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SUMMARY

We investigated the evolution of demographic parameters determining the dynamics of a mathematical
model for populations with discrete generations. In particular, we considered whether the dynamic
behaviour will evolve to stability or chaos. Without constraints on the three parameters — equilibrium
density, growth rate and dynamic complexity — simple dynamics rapidly evolved. First, selection on the
complexity parameter moved the system to the edge of stability, then the complexity parameter evolved
into the region associated with stable equilibria by random drift. Most constraints on the parameters
changed these conclusions only qualitatively. For example, if the equilibrium density was bounded, drift
was slower, and the system spent more time at the edge of stability and did not move as far into the region
of stability. If the equilibrium density was positively correlated with the complexity, the opposing selection
pressures for increased equilibrium density and for reduced complexity made the edge of stability
evolutionarily stable: drift into the stable region was prevented. If, in addition, the growth rate was
bounded, complex dynamics could evolve. Nevertheless, this was the only scenario where chaos was a
possible evolutionary outcome, and there was a clear overall tendency for the populations to evolve simple

dynamics.

1. INTRODUCTION

Do the dynamics of populations evolve towards
stability or chaos? Because small density fluctuations
imply a low extinction probability, group selection
favours populations with stable dynamics (Thomas et
al. 1980; Berryman & Millstein 1989). But what type
of dynamics is favoured by individual selection, which
is thought to be a much stronger evolutionary force? If
the temporal variation in population size is driven by
extrinsic, density-independent factors such as weather,
natural selection on individuals will often lead to more
stable population dynamics by favouring ‘bet-hedging’
strategies such as dispersal and iteroparity (Stearns
1992). Such strategies lead to a lower fitness variance,
which implies a higher mean growth rate (Gillespie
1977). If variation is caused by intrinsic, density-
dependent feedback mechanisms, the dynamics can be
very complicated (May 1974, 1976). In these situations
it is not clear how natural selection changes the
demographic parameters determining the dynamics,
and in particular whether individual selection on these
parameters favours chaos or stability.

In this paper we study the evolution of parameters in
the simple models that May (1974, 1976) used to
introduce the paradigm of chaos to ecology. We
simulated evolution by studying competition between
phenotypes in asexual populations. Each phenotype is
given by a set of parameters that determine its density-
dependent fitness function. Phenotypes go extinct
because they are outcompeted by others, and new
phenotypes are created by mutation.
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We obtained our results by numerically simulating
evolution. Analytical insights are generally hard to
obtain. The fundamental quantity that determines the
course of evolution is the ‘natural invariant measure’
of the underlying dynamic process (Rand et al. 1994;
Doebeli 1995a). This measure reflects the frequency
with which various densities are attained over time, i.e.
the distribution of the environments (the population
densities) that determine fitness. The invariant meas-
ure is notoriously hard to compute analytically.
However, with Gillespie’s (1977) principle, and with
some analytical arguments, our results are intuitively
understandable.

When there are no constraints on the parameters,
they always evolve to regions in parameter space
associated with stable equilibrium dynamics. Thus
natural selection moulds the intrinsic feedback mech-
anisms such that the fluctuations in population size are
reduced. Only constraints on the parameters, e.g.
through trade-offs, can impede the evolution of stable
dynamics.

To some extent, our results are in contrast to
previous theoretical work on the evolution of demo-
graphic parameters that determine population dy-
namics (Ferriere & Clobert 1992; Hansén 1992; Gatto
1993; Ferriere & Gatto 1993), which suggests that the
evolution of chaos is more likely in more complicated
models. On the other hand, our results conform very
well with previous empirical work, which showed that
complex dynamics should be rare among insect
populations in the wild (Hassell et al. 1976; Bellows
1981) and in the laboratory (Thomas et al. 1980;
Mueller & Ayala 1981, Philippi et al. 1987).

