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Abstract

Network models extend evolutionary game theory to settings with spatial or social structure and have
provided key insights on the mechanisms underlying the evolution of cooperation. However, network
models have also proven sensitive to seemingly small details of the model architecture. Here we investigate
two popular biologically-motivated models of evolution in finite populations: Death-Birth (DB) and Birth-
Death (BD) processes. In both cases reproduction is proportional to fitness and death is random; the
only difference is the order of the two events at each time step. Although superficially similar, under DB
cooperation may be favoured in structured populations, while under BD it never is. This is especially
troubling as natural populations do not follow a strict one birth then one death regimen (or vice versa);
such constraints are introduced to make models more tractable. Whether structure can promote the
evolution of cooperation should not hinge on a simplifying assumption. Here, we propose a mixed rule
where in each time step DB is used with probability δ and BD is used with probability 1− δ. We derive
the conditions for selection favouring cooperation under the mixed rule for all social dilemmas. We find
that the only qualitatively different outcome occurs when using just BD (δ = 0). This case admits a
natural interpretation in terms of kin competition counterbalancing the effect of kin selection. Finally
we show that, for any mixed BD-DB update and under weak selection, cooperation is never inhibited by
population structure for any social dilemma, including the Snowdrift Game.
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1 Introduction

Evolutionary game theory was developed to model frequency-dependent selection [1]. Arguably the most
captivating system that exhibits frequency dependent selection is the evolution of cooperation under social
dilemmas, a problem that has puzzled researchers across disciplines for decades (for a review, see [2]).
In a social dilemma, cooperators provide a benefit to a group at some cost to self, while defectors pay
no cost and contribute nothing. Groups of cooperators “do better” than groups of defectors, yet in any
mixed group defectors “do best” [3]. The tension in social dilemmas is that defection maximizes a given
individual’s payoff while cooperation maximizes the total payoff to the group.

Network reciprocity is one of many approaches taken to explain the evolution of cooperation [4].
The network describes a spatially or socially structured population (see [5] for the first such example
and [6] for a comprehensive review), in contrast to traditional evolutionary game theory, which assumes
that populations are ‘well-mixed’ (where each individual interacts with every other individual with equal
likelihood.) [7].

Evolution on networks is often modeled as a discrete-time birth-death process. Two popular updating
rules (see e.g. [8–17]) are based on the frequency dependent Moran process [18]:

• Birth-Death Update (BD): At each update, an individual is chosen for reproduction with a proba-
bility proportional to its fitness; its offspring then replaces a randomly selected neighbour.

• Death-Birth Update (DB): At each update, an individual is chosen randomly for death; the vacant
site is then filled by the offspring of one of its neighbours, selected with a probability proportional
to fitness.

After many updates, eventually the finite population will be composed of only one type (in the absence
of mutation), and we say that this type has reached fixation (further explanation in Section 1.1). Note
that a well-mixed population (i.e. where individuals interact at random) can be described as a structured
population where every individual is a neighbour of every other individual (the graph is ‘fully connected’)
and so we may use these same update rules. For a structured population, the offspring of a parent is
located close to the parent (called ‘limited dispersal’), which plays a crucial role in evolution in structured
populations.

Ohtsuki et al. [8] found that spatial structure can promote the evolution of cooperation under DB,
but not under the superficially similar rule, BD. In a complementary inclusive fitness approach, Taylor
et al. [17] expressed the same disparity in results between BD and DB. In both rules reproduction is
proportional to fitness and death is random, and yet they yield qualitatively different dynamics. This
disparity is the focus of the present treatment. While structure promotes cooperation under DB updating,
it remains to be seen how general a phenomenon this is, especially since cooperation is not promoted
under BD.

In order to investigate the differences between BD and DB with limited dispersal, we introduce a
parameter δ ∈ [0, 1] that allows a smooth transition between the two updating rules. Specifically, in each
updating step we use DB with probability δ and BD with probability 1− δ. For δ = 1 this results in pure
DB dynamics, whereas for δ = 0 this results in pure BD dynamics. By varying δ we can then identify
qualitative changes in the evolutionary dynamics. As we are interested in the effect of the update rule,
all simulations are carried out on the same network architecture: a simple square lattice.

