
Statistical analyses are pervasive in genetics. These
analyses are generally conducted in a classical statistical

framework, but there is a rising interest in the applications
of Bayesian statistics to genetics. Bayesian methods can be
especially valuable in complex problems or in situations
that do not conform naturally to a classical setting; many
genetics problems fall into one of these categories. In ad-
dition, Bayesian approaches can be easier to interpret and
they have been employed in many genetic areas, including:
the classification of genotypes and estimating relation-
ships1–3; population genetics and molecular evolution4–17;
linkage mapping (including gene ordering and human-risk
analysis18–33); and quantitative genetics [including quanti-
tative trait locus (QTL) mapping34–45]. Here, we discuss
the classical and Bayesian approaches and we then illus-
trate the appeal of Bayesian approaches by providing
examples from the literature.

A difference in the definition of probability
The views that we present here are necessarily oversimpli-
fied and are meant to capture only the essence of classical
and Bayesian perspectives. A good introduction to
Bayesian statistics can be found in Berry46; more advanced
books are also available47,48. 

Classical methods, also called frequentist or standard
methods, are named for their definition of probability as a
long-term frequency. In other words, probability is viewed
from the framework of (hypothetically) repeating an exper-
iment many times under identical circumstances (Fig. 1).
Imagine crossing two plants to determine the mode of inher-
itance of trait A. Assuming a particular mode of inheritance,
the expected ratio of phenotypes can be determined a priori.
Testing the observed ratio against a theoretical ratio leads
to a P value, which is interpreted from the point of view of
long-term frequency: if the same experiment was repeated
many times, the observed result (or a more-extreme one)

would be expected a proportion P of the time, assuming the
null hypothesis of no difference is true. It is important to
note that a P value is a long-term frequency statement and
that it is specifically a statement about the data. 

The Bayesian paradigm also uses probability to assess
statistical confidence, but with an expanded definition of
probability. The name Bayesian comes from the Reverend
Bayes, who formulated Bayes’ rule, which is the compu-
tational underpinning of Bayesian methods. In the Bayesian
paradigm, a probability is a direct measure of uncertainty,
and might or might not represent a long-term frequency.
This definition of probability is closer to that in common
speech: ‘I think there is only a 5% chance that the earth has
been visited by aliens this century’. It is hard to frame this
probability in terms of a long-term frequency about aliens
visiting earth this century. The statement uses probability
as a direct measure of uncertainty: ‘I am as sure (or as cer-
tain) that aliens have visited earth this century as I would
be of obtaining a 20 the next time I roll a fair 20-sided die’. 

Additionally, in a Bayesian framework, probability
statements are made about the parameter. In Fig. 1, one
could consider more than one mode of inheritance and cal-
culate the probability of each mode. In a more complicated
example from the literature, a Bayesian approach was 
used to investigate whether inheritance in the tetraploid
perennial, Astilbe biternata, was disomic or tetrasomic10. 

Drawing conclusions based on posterior
distribution
In the framework of the above definitions of probability,
how are conclusions drawn? In classical statistics, conclu-
sions can be based on a P value, or on a confidence inter-
val, each of which is a long-term frequency statement.
Essentially, these provide evidence against a hypothesis.
Often, one assumes a null hypothesis of no difference
between two quantities. One then performs the experiment
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Statistical analyses are used in many fields of genetic research. Most geneticists are taught classical statistics,
which includes hypothesis testing, estimation and the construction of confidence intervals; this framework has
proved more than satisfactory in many ways. What does a Bayesian framework have to offer geneticists? Its
utility lies in offering a more direct approach to some questions and the incorporation of prior information. It can
also provide a more straightforward interpretation of results. The utility of a Bayesian perspective, especially for
complex problems, is becoming increasingly clear to the statistics community; geneticists are also finding this
framework useful and are increasingly utilizing the power of this approach.

Bayesian statistics in
genetics
a guide for the uninitiated



and calculates, from the data, the sample value of the
appropriate test statistic. In order to evaluate the evidence
against the null hypothesis, one compares the sample value
of this test statistic with the distribution of the test statistic
under the null hypothesis. Extreme values of the observed
result are taken as evidence against the null hypothesis.
However, with a large-enough sample size, one can always
reject a false null hypothesis. The framework of testing the
significance of the null hypothesis confounds the amount
of evidence with the degree to which the null is violated;
statistical significance does not always imply biological sig-
nificance. A lively discussion on the problems with P values
in the framework of null hypothesis testing can be found in
Cohen49 and Hagen50.