© 1995 The Royal Society
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2. THE MODEL

We used a model for a population with discrete
generations of the form

Ny =f(N) "N, (1)

where N, is the density of the population at time ¢, and
S(N) is the density-dependent fitness function, i.e. f(V)
is the reproductive output per individual if the density
of the population is N. For the fitness function we used
an expression that was introduced by Maynard Smith
& Slatkin (1973) and considered by Bellows (1981) to
be the most generally applicable one-dimensional
ecological model:

SIN) = A/[1+(aN)"]. (2)

Here A is the intrinsic growth rate of the species, a
measures how well the individuals can cope with the
environment, and 4 determines the type of competition
that leads to density-dependence (Hassell 1975). When
the fitness function is 1, the population is replacing
itself, and hence the equilibrium density of the
population is the solution N* of the equation

JIN*) = 1. (3)

When perturbed away from this equilibrium, the
dynamics of the population are determined by the
quantity

d
c= 1+d—A]7;(N*)-N*. (4)
The quantity ¢ is always < 1, and is typically negative.
If || < 1, N* is a stable equilibrium, i.e. the population
density returns to the value N* when perturbed away
from it. As ¢ decreases below —1, i.e. as |¢| increases
above 1, the system exhibits the familiar period
doubling route to chaos (May & Oster 1976). Because
it is a measure for the complexity of the dynamics, ¢ is
called ‘dynamic complexity’, and we say that the
system has a low dynamic complexity if the absolute
value |¢| is low. The equilibrium density, which can be
thought of as the carrying capacity, is given by

N*=[(A=1)"]/a, (5)
and the dynamic complexity by
c=1=b(A=-1)/A. (6)

For our purposes it is convenient to replace the
parameters a and b in expression (2) by the parameters
N* and ¢. Then the fitness function has the form

JIN) = = (7)

To study the evolution of the parameters in this model,
we assumed that each set of parameters (A, N*,¢)
corresponds to a phenotype. Thus phenotypes are
characterized by their intrinsic growth rate, their
equilibrium density and their dynamic complexity,
which together determine the phenotypic fitness
function. Competition between phenotypes is intro-
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duced by assuming that the fitness function of a
phenotype depends on the total density of the
population, i.e. that the fitness of a phenotype varies
with the sum of the densities of all the phenotypes that
are present in the population.

To understand evolutionary trends, one has to find
the conditions under which a rare mutant will invade
a resident population. The dynamics of the resident
phenotypes can be very complicated, and according to
the fluctuations in their total density, the fitness
function of the rare mutant attains different values
over time. Whether the mutant is outcompeted and
driven to extinction, or whether it can invade, depends
on the geometric mean of these fitness values: if the
logarithm of this mean is < 0, the mutant goes extinct,
if it is > 0, the mutant can invade. This leads to the
notion of ‘invasion exponent’ (Metz et al. 1992 ; Rand et
al. 1994). If N, t =0, 1, 2,..., is the time series of the
densities of the resident phenotypes, and if f, (N) is the
fitness function of the mutant, then the invasion
exponent is

7-1

¢= lim%z Inf (N,). (8)
T->x t=0

Depending on whether ¢ is > 0 or < 0, rare mutants
can invade or go extinct. Thus, to determine the fate of
a rare mutant one has to know the frequency
distribution of the densities in the time series N,, ¢ = 0,
1, 2,...: the fitness of the mutant depends mostly on
those densities that occur often in the time series
generated by all the resident phenotypes.

The basic evolutionary trends in the model can be
seen when equation (8) is applied to a situation where
the resident population consists of only one phenotype.
For example, consider a resident phenotype that
exhibits a stable equilibrium, so that N, = N* for all
times ¢ Then it is easy to see that a mutant can invade
if, and only if] it has a higher equilibrium density than
the resident. The general case of a resident with
complex dynamics (|¢] > 1) was studied in Doebeli
(19954). If one considers a mutant with a change in
one of the traits, while the other two traits are the same
as the resident’s, the following selection regimes can be
observed:

1. K-selection: the strongest selection pressure is for
higher equilibrium densities N*.

2. r-selection: higher intrinsic growth rates are
favoured. The strength of r-selection decreases with
decreasing dynamic complexity of the resident.

3. c¢-selection: lower dynamic complexity, i.e. lower
values of |¢| are favoured. The strength of ¢-selection
increases with increasing intrinsic growth rate of the
resident.

