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Mixing and asynchrony of interactions can be expected to stabilize the dynamics
of populations. One way such mixing occurs is by dispersal, and Hastings and
Gyllenberg et al. have shown that symmetric dispersal between two local popula-
tions governed by logistic difference equations can simplify the dynamics. These
results are extended here by using a more flexible difference equation and allowing
asymmetric dispersal. Although there are some instances where dispersal is
destabilizing, its stabilizing effect is enhanced by asymmetry. In addition, very high
dispersal rates can induce a stable equilibrium of the metapopulation despite highly
chaotic local dynamics. If this equilibrium loses stability, the route to intermittent
chaos can be observed. Two new conditions under which dispersal can be stabiliz-
ing are discussed. One occurs when the timing of reproduction and dispersal differs
in the two patches of the metapopulation. This enlarges the asynchrony of the inter-
actions, and simple dynamics due to dispersal are more likely. The second works
by slightly adjusting dispersal rates to control chaotic dynamics. The control can
replace chaos by a stable equilibrium. The evolution of dispersal rates is discussed.
Since obtaining general criteria for invasion into a population with chaotic
dynamics is difficult, no clear conclusions are possible as to whether evolution leads
to more stable metapopulations. However, a mutant that controls chaos can invade
a resident having the same local dynamics but no control mechanism, so that
evolution can lead from chaos to a stable equilibrium.  © 1995 Academic Press, Inc.

1. INTRODUCTION

Simple ecological models can have very complicated dynamics, as was
first realized by May (1974, 1976) who showed that models for populations
with discrete generations can exhibit a whole range of dynamical behavior
from stable equilibria to higher order cycles and chaos. How often complex
dynamics occur in natural systems is controversial; some believe that they
do not occur frequently (Berryman and Millstein, 1989). One reason for
this belief is that blurring the details of the interactions that induce chaos
can stabilize the dynamics. Here stabilization is understood, not in the
mathematical, but in the intuitive sense, as a process leading to more
regular and simple dynamics. One way mixing of interactions occurs is
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through spatial heterogeneity, which can be crucial in determining the
dynamics of a population, and since Levins (1970) introduced it, the con-
cept of metapopulations has become increasingly important, both theoreti-
cally and empirically (Gilpin and Hanski, 1991). In particular, dispersal
in patch models can be stabilizing (Hanski, 1991; Hastings, 1991). For
example, spatial heterogeneity can have a profound effect on host—parasitoid
interactions, and dispersal can greatly simplify the dynamics of such
systems and prevent extinctions (Hassell et al., 1991; Comins et al., 1992;
Holt and Hassell, 1993). Similar conclusions have been reached for some
predator—prey systems (Taylor, 1990).

In several recent articles the effect of spatial structure on a population
with intense intraspecific competition was studied. McCallum (1992) and
Stone (1993) analyzed immigration of a constant number of individuals
into such a population and showed that it has a strong stabilizing effect.
Hastings (1993), Gyllenberg et al. (1993), and Gonzalez-Andujar and Perry
(1993) studied a system of coupled logistic equations and also concluded
that dispersal between local populations exhibiting chaos can simplify the
dynamics. To extend and complete these results is one aim of this paper.
A second goal is to introduce new conditions under which dispersal can be
stabilizing, and the third is to examine the evolution of dispersal rates.

In Section 2 I consider one-patch models in which a population is con-
nected to its surroundings by migration. I show that McCallum’s (1992)
and Stone’s (1993) results that immigration has a stabilizing effect have to
be taken with some caution, for their results depend on the model chosen,
and immigration can also have a destabilizing effect. On the other hand,
even if dispersal is destabilizing, I show, using the ideas of controlled chaos,
how small adjustments in dispersal rates can lead from chaos to a stable
equilibrium.

In Section 3 I consider two patches whose populations have discrete
generations and are coupled by dispersal. Hastings (1993) and Gyllenberg
et al. (1993) analyzed systems in which the local dynamics in each patch
were given by the logistic equation f(x)=rx(1 — x) and dispersal was sym-
metric. I repeated their results using a biologically more relevant and math-
ematically more flexible difference equation, and I show that the stabilizing
effect is enhanced if dispersal is asymmetric. This was noted by Gonzalez-
Andyjar and Perry (1993), but their study is rather limited and partly
incorrect (see Section 3). I also show that both very high dispersal rates
and asynchrony