In Bayesian statistics, evidence in favor of certain par-
ameter values, u, is considered. Inference is based on the
posterior distribution, p(u|X) (see Box 1 and Box 2),
which is the conditional distribution of the parameter,
given the data, X. It is a combination of the prior infor-
mation and the data. From Bayes’ rule: 

(1)

The term p(u) represents the prior distribution on the
parameters. Prior information can be based on previous
experiments, or on theoretical or other considerations (see
below). In our example to determine the mode of inher-
itance of trait A, equal weight could be placed on each
mode of inheritance. The data are phenotypic counts, so
p(X|u) (which has the same form as the likelihood) is multi-
nomial. The denominator p(X) is a normalizing factor. 

In Bayesian and classical statistics we want to make
inferences about a fixed, but unknown, parameter value.
The difference is in how we approach this goal and in the
interpretation of the results. 

Advantages of Bayesian statistical methods
Addressing the question of interest directly
In many cases, Bayesian methods can address the question
of interest more directly than a classical approach. Two
examples from the literature, the first from the field of
population genetics and the second from linkage analysis,
illustrate this point. In a large, randomly mating population
that is free of disturbing forces, allele and genotypic fre-
quencies do not change and are related in a simple way. The
population is said to conform to Hardy–Weinberg equilib-
rium (HWE). In a classical setting, one tests for whether the
population is exactly in HWE and then looks for evidence
against this null hypothesis. However, in many cases, the
experimenter does not believe that the population is exactly
in HWE and might fail to reject a false null hypothesis. A
Bayesian approach can reflect a more relevant question,
which might be ‘are departures from HWE large enough to
be important?’ The size of departure that is important varies
with the context. We addressed this question in the context
of forensic science, where an important departure in human
populations was suggested by the United States National
Research Council (NRC)12. 

A typical objective of research in linkage analysis is to
determine the extent of linkage between two loci, for
example, between a trait locus and a marker locus. In a
classical setting, evidence against the null hypothesis of no
linkage is investigated; in a Bayesian approach, the prob-
ability of linkage is calculated, given the data from a

particular experiment20,26,30,31. Silver and Buckler31

contrasted the questions asked in the two frameworks
concisely: ‘The Bayesian approach answers the question
“Given the observed results, what is the probability that
two loci are separated by up to m centimorgans?” The
more traditional analysis answers the question “If the loci
were separated by m centimorgans, how unlikely would
the observed results be?” We believe that the answer to the
former question corresponds more closely to what the
experimenter wants to know’. 

p q X( ) =
p(q )p X q( )

p(X)
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FIGURE 1. Testing the observed against the theoretical

In an experiment to determine the mode of inheritance of a trait, a cross is performed. The ratio of the
observed phenotypes in the offspring is tested against the expected (theoretical) ratio using a
goodness-of-fit test. A P value of 0.039 means that if the experiment were repeated many times, the
expected proportion of chi-square statistics as large (or larger) than the observed value, 4.25, is
0.039. The P value depends on a framework of hypothetical repetitions and is a long-term frequency
statement about the data.
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BOX 1. Glossary

Dimensionality
The number of axes; here the number of axes in a parameter space. For exam-
ple, if we are interested in measuring departure from Hardy–Weinberg equilib-
rium in a population with two alleles at the locus of interest, there are perhaps
two parameters to consider: an allele frequency and a parameter describing
the departure from HWE; thus, the parameter space is two dimensional. 

Markov chain Monte Carlo (MCMC)
A method for integrating by sampling from the posterior distribution; allows
integration over high-dimensional spaces. 

Nuisance parameter
A parameter that is needed to define the problem but is not of primary interest; in
considering departures from HWE, allele frequencies are nuisance parameters. 

Parameter
Unobservable quantities of interest; these can include population parameters,
such as allele frequencies or location of QTL, or missing data. Here, we denote
a parameter by u. 

Parameter space
The set of all possible values of the quantity of interest; the parameter space for
a population allele frequency includes all values between zero and one, inclusive. 

Posterior distribution (posterior)
The conditional probability distribution of the unobserved quantities of interest
(parameters) given the observed data. 

p(u|X)
Symbol referring to the posterior distribution; it should be read ‘conditional 
distribution of theta given the data’ or simply ‘posterior distribution’. 

Vague (dispersed) prior distribution
Distribution is spread out diffusely over the parameter space. An example of a
vague prior could be a prior in which all possible values of the parameter have
equal weight. Another way to think about a vague prior is that is has a larger
variance than a prior that is not so spread out. 



Incorporation of prior information
Prior information is used in classical settings, for example,
in planning the size of an experiment. However, in a
Bayesian analysis, prior information is incorporated in a
very specific way. It is combined with information from
the data to generate the posterior distribution over the
parameter values, according to Bayes’ rule. What prior
information might one use? As an example, we consider
the analysis of the impact of DNA-sequencing errors on
the ability to align predicted protein sequences to known
protein sequences14. Sequencing errors, such as substi-
tutions or frameshift errors (insertions or deletions),
decrease the ability to align sequences correctly. Including
prior information on these types of errors allowed the
determination of how high the error rates could be, while
maintaining accurate alignments. Including prior infor-
mation on the location of error rates, for example, if they
were not distributed uniformly over the sequence, allowed
accurate alignment in the presence of even-higher error
rates. In the same study, prior information on codon bias
in yeast (Saccharomyces cerevisiae) improved detection of
the correct reading frame. 