These are ‘local’ results in the sense that they only
describe when a resident population consisting of only
one phenotype can be invaded by a mutant that differs
in one trait. Nothing is said about the dynamic
consequences of a successful invasion, i.e. whether the
mutant drives the resident to extinction, or whether
coexistence results. Nor does one generally know the
dynamics of coexisting phenotypes, which can be very
complicated (Doebeli 1994).
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Here we wanted to follow the global dynamics of a
system in which there are many resident phenotypes,
and new mutants differing in all three traits sim-
ultaneously (equilibrium density, intrinsic growth rate
and dynamic complexity) are trying to invade at a
constant rate. In our simulations, we started with one
initial phenotype. In each generation, a new mutant
was generated with a certain probability, the mutation
rate. The phenotype of the mutant was derived as
follows: we averaged the resident phenotypes ac-
cording to their densities, obtaining a set of parameters
(A, N*, 7) as the average phenotype of the population.
The phenotype of the mutant was then assumed to be
drawn from a multivariate normal distribution with
means A, N* and ¢, and with variances that were set at
49, of the mean values. The density of the mutant was
set at some (small) fixed initial value. To update our
array of phenotypes, phenotypes were assumed extinct
if their density dropped below a certain threshold. The
fitness functions of the phenotypes were assumed to
depend on the total density of all phenotypes present,
and the dynamics of these systems were followed for
many generations.

3. RESULTS

When all three parameters were free to evolve, the
system invariably exhibited stable equilibrium dy-
namics after some time (figure 1). Thus the mean

(@)

complexity
I
[\S]
1

-4 T T T
()

S 12+

g ¥

2

8

= 44

5

T

L)

=

2 T T T
0 50 100 150

time

M. Doebeli and J. C. Koella 121
dynamic complexity ¢ always evolved to values with
let < 1. Meanwhile, the mean growth rate A increased
initially, but the increase got slower and slower as
stable dynamics evolved, because the selection pressure
for higher growth rates decreased as the complexity
decreased. In contrast, the equilibrium density in-
creased without bounds. Once the population ex-
hibited a stable equilibrium, it was dominated by one
phenotype, namely the one that currently had the
largest equilibrium density.

As the equilibrium density can be thought of as the
carrying capacity of a phenotype, it is not realistic that
it can increase without bounds. The easiest way to
constrain the equilibrium density is to assume that it
cannot exceed a certain threshold. If this was done, the
same general picture emerged, and the dynamics
always evolved to a stable equilibrium (figure 2).
However, the period of time until values of |¢f below 1
were reached was typically much longer, and these
values remained close to 1 : the population remained at
the edge of stability given by |¢f =1 (figure 2). This
happened even though the intrinsic growth rate
increased, which should accelerate the evolution to
simple dynamics. We explain this result in §4.

More sophisticated constraints on the parameters
are obtained by assuming trade-offs between them.
This corresponds to assuming that the parameters obey
some functional relationship

G(A, N*,¢) = 0. 9)
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Figure 1. Evolution of demographic parameters and of population dynamics in equation (7). The three parameters —
equilibrium density, intrinsic growth rate and dynamic complexity — are free to evolve without any constraints or
- trade-offs. Evolution was simulated as described in the text. In each panel, a time unit codes for 1000 generations.
(a) The dynamic complexity rapidly evolves from values coding for instability (¢ < —1, i.e. || > 1) to values coding
for stable equilibria (¢ > —1, i.e. |¢| < 1). Although there is no selection pressure for complexity greater than —1, it
can reach values well in the stable region by random drift (see discussion). (b) Growth rate initially increases rapidly,
but as the system becomes stable, the selection pressure for higher growth rates decreases until eventually growth rates
change only by random drift. (¢) Equilibrium density increases without bounds. (d) The relative density of the
population, defined as the total density divided by the mean equilibrium density, evolves from chaos through two-
cycles to stability. To simulate evolution, we assumed that the probability for a mutation to occur was 0.01 per
generation, and that the mutation coded for phenotypic values chosen from Gaussian distributions with the means
set to the phenotypic means of the population and the standard deviations set to 4 9, of the means. New mutants were
initialized at a density of 0.01, and we assumed a phenotype to be extinct if its density reached a value of less than

107°.
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Figure 2. Evolution of dynamic complexity and of population
dynamics when the equilibrium density is bounded by 10°.
All other assumptions are as in figure 1. (a) Complexity
evolves to values coding for stability, but the evolution is
slower than when equilibrium density is unbounded (figure
1), and the drift into the region coding for stability is smaller.
(b) The evolution of the population dynamics reflects the
slower evolution of dynamic complexity by extending the
time periods where the system is chaotic and where it exhibits
a two-cycle. The system reaches a stable equilibrium, but it
remains close to the edge of stability given by ¢ = —1.

