface is then

p

W, = Zﬁ(ajzk) + ey, (A1)

Jj=1

where ' indicates transpose, W, is survival or reproductive success of the kth individual,
e, is a random error term with expectation E(e,) = 0, and variance var(e,) = var(W,) is
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a known function of E(W,). The vectors, a;, . . . , a, denote the p directions in the
projection pursuit model and f}, . . . , f, the corresponding ridge functions.
For a fixed set of directions ay, . . . , a,, the ridge functions are estimated by minimizing

n p p
2 W= > fajzayivarw) + 1 [ (Fieyde (A2)
k=1 Jj=1 Jj=1

over all possible ridge functions. Note \ is a constant and [ (f j’f(x))zdx measures the
roughness of the ridge function f;. Technically, the estimates f; satisfying this minimization
are cubic splines govemed by the smoothing parameter \.

Now let W, = 1 fi(ajz;) denote the predicted value for W, based on the set of
directions a;, . . ., ap and on those ridge functions satisfying the minimization given
above. The directions are estimated by minimizing the weighted residual sum of squares:

n .
(W, — W)?
— (A3)
var(w,)
k=1
over all possible choices of directions a,, . . ., a,. As mentioned in the text, this minimiza-

tion is approached using the backfitting algorithm: we attack one direction at a time and
iterate among the directions until a global solution is achieved. The advantage of this
iterative approach is that at any step only a single ridge function is being estimated. This
method is much simpler than attempting to minimize equation (A3) across all the directions
simultaneously, yet it achieves the same goal.

EFFECTIVE NUMBER OF PARAMETERS

The individual estimates of the ridge functions f; also give some approximate statistical
information about the surface. In particular they can be used to calculate the ‘‘effective’’
number of parameters used to define the fitness surface. We describe this quantity next.

Suppose that in the backfitting algorithm the /th direction is to be refined. For a new
choice of a,, f; (where j # ) is reestimated by minimizing equation (A2) holding the
projections and the other ridge functions constant. This is the well-known univariate
smoothing problem and is equivalent to estimating f; in the model

Y, = filxi) + ey, (A4)

where Y, = W, — 2,., f(ajz,) and x;, = a;jz,. Associated with the cubic spline estimate
of fisann X n “hat” matrlx AN that maps the adjusted ﬁtness measurements Y, onto
the predicted values based on the estimated ridge function Yk = f (x4). Then in vector
notation ¥ = A NY.

Theory for spline estimates suggests that the trace of A;(\) measures the effective num-
ber of parameters needed to reproduce the estimated curve. This index is useful in inter-
preting the flexibility of the spline estimate, which is fundamentally a nonparametric curve.
For example, if \ is large and the estimate is approximately linear, then trace(A;(\)) = 2,
exactly as in linear regression. If v; = trace(A;(\)) then a good measure of the total
effective number of parameters of the fitness surface is 7_, v;. This quantity depends on
the smoothing parameter.

GENERALIZED ADDITIVE MODELS

Some modifications need to be made to the fitness surface estimates when the fitness
measurements W, do not have a continuous distribution. For example, survival is mea-
sured as zero or one. The general principle is to use an appropriate transformation of the
additive relationship. For example, if W, = 0 or 1, one could use the logistic transformation
&) = 1/(1 + exp(u)) and the model

P
W, = ¢[Zf(a; zk)] + e (AS)
j=1
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where E(e;) = 0 and var(e,) = E(W,)(1 — E[W,]). The choice of the logistic is natural
on statistical grounds and is also a convenient way to ensure that the predicted fitnesses
lie between zero and one.

The estimates of the ridge functions must now reflect the presence of the transformation
in equation (AS5), and the sum of squares in equation (A3) must be modified to Z;_; (W,
— o[2F_, Aaj z,}1)?/var(W,). In the backfitting algorithm the univariate estimates obtained
by considering each direction separately are more complicated to compute. However,
there is still an approximate A,;(\) matrix that links the adjusted fitness measurements to
the predicted values from the model. The trace of this matrix remains a valid measure of
the effective number of parameters.

SELECTING THE SMOOTHING PARAMETER

The preceding discussion has all been under the assumption that the smoothing parame-
ter \ is fixed. We chose among different values for N by an approximate form of cross
validation. This criterion has the form

1E2(W, - W,)2/var(W,)

GCV(A) = p —~
1 - (Z Vj> /n

Jj=1

(A6)

This criterion estimates how well the estimated fitness surface can predict the observed
measurements of survival or reproductive success W as a function of the smoothing param-
eter. Thus, in order to make the prediction error as small as possible, one would choose
\ to minimize GCV(\). Some justification for this method can be found in chapter 9 of
Hastie and Tibshirani (1990).
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