It is important to distinguish between prior information
about the parameters of interest, and prior information
about nuisance parameters, which are parameters that are
not of primary interest, but which are needed to define a
problem. The Bayesian approach provides a framework
for making inferences about the parameters of interest,
while taking into account uncertainty in the nuisance
parameters. An interesting discussion of choosing priors in
human linkage analysis on the parameter of interest, the
linkage parameter, and on the nuisance parameters, allele
frequencies and penetrances, can be found in Thomas and
Cortessis33. Other studies have used prior information
about the population structure1, the genome length and

number of chromosomes20,26,30,31, the distribution of allelic
effects and allele frequencies22,23, or the range of quantitative-
trait values38,45. 

Even if there is only vague prior information, it is still
possible to select a prior distribution in a sensible way. If dif-
ferent hypotheses are being considered, each can be weighted
equally or weighted according to other information10,12,13. In
any situation, a vague or dispersed prior can be used, so that
any particular value does not have a high weight. Prior dis-
tributions are often chosen from classes of distributions that
have a computationally convenient form, but are flexible
enough to represent the desired uncertainty35,37–40,43–45. 

Avoiding problems with hypothesis testing
In a classical setting, assessing confidence for several
hypotheses can be problematic because only two hypoth-
eses can be compared at a time. In a Bayesian setting, the
posterior probability of each hypothesis is calculated.
Sinsheimer et al.13 consider the case of constructing an
unrooted phylogenetic topology from four taxa. There are
three possible unrooted topologies to consider (Fig. 2).
From a classical perspective, testing three topologies is
equivalent to three pairs of hypothesis tests, while from a
Bayesian perspective, it is equivalent to calculating the
probability of three hypotheses. The latter results are easier
to interpret. In the classical case, confidence is often
assessed indirectly (by looking at evidence against a null in
three pairs of hypothesis tests and trying to assess an over-
all level of plausibility). In the Bayesian case, confidence is
assessed directly by calculating the probability that a given
phylogeny is correct. Mau and Newton9 noted that their
Bayesian method for reconstructing phylogenetic topolo-
gies includes a measure of confidence; classical methods
first find an optimal tree, and then repeat the analysis many
times to generate confidence statements. In their example,
a Bayesian method provided a level of confidence that is
easy to interpret as well as a method that is more efficient. 

Bayesian solutions to complex problems
In many problems in genetics, the number of parameters
is large. For QTL mapping, the parameters and missing
data can include: marker allele frequencies; marker map
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BOX 2. Calculating posterior probabilities in a discrete setting

As an example, consider the problem of determining which of three subpopulations (u1, u2 or u3) indi-
vidual I belongs to, based on observations of genotypes at several loci and knowledge of genotype fre-
quencies in each of the subpopulations. The context might be that a blood stain is found at a crime
scene and the question is to determine which of three subpopulations, Caucasian, Maori or Western
Polynesian, the contributor of the stain belongs to (assume that attention can be restricted to these
three subpopulations). The New Zealand census in 1991 reported that the population in that country
had the following composition: 81.9% Caucasian, 13.7% Maori, and 4.4% Western Polynesian.
Probabilities of the observed genotypes (here called a DNA forensic profile) XI can be calculated. For
this example, we will suppose that the three probabilities p(XI|u1), p(XI|u2) and p(XI|u3) have been cal-
culated to be 3.96 3 10–9, 1.18 3 10–8, 1.91 3 10–7. The prior probabilities, p(u) for the three sub-
populations are 0.819, 0.137, and 0.044, respectively. Using equation (1), the posterior probability of
belonging to each of the subpopulations is then:

where 

p(XI) 5 0.819 3 3.96 3 10–9 1 0.137 3 1.18 3 10–8

1 0.044 3 1.91 3 10–7

5 13.26384 3 10–9

p q1 XI( ) =
0.819 ´ 3.96 ´10–9

p(XI )
= 0.25

p q2 XI( ) =
0.137 ´1.18 ´10–8

p(XI )
= 0.12

p q3 XI( ) =
0.044 ´1.91´10–7

p(XI )
= 0.63

FIGURE 2. Possible trees

The three possible unrooted trees for four taxa, represented by A, B, C and D. 
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positions; QTL allele frequencies; QTL map position(s);
QTL effects; QTL-marker genotypes; linkage parameters;
number of QTL; overall mean and other fixed effects; and
polygenic and residual variances35,38,39,43,44. For the assess-
ment of genetic risk, parameters include: gene order;
recombination distance; mode of inheritance; pedigree
configuration; penetrance; and mutation rate25,26. For
population genetics problems, the number of parameters
increases as the number of alleles increase5,51. For phyloge-
netic reconstruction, parameters can include nucleotide
substitution rates, transition or transversion rates, tree
topologies and speciation times9,15. 