Then the parameters are not free to evolve. Rather, in
the three-dimensional parameter space they can only
evolve along the surface that is given by equation (9).
For example, one could assume that a high equilibrium
density can only be attained at the cost of a low
intrinsic growth rate, i.e. that these traits are negatively
correlated. For instance, the function G in equation (9)
could have the form

N*— (k/A) =0, (10)

where & is a constant. Obviously, there are many
different ways of assuming trade-offs between the three
parameters, and for most of them one could argue
biological plausibility. However, keeping in mind the
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Figure 3. Evolution of demographic parameters when the
equilibrium density is positively correlated to the absolute
value of the dynamic complexity, i.e. when phenotypes with
high equilibrium densities are likely to be unstable. Formally,
the correlation is given by ¢=1—N*/500. All other
assumptions are as in figure 1. The evolution is driven by the
opposing selection pressures to increase equilibrium density
and to increase stability. (a) Despite the selection pressure for
higher equilibrium density, the dynamic complexity evolves
from values coding for chaos to values very close to —1, i.e.
to the edge of stability (|| = 1). In contrast to figures | and
2, drift into the stable region is now prevented by selection
for higher equilibrium density. () Owing to selection for
stability, equilibrium density decreases to a value that allows
the system to have simple dynamics. (¢) Growth rate increases
without bounds.

Table 1. Qualitative effects of correlations between demographic parameters on their evolution

(The effects are relative to the case with no correlations (figure 1). More details are given in the text.)

correlation negative

positive

equilibrium density N *
growth rate A

slower evolution to simple
dynamics

growth rate A
dynamic complexity |¢|
(absolute value)

more rapid evolution to
simple dynamics

equilibrium density N*
dynamic complexity |¢|
(absolute value)

more rapid evolution to
simple dynamics

more rapid evolution to simple dynamics

slower evolution to simple dynamics

growth rate evolves to lower values

equilibrium density is limited because
opposing selection for simple dynamics

if growth rate is unbounded: evolution to the
edge of stability

if growth rate is bounded: evolution to
complex dynamics; the level of complexity
depends on the maximum growth rate

Proc. R. Soc. Lond. B (1995)
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Figure 4. Evolution of demographic parameters as in figure
3, except that the growth rate is bounded by 250. As the
growth rate reaches this bound (¢), the selection pressure for
stability can no longer increase. Therefore, the opposing
forces for increased equilibrium density and increased
stability equilibrate at a dynamic complexity (a) that codes
for instability (chaos in this case), and at a higher equilibrium
density (b) than in figure 3.

basic evolutionary trends observed for the invasion of
rare mutants, one can infer the effect on the evolution
of simple dynamics from the sign of the correlation
between traits. For example, a trade-off given by
equation (10) will slow down the trend towards simple
dynamics, because the strong selection pressure for
higher equilibrium density will lead to lower growth
rates, at which the selection pressure for lower
complexity is weaker.

Table 1 gives an overview of the effects of different
trade-offs, given as correlations between traits, on the
evolution of simple dynamics. The course of evolution,
normally towards simple dynamics, can be reversed
towards complex dynamics with a positive correlation
between the equilibrium density and the complexity |¢|.
For instance, this could happen if phenotypes with
high carrying capacities tend to be regulated by
scramble rather than contest competition (i.e. if a high
equilibrium density is associated with a high value of 4
in equation (6)). Then selection for higher equilibrium
densities leads to a selection pressure for increased
complexity which counteracts the basic trend to simple
dynamics. Where these forces equilibrate depends on
the constraints on the growth rate. If there are no
constraints, the growth rate steadily increases. Hence
so does the selection pressure for simple dynamics, so
that the system evolves to the edge of stability, i.e.
to ¢ =1 (figure 3). However, if the growth rate

Proc. R. Soc. Lond. B (1995)
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is bounded, so is the selection pressure for simple
dynamics, and the evolutionary forces equilibrate at a
complexity |¢| > 1. Hence natural selection can lead to
complex dynamics (figure 4). Even so, this example
shows that, depending on the growth rate, c-selection
can be stronger than K-selection: selection for stability
can lead to lower carrying capacities. This confirms the
strong selection pressure for simple dynamics.