1.1 The Moran Process

To model evolution in finite populations we use the Moran process [18,19]. In each discrete time step one
birth and one death occur, so the population size, N , is constant. This assumes that ecological dynamics
have come to a steady state in order to focus on evolutionary dynamics.
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We consider the evolution of a population with two strategies, C and D. The state of the population
is the number of C players, i (and N − i D-players). The Moran process is defined by the transition
probabilities to go from i → i+1 C-players (T+

i ) and from i → i− 1 C-players (T−
i ). These probabilities

depend on how likely it is to interact with either type (using the variable i and information about the
population structure) and the fitness effects that result from these interactions (using the parameters
from the payoff matrix and the selection strength parameter, w).

We define fitnesses as a baseline fitness of 1 − w plus the payoff an individual receives weighted by
w. If w = 0, interactions have no effect on fitness and evolution is ‘neutral.’ Under neutral selection
T−
i /T+

i = 1 (the transition probabilities no longer depend on the payoffs). If interactions only have a
small effect on fitness, selection is said to be ‘weak’ (w � 1), and T−

i /T+
i ≈ 1 + wθi, where we have

introduced the coefficient θi that captures the effects of population structure and update rules.
The quantity of interest in finite populations is the probability that a single C eventually replaces a

resident D population (or the converse). This is termed the fixation probability of C, ρC (or conversely,
ρD). The fixation probabilities can be calculated as [18]:

ρC =
1

1 +
N−1�
j=1

j�
i=1

T−
i

T+
i

, (1)

ρD =
1

1 +
N−1�
j=1

j�
i=1

T+
N−i

T−
N−i

. (2)

Under weak selection (w � 1 and T−
i /T+

i ≈ 1 + wθi), by Taylor expanding Eq. (1)-(2) in w and
ignoring higher order terms we find:

ρC ≈ 1

N
− w

N2

N−1�

j=1

j�

i=1

θi, (3)

ρD ≈ 1

N
+

w

N2

N−1�

j=1

j�

i=1

θN−i. (4)

In the neutral case, in which T+
i = T−

i , we have θi = 0, and hence the fixation probability is 1/N . We
say that C is a beneficial mutation (or simply beneficial) if ρC > 1/N , and C is detrimental if ρC < 1/N .
Using Eq. (3) and Eq. (4), the conditions that C and D are beneficial are:

1/N < ρC :
N−1�

j=1

j�

i=1

θi < 0, (5)

1/N < ρD :
N−1�

j=1

j�

i=1

θN−i > 0. (6)

However, for some payoff matrices both ρC and ρD can simultaneously be less than 1/N or greater than
1/N . In these cases we say that C is favoured over D (or simply favoured) if ρC > ρD. For example, if
ρC > ρD > 1/N , C and D are both beneficial but C is favoured; or if ρC < ρD < 1/N , C and D are both
detrimental but D is favoured. To simplify the condition ρD < ρC we first note that (2) can be rewritten
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as: ρD = ρC
N−1�
i=1

T−
i /T+

i . Then, using T−
i /T+

i ≈ 1 + wθi and ignoring higher order terms we find:

ρD < ρC :
N−1�

i=1

θi < 0. (7)

2 Structured Populations

In a structured population an individual’s fitness depends on who its neighbours are. The transition
probabilities depend not only on the number of C’s in the population but also on the detailed configuration
of the population – an unwieldy amount of data. To simplify, we first use Pair Approximation (see
Appendix S1). The local density of C’s around a C is qC|C and indicates the conditional probability that
the neighbour of a C is another C. Similarly, qD|C is the conditional probability of finding a D next to
a C, and so forth. Finally, pC ≡ i/N denotes the global frequency of C’s.

The exact type of network is not of central importance in this treatment. For our analysis we assume
all individuals have the same number of neighbours (k is a constant, and the network is “k-regular”).
The Pair Approximation method used in our analysis is exact for infinite trees with no loops or leaves.
All simulations are carried out on a square lattice (with k = 4); nevertheless, they agree well with our
analytical approximations, despite the simulated networks being small and containing many loops.