As mentioned, some of the parameters needed to define
a problem are not of primary interest and are called nui-
sance parameters; allele frequencies often fall into this 
category. A very important feature of Bayesian methods is
that they provide a convenient way for accounting for
uncertainty in nuisance parameters. In QTL mapping, the
locations and effects of the QTL are often of primary
interest, but, as in the HWE problem, allele frequencies
are necessary to define the problem. Bayesian methods
offer a convenient way of handling nuisance parameters.
The distribution of the parameter(s) of interest, such as the
degree of departure from HWE or the effect of a QTL, can
be obtained by integrating over all possible values of the
nuisance parameter(s). In classical statistics, the value of
the nuisance parameter is often concentrated upon,
instead of considering all possible values. 

Finally, missing data, ubiquitous in pedigree studies for
example, can be handled in a Bayesian analysis by treating
them as an unknown parameter. In these cases, the
Markov chain Monte Carlo (MCMC) methods described
below are invaluable. 

Problems with Bayesian methods
A common criticism of the Bayesian approach is that the
choice of the prior distribution is too subjective. This
objection is related to the fact that, in some cases, the pos-
terior distribution is very sensitive to the choice of prior. In
these cases, two researchers using the same data could
reach different conclusions if they used different priors.
The definition of probability as a degree of belief or uncer-
tainty, rather than as a long-term frequency, is related to
this concept. Proponents of a Bayesian approach might
counter with arguments that are summarized succinctly by
Gelman et al.48: ‘All statistical methods that use probability
are subjective in the sense of relying on mathematical ideal-
izations of the world. Bayesian methods are sometimes said
to be “subjective” because of their reliance on a prior dis-
tribution, but in most problems, scientific judgement is
necessary to specify both the “likelihood” and the “prior”
parts of the model. For example, linear regression models

are generally at least as suspect as any prior distribution
that might be assumed about the regression parameters’. 

Another difficulty is that the implementation of Bayesian
methods can be very complex. Prior distributions must be
specified for the parameters and the posteriors integrated
over the nuisance parameters. Even if convenient priors are
chosen, integrating over the nuisance parameters can be
complicated in practice, especially if the parameter space is
complex, or the dimensionality is high, or both. However,
the increase in computing power together with the use of
MCMC methods have made Bayesian techniques more
accessible. The use of MCMC is probably the single most
important development in this field and has made Bayesian
computation feasible. In this introductory review, we cannot
do justice to this development, but note that it uses samples
from a simulated distribution that is expected to be the pos-
terior distribution, instead of deriving this distribution by
integration. Those interested in learning more about this topic
should read the excellent book by Gilks et al.52 In addition,
software programs are available, such as BUGS (Bayesian infer-
ence using Gibbs sampling; http://www.mrc-bsu.cam.ac.uk/
bugs)53, BAMBE (Bayesian analysis in molecular biology and
evolution; http://mathcs.duq.edu/larget/bambe.html)54, and
others (http://www.wadsworth.org/resnres/bioinfo)17. 

Conclusion
Because the purpose of this review is to raise awareness of
a Bayesian approach, the focus is on the advantages of this
approach. Our goal is not to replace classical statistics with
Bayesian methods but to emphasize areas where the latter
can be particularly useful, such as when it makes sense to
consider a question from the point of view of updating
uncertainty about a parameter, rather than considering 
a question in the framework of repeated hypothetical
experiments. Examples include questions about the size of
departure from HWE, the probability of linkage and the
probability of a given topology of a phylogenetic tree. 

In general, as more information becomes available
from genome and gene-expression projects, the demand
for methods of analysis increases. Bayesian methods 
can contribute to the development of suitable methods by 
providing a framework in which many questions can be
addressed directly, uncertainty in all parameters can be taken
into account and prior information can be incorporated.
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Double-stranded RNA (dsRNA) has recently been shown to trigger sequence-specific gene silencing in a wide
variety of organisms, including nematodes, plants, trypanosomes, fruit flies and planaria; meanwhile an as yet
uncharacterized RNA trigger has been shown to induce DNA methylation in several different plant systems. In
addition to providing a surprisingly effective set of tools to interfere selectively with gene function, these
observations are spurring new inquiries to understand RNA-triggered genetic-control mechanisms and their
biological roles.
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