4. DISCUSSION

There is a clear evolutionary trend towards simple
population dynamics in our model. However, what
causes this tendency is not obvious. The selection
pressures for higher equilibrium densities and higher
growth rates can be understood analytically (Doebeli
19954). For example, it is clear from equation (7) that,
all else being equal, a higher equilibrium density N*
implies a higher fitness at all densities N. Unfor-
tunately, in general only intuitive explanations can be
given for the selection of lower complexity, which
causes the evolution of simple dynamics. The first step
is to determine the selection pressure on ¢ at a given
density N, i.e. to calculate the derivative of the fitness
function (7) with respect to ¢:

(1—0)A
N\ =
()

oy
[1+(A—1)<§;) H]

This expression is positive for densities above the
equilibrium N* and negative otherwise. Thus lower
complexity is favoured at densities above N* (recall
that ¢ is negative, hence an increase in ¢ implies a
decrease in |¢|), and higher complexity at densities
below N*. In the ‘local’ case, where one mutant tries
to invade one resident phenotype, this means that in
times of boom, when the density of the resident is below
the equilibrium and growing, a mutant with a lower
complexity does not do as well as the resident, and does
not quite reach the high fitness values of the resident.
However, in times of bust, when the density of the
resident is above the equilibrium and about to crash,
the decrease in fitness is not as severe for the mutant as
it is for the resident. Consequently, the mutant tends to
have a lower variance in fitness values, which leads to
a higher geometric mean growth rate (Gillespie 1977).
However, in populations with complicated dynamics
higher moments of the distribution of fitness values
may play a decisive role (Doebeli 19955), so that the
above is at most a crude intuitive argument why lower
complexity is favoured.

A more subtle argument is obtained by noting that
a gain in fitness is worth more at low fitness values than
it is at high fitness values. Thus the advantage of the
mutant at high densities, which lead to low fitness,
should be greater than its disadvantage at low densities,
where fitness is high. This argument can be made more
formal with the ‘natural invariant measure’ u(N) of
the dynamic system (Rand et al. 1994; Doebeli 19954).
1(N) is the probability that the system has density N
at any given time. Using it, time averages over a

o
2=

(11)
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trajectory of the system can be translated to integrals
over phase space. For example, for the invasion
exponent (8) we have

lim —IT-TEﬂ Inf,(N,) = Jlnfm(NW(N) dy, (12)

where f,, is the fitness function of the mutant, {N,}°, is
the time series of the resident, and u(N) is the
corresponding natural invariant measure. Note that if
we denote by f the fitness function of the resident, then
the invasion exponent

-1
lim%z Inf(N,) =Jlnf(N),u(N)sz0, (13)
100 t=0

because the resident is neither growing nor declining
on average, hence the logarithm of its mean fitness is 0.
It follows that to determine selection pressures, we just
have to calculate the derivative of (13) with respect to
the trait variable for which we want to know the course
of evolution. If the derivative is positive, an increase in
this trait will be favoured. For the complexity, we
obtain

df/ac
JIN)

Thus the derivative of the fitness function with respect
to ¢ at a given density has to be weighted with the
inverse of the fitness at this density to determine its
contribution to the total selection pressure. Unfor-
tunately, the natural invariant measure u(N) usually
cannot be computed analytically when the resident
exhibits complex dynamics. Thus we are stuck with the
mere numerical insight that the integral (14) is positive,
hence that the complexity |¢| of the system decreases.
Only as the system approaches stable equilibrium
dynamics can one compute expression (14) analyti-
cally. For example, if the system moves on a two-cycle,
alternating between densities N, and N, below and
above the equilibrium density N*, equation (14)
reduces to

(@f/0) (Ny) | (Qf/0) (Ny)
JIN) SNy)

When the complexity |¢| is near 1, N, and N, are close
to N*, and one can show analytically that simpler
dynamics are favoured. The analysis, which we omit
here for the sake of brevity, reveals that, typically, the
unweighted selection pressure 0f/0¢ for higher com-
plexity at the low point of the cycle is stronger than
selection for lower complexity at the density of the
cycle lying above N *. But weighting these pressures by
dividing them by the corresponding fitness value,
which is smaller at the high point of the cycle, tips the
balance in favour of simple dynamics.