In structured populations the weak selection limit (w � 1) leads to a separation of timescales (see
Appendix S1). In the initial phase of the population dynamics the local densities (e.g. qC|C) change
quickly while the global densities (e.g. pC) remain approximately constant. In a relatively short period,
local densities reach a quasi-steady state where individuals are more likely to be surrounded by others
of the same type. We can solve for this quasi-steady state by assuming that pC is constant and finding
solutions to q̇C|C = 0; i.e. where the local densities are no longer changing (see Appendix S1, Eq. S1.5).
This leads to the quasi-steady state solution:

qC|C − qC|D = 1/(k − 1), (8)

which means that, on average, a C has k/(k − 1) more C’s in its neighborhood than a D has in its
neighborhood. Once the quasi-steady state is reached, the next phase of the population dynamics proceeds
much slower. Gradually, the global densities change while local densities approximately satisfy the quasi-
steady state solution, until eventually one type is lost completely (see Appendix S1).

2.1 Birth-Death (BD)

For BD updating, an individual is first selected from the population to reproduce with a probability
proportional to fitness, and its offspring then replaces a random neighbour. To find the average fitness of
a focal individual we condition on the number of cooperator neighbours it has. Let the focal individual
have � C-neighbours and k− � D-neighbours. If the focal individual is a cooperator, for instance, then it
would have a fitness of:

f� = 1− w + w[� · πCC + (k − �)πCD]. (9)

The πij are the payoffs a type-i gets from each interaction with a type-j. The average fitness of a
cooperator is an average over all possible neighbourhoods, which is:

k�

�=0

�
k

�

�
q�C|Cq

k−�
D|C · f� (10)
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To probability that i increases by one in a time step (T+
i ) is the probability that a C reproduces and a

D then dies, which is:

T+
i =

k�

�=0

pC

�
k

�

�
q�C|Cq

k−�
D|C · f�

φ
· k − �

k
, (11)

where φ denotes the total fitness of all individuals in the population, which normalizes the fitnesses in
order to use them probabilistically. The first factor in each term of Eq. (11) is the probability of finding
a focal C with a given neighbourhood; the second factor is its resulting relative fitness; and the third
factor is the probability that the offspring replaces a D since death occurs uniformly randomly. Similarly
(using g� for the fitness of a defector with � C-neighbours), we find (see Appendix S2):

T−
i =

k�

�=0

pD

�
k

�

�
q�C|Dqk−�

D|D · g�
φ

· �
k
. (12)

Recall that the ratio of the above transition probabilities (T−
i /T+

i ) is the crucial quantity to determine
the fixation probability of C’s and D’s (see Eq. (1) and Eq. (2)). In the limit of weak selection, T−

i /T+
i ≈

1+wθi and it is this θi which tells us when cooperation is favoured, according to conditions (5)-(7). Here,
we solve for θBD

i (see Appendix S2), as:

θBD
i = −α+ k(πDD − πCD)− (k − 2)α

i

N
. (13)

To get Eq. (13) we have used the quasi-steady state condition [Eq. (8)] and introduced α = πCC −πCD −
πDC + πDD for convenience.

2.2 Death-Birth (DB)

For DB updating, one focal individual is randomly selected to die and its neighbours compete to fill
the vacant site. The transition probabilities are again averages over the neighbourhoods of the focal
individual:

T+
i =

�

�

pD

�
k

�

�
q�C|Dqk−�

D|D · �f̃D

�f̃D + (k − �)g̃D
, (14)

T−
i =

�

�

pC

�
k

�

�
q�C|Cq

k−�
D|C · (k − �)g̃C

�f̃C + (k − �)g̃C
. (15)

The first factor in each term of Eq. (14) [or Eq. (15)] is the probability of finding the focal player (which
is selected for death) in each arrangement and the second is the probability that it gets replaced by the
opposite type. The f̃j and g̃j are the fitness of C and D neighbours of a focal j individual (see Appendix
S2).

As for Birth-Death, we must find θDB
i in order to determine when cooperation is favoured. We take

the ratio of T−
i and T+

i and expand as T−
i /T+

i ≈ 1 + wθDB
i , where

θDB
i =

1

k

�
k2(πDD − πCD) + k(πCD − πCC)− α− α(k − 2)(k + 1)

i

N

�
. (16)

Again, we have used the quasi-steady state condition [Eq. (8)].
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2.3 Mixed DB-BD Update

Under the mixed DB-BD rule (DB is used with probability δ and BD with 1 − δ) we find that the
structural coefficient, θδi , is a weighted average of θBD

i and θDB
i (see Appendix S2):

θδi = θDB
i δ + θBD

i (1− δ). (17)

This result holds in the limit of weak selection (w � 1). In this limit, any mixed update rule behaves the
same to zero-th order in w; it is only the first order term where differences arise. Using θδi in conditions
(5)-(7) determines whether C or D are beneficial mutations.

3 Well-Mixed Populations

For contrast and comparison we include the analyses of well-mixed populations under BD and DB. In a
population with i C-players, the fitness of a C-player (fi) and a D-player (gi) are:

fi =1− w +
w

N − 1
[πCC(i− 1) + πCD(N − i)] (18)

gi =1− w +
w

N − 1
[πDCi+ πDD(N − i− 1)]. (19)

3.1 Birth-Death (BD)

For BD updating the ratio of the transition probabilities simplifies to: T−
i /T+

i = gi/fi [18], which is
approximately 1 + wθBD

i for w � 1, where:

θBD
i =

1

N − 1
(β − αi) , (20)

with α = πCC − πCD − πDC + πDD as before and β = N(πDD − πCD) + πCC − πDD (see Appendix S2).
To find when C and D are favoured and beneficial, we insert Eq. (20) into conditions (5)-(7) and get

(to leading order in 1/N and w):

1/N < ρC : 2(πDD − πCD) < πCC − πDC , (21)

ρD < ρC : πDD − πCD < πCC − πDC , (22)

1/N < ρD : 2(πCC − πDC) < πDD − πCD. (23)

3.2 Death-Birth (DB)

Under DB the individual chosen for death cannot reproduce, and hence the ratio of the transition prob-
abilities is slightly different than under BD updating. We find (see Appendix S2):

θDB
i =

1

N
(β − αi). (24)

Note that θBD
i = N

N−1θ
DB
i , and so the difference between BD and DB in well-mixed populations is

negligible in large populations. Substituting into conditions (5)-(7) we find the same result as for BD.
The only difference is the deviation from neutral selection, |ρC − 1/N |, which is larger when using BD
rather than DB.

In both cases birth is affected by fitness whereas death is uniformly random. In each BD time step
an individual with high fitness may be selected for reproduction before it risks being killed. Under DB,
an individual with high fitness could be selected to die before it ever has a chance of being selected for
reproduction. Because the random step occurs before the step affected by selection, the noise in DB
exceeds that in BD - and hence the fixation probabilities under DB are closer to those of an entirely
random process, i.e. to 1/N .
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4 Applications

4.1 Cooperation Games

Up to this point the types C and D have been arbitrary labels, but the vast majority of game theory
has been developed for social dilemmas between cooperators (C) and defectors (D). Social dilemmas are
characterized by: (i) two C’s do better than two D’s (πCC > πDD); (ii) interacting with a C is always
preferable to interacting with a D (πCC > πCD and πDC > πDD); and finally (iii) a D does better than
a C when they interact (πDC > πCD). These restrictions leave four possible orderings of the payoffs [20]:

πCC > πDC > πCD > πDD (Byproduct Mutualism, BM) (25)

πCC > πDC > πDD > πCD (Stag Hunt Game, SH) (26)

πDC > πCC > πCD > πDD (Snowdrift Game, SD) (27)

πDC > πCC > πDD > πCD (Prisoner’s Dilemma, PD) (28)

with popular names of the games in parentheses. Note that there is no ‘dilemma’ in BM games since
cooperation is trivially favoured.