The derivative 9f/0c, equation (11), can also be used
to explain why the system tends to spend long periods
of time at the edge of stability (figure 2). As the
complexity approaches the stable region, the total
density of the system approaches the equilibrium N*.
By setting N = N*in (11), we see that 9f/0c = 0 at N*.
Therefore, selection on the complexity ceases as the

%Jlnf(N),u(N) dN = w(N)dN. (14)

(15)
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system reaches the edge of stability given by | = 1.
Only by random drift does the complexity |¢| evolve
deeper into the region of stability, i.e. to values || < 1.
When the equilibrium density is free to evolve (figure
1), it increases steadily, and there is a continuous
turnover of phenotypes. This enhances drift, and ||
attains values well below 1 (figure 1). In contrast,
when the equilibrium density is constrained by some
upper bound (figure 2), drift slows down as the
phenotypes reach this bound. Even though the system
finally reaches stable dynamics, the slow drift leads to
values of |¢| that are only slightly below 1, and the
system remains at the edge of stability. A positive
correlation between the equilibrium density and the
complexity |¢| makes this edge evolutionarily stable
(figure 3): as |¢| approaches 1, the selection pressure for
lower complexity ceases as discussed above, but now
selection for higher equilibrium densities prevents drift
to values of |¢| < 1. Instead, the system is poised at the
edge of stability. We cannot resist noting the phenom-
enological analogy of this result to Kauffman’s (1993)
‘evolution to the edge of chaos’.

That selection should change the feedback mechan-
isms in simple models such that they cause less vari-
ability in population size is in agreement with earlier
theoretical work (Turelli & Petry 1980; Mueller &
Ayala 1981). These authors also found that simple
dynamics are favoured by selection, although in less
general settings than ours. Moreover, our results
conform with empirical work on insect populations. In
an influential study Hassell et al. (1976) estimated the
parameters of a one-dimensional difference equation
for 24 insect populations and found that all but two of
these populations had a stable equilibrium. Their
results were supported by Bellows (1981). Thomas et al.
(1980), Mueller & Ayala (1981) and Philippi et al.
(1987) tested many Drosophila populations in the
laboratory, of which the overwhelming majority
exhibited stable equilibrium dynamics. Our results
provide an evolutionary explanation for these findings.

The empirical results lend strong support to the
general validity of our results for populations with
discrete generations. More theoretical support comes
from using different fitness functions. We repeated our
simulations with two other fitness functions taken from
Bellows (1981), one the model used by Hassell et al.
(1976), the other entry 4 in Bellow’s Table 1. The
results were the same: the basic evolutionary trend is
towards simple population dynamics.

However, our results are somewhat in contrast to
other recent theoretical work (Hansen 1992; Ferriere
& Clobert 1992; Gatto 1993; Ferriere & Gatto 1993).
One reason is that in some of this work certain trade-
offs are implicitly included in the models (e.g. Hansen
1992). For example, if the fitness function is given by
the Ricker equation f(N) = Aexp(—g¢N), then the
dynamic complexity ¢ = 1 —In A, hence ¢ is a function
of the growth rate A. We regard it as a strength of the
model we used that it has enough mathematical flexi-
bility for growth rate, carrying capacity and dynamic
complexity to appear as independent parameters. This
allows us to discern the influence of different selection
pressures, and to uncover basic tendencies. That
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certain trade-offs can lead to the evolution of complex
dynamics follows from table 1. More importantly,
Ferriere & Gatto (1993) stress the fact that in their
model age-structure, which does not occur here, is
crucial for the evolution of chaos. In a similar vein,
Turchin & Taylor (1992) argue that if some of the
insect populations in Hassell et al. (1976) are fitted to
a more complicated model that includes two time lags
instead of just one, then the whole range from simple to
chaotic dynamics occurs. Thus it is not at all clear how
far our results generalize to more complicated situa-
tions, and the general question remains (Hastings et al.
1993) : how often should we expect complex dynamics
to occur in natural populations? Although many
ecologists believe that temporal fluctuations in popu-
lation size are mainly due to extrinsic stochasticity
(Berryman & Millstein 1989), some have argued that
in many cases such fluctuations are the result of chaotic
dynamics caused by intrinsic density-dependence
(Schaffer & Kot 1986; Hastings et al. 1993). More
work with more complicated models is needed to assess
these opposing views with an evolutionary theory of
ecosystem dynamics. For such a theory, the concepts of
evolutionary stable attractors and phenotype dynamics
that were introduced by Rand et al. (1994) may prove
to be very useful. Our results are a special case of this
theory: the coevolutionary dynamics of the phenotypes
lead to attractors consisting of single points that
represent stable equilibrium dynamics.
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