Here, we use a two-player version of the game in Hauert et al. [20]: Cooperators pay a cost c > 0 to
provide a benefit b > c to a common pool, which will be equally split between the two players regardless
of their strategies. Defectors pay no cost and contribute no benefit. In addition, we let the benefits be
non-additive: the first contribution has weight one and the second has weight v. For v > 1 accumulated
benefits are synergistically enhanced, whereas for v < 1 the benefit from the additional cooperator is
discounted. The payoff matrix for the row player is:

C D
C b

2 (1 + v)− c b
2 − c

D b
2 0

(29)

We normalize the payoff matrix by adding c, then dividing by b/2. After rescaling, the payoff matrix is:

C D
C 1 + v 1
D 1 + u u

(30)

where u = 2c/b is the adjusted cost-benefit ratio. This payoffmatrix encompasses all four social dilemmas:
(i) 1 + v > u > 1, u > v Prisoner’s Dilemma; (ii) v > u > 1 Stag-Hunt Game; (iii) 1 > u > v Snowdrift
Game; and (iv) u < 1, u < v Byproduct Mutualism. Note, however, that if 1 + v < u then we no longer
have that two cooperators do better than two defectors (and so the game is not a “social dilemma”). The
resulting game is Deadlock Defection, so called because there is no reason to ever cooperate. Byproduct
Mutualism could similarly be termed Deadlock Cooperation. The parameters u and v must both be
positive: the costs and benefits must be positive to carry biological relevance (e.g. a negative benefit is
not a benefit) and so u = 2c/b > 0; similarly, additional benefits must still be benefits, and so the synergy
discount parameter (which provides a weight for additional benefits) must also be positive. This region
of the parameter plane (u, v > 0) is shown in Figure 3. Additionally the payoffs are all order one with
respect to w - otherwise w � 1 may not represent weak selection.

4.2 Results

The conditions for selection favouring C or D and for C or D mutations being beneficial are summarized
in Table 1 and Figures 1-2 for well-mixed and structured populations under BD, DB and mixed update
rules. Table 1 illustrates that taking δ → 0 or δ → 1 for the mixed rule recovers the results for the BD
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and DB updates. The limit k � 1 recovers the results for well-mixed populations - a highly connected
population behaves like a well-mixed one.

In the prisoner’s dilemma (PD) cooperators are favoured (ρC > ρD) on a triangle in the vu-plane with
vertices: (1/y∗, 1), (1, 1), and (y∗, y∗), where y∗ = (k + δ)/(k − δ) (bold black bordered in Fig. 2 Panel
B). This triangle has area 2δ/(k2 − δ2) which grows with increasing δ (see Fig. 2 Panel B for δ = 1)
or decreasing k. Hence, cooperation is enhanced for smaller neighbourhood sizes and when increasing
the proportion of DB updates. In highly connected populations (k � 1) the triangle gets asymptotically
small and disappears for well-mixed populations (see Fig. 1). The same happens when increasing the
proportion of BD updates, and the triangle disappears for δ = 0 (see Fig. 2 Panel A).

Whenever cooperators are favoured in well-mixed populations (ρC > ρD), they are also favoured in
structured populations (so long as v > −1, but the synergy/discounting factor v needs to be positive to
be biologically meaningful). Thus, in the limit of weak selection, structure never inhibits cooperation in
social dilemmas. A comparison of ρC > ρD in the vu-plane is displayed in Fig. 3 for different scenarios.
The critical lines (ρC = ρD) for structured and well-mixed populations intersect at (v, u) = (−1, 0) for
any value of δ. Within the range of biologically meaningful u, v, structure always promotes the evolution
of cooperation. More generally, the conditions for ρC > ρD are:

Well-Mixed: πCC + πCD − πDC − πDD > 0, (31)

Structured: δ(πCC − πCD + πDC − πDD) + k(πCC + πCD − πDC − πDD) > 0. (32)

Social dilemmas require πCC > πCD and πDC > πDD, and hence if condition (31) is satisfied then so is
condition (32), but the converse is not true in general.

The condition ρC > ρD for structured populations under BD is the same as for well-mixed populations,
reaffirming that δ = 0 is a critical value for the evolutionary dynamics. Increasing the proportion of DB
updates (increasing δ) always makes cooperation more likely to evolve, at least in the limit of weak
selection.

5 Discussion and Conclusion

We set out to resolve the disparity between Birth-Death and Death-Birth updates for structured popula-
tions demonstrated by Ohtsuki et al. [8]. They considered a simple Prisoner’s Dilemma where cooperators
pay a cost c0 > 0 to donate a benefit b0 > c0 (subscripts used to distinguish from the b, c used in this
paper) to their interaction partner and defectors neither provide benefits nor suffer costs. Under weak
selection, they showed that cooperation is favoured and beneficial under the DB update if b0/c0 > k,
where k indicates the average number of neighbours. However, cooperation is never favoured or beneficial
under BD.

Here, we introduced a mixed rule where at each time step DB is used with probability δ and BD with
probability 1− δ. This allowed us to investigate the cause for the qualitative change in the evolutionary
dynamics. To compare with Ohtsuki’s work we can substitute their payoff matrix into equations (13),
(16), (17) and (5)-(7). For our mixed BD-DB updating and weak selection the conditions for cooperators
being beneficial and favoured all simplify to:

b0
c0

>
k

δ
. (33)

The condition for DB is recovered for δ = 1 whereas δ → 0 recovers the result for BD. The only
qualitatively different outcome on the continuum between BD and DB occurs when using exclusively
BD (δ = 0). This suggests that in general, results based on BD updating may not be robust to small
changes in the updating procedure. For any δ > 0, there is a critical cost-to-benefit ratio above which
cooperation is favoured. This shows that the success of cooperators does not hinge on the sequence of
events particular to DB, but is a more general phenomenon.
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Spatial models capture the effect of limited dispersal, one consequence of which is that individuals are
more likely to interact more with others of the same type (called positive assortment) than they would
be in well-mixed populations. Positive assortment has a two-fold effect on populations facing social
dilemmas: (i) cooperators may achieve a higher fitness through their interactions with other cooperators,
but (ii) this increased fitness may be for naught if cooperators just replace other cooperators. (i) has
often been called ‘kin selection’, while (ii) has been termed ‘kin competition,’ a distinction introduced
by Hamilton [21]. Later work by Taylor et al. [22] showed that (i) and (ii) always balance in patch
structured populations and hence altruism cannot evolve. However, this balancing does not necessarily
occur in network-structured populations (e.g. [5, 8]).

Kin selection and competition provide an intuitive framework to understand the differences between
BD and DB. Under both rules the fitness of all individuals is calculated before births and deaths and so
the effect of kin selection does not depend on whether BD or DB is used. The difference then must lie
in kin competition. Under DB, each individual has a 1/N chance to die in each time step and so there
is no effect of kin competition. Under BD, the likelihood of an individual dying depends on the fitnesses
of its neighbours - the more fit its neighbours are, the more likely the focal individual will be replaced.
This means that cooperators, who provide benefits to their neighbours, are actively increasing their own
mortality.

Under BD the two effects of kin selection and competition exactly counterbalance. This balance
represents a critical point in the evolutionary dynamics. Results derived at such a critical point are not
robust. The mixed BD-DB update allows variable strength of kin competition: increasing δ decreases kin
competition. However, having kin competition outweigh kin selection would require further extension of
the model - for instance by letting the interaction and replacement networks be different [10].

Our results fit cleanly within the framework introduced by Tarnita et al. [15]. They studied evolution
in structured populations by defining a parameter σ that captures the effect of structure and determines
which type is favoured in the limit of weak selection. Under our assumptions, we find for the mixed
BD-DB update that σ = (k + δ)/(k − δ). To get the σ values for BD and DB in Tarnita et al. [15] we
simply set δ = 0 or δ = 1, respectively. Again, it is apparent that δ = 0 is a critical value as this implies
σ = 1: where structure has no effect on strategy selection [15].

The differences between BD and DB stem from a different balance of two biological effects of spatial
structure. The mixed BD-DB update provides a transition between the two extremes and highlights that
conclusions based on the BD update may not be robust.

Finally, we have shown that for the mixed BD-DB update, structure never inhibits the evolution of
cooperation. For other update rules, or with strong selection, spatial structure may be detrimental to
cooperation, e.g. in the Snowdrift Game [23–25]. This highlights the fact that results for structured
populations should be explored for robustness to changes in model architecture.
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Figure Legends

Figure 1. Favoured and beneficial strategies in social dilemmas for well-mixed populations.
Parameter space of social dilemmas in well-mixed populations with the cost-to-benefit ratio u as the
y-axis and the synergy/discounting parameter v as the x-axis (see Eq. (30)). The dashed lines divide
the plane into five regions, which correspond to the Prisoner’s Dilemma (PD), Snowdrift Game (SD),
Stag-Hunt Game (SH), Deadlock Defection (DD) and Byproduct Mutualism (BM). The three solid lines
are predictions for (i) ρD = 1/N - above this line defection is beneficial; (ii) ρC = ρD - below this line
cooperation is favoured; and (iii) ρC = 1/N - below this line cooperation is beneficial. The three lines
intersect at v = 1; for v < 1, cooperation and defection may be simultaneously beneficial, while for v > 1
cooperation and defection may both be detrimental. Each data point represents simulation results for
107 invasion attempts by a single cooperator and 107 invasion attempts by a single defector. Parameters
are: selection strength w = 0.05, population size N = 100.

Figure 2. Favoured and beneficial strategies in social dilemmas for structured populations.
Parameter space of social dilemmas in structured populations for BD updates (Panel A), DB updates
(Panel B), and mixed BD-DB updates (Panel C ). The three solid lines indicate asymptotic predictions
based on Pair Approximation for (i) ρD = 1/N , (ii) ρC = ρD, and (iii) ρC = 1/N . In Panel C , DB
and BD updates are chosen with equal chances (δ = 0.5). The black bolded triangle (Panels B and C )
indicates the parameter region where cooperators are favoured in Prisoner’s Dilemmas. Parameter space
organized as in Figure 1. Population structure is a lattice with connectivity k = 4. The simulation results
(for w = 0.05 andN = 100), show good agreement with the analytical predictions (for w � 1 andN � 1).

Figure 3. Comparison of update mechanisms in social dilemmas for structured populations.
Parameter regions for cooperation in social dilemmas: predictions for well-mixed versus structured popu-
lations. The solid blue lines indicate predictions for ρC = ρD under different updates: (a) DB, (b) mixed
BD-DB for δ = 0.5, and (c) BD in structured populations. In well-mixed populations the condition is
the same as (c). Population structure can extend the parameter region where cooperation is favored.
The shaded area marks the extended parameter region, which has no biological interpretation in this
framework.
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Tables

Table 1. Favoured/beneficial strategies in social dilemmas under different structures/updates.

Condition: ρC > 1/N ρC > ρD ρD > 1/N
Well-Mixed 3u < [v + 2] 2u < [v + 1] 3u > [2v + 1]

Spatial BD 3u <
�
k̂v + 3− k̂

�
2u < [v + 1] 3u >

�
(3− k̂)v + k̂

�

Spatial DB 3u < k̂
�
k̂v + 3− k̂

�
2u < k̂[v + 1] 3u > k̂

�
(3− k̂)v + k̂

�

Spatial BD-DB 3u < δ̂
�
k̂v + 3− k̂

�
2u < δ̂ [v + 1] 3u > δ̂

�
(3− k̂)v + k̂

�

Conditions for C or D being beneficial (columns 2 and 4, respectively) and the condition for C being
favoured over D (column 3). Note that BD and DB yield the same conditions in well-mixed
populations. k̂ ≡ 1 + 1/k and δ̂ ≡ 1 + δ/k are used for convenience. Note: 1 ≤ δ̂ ≤ k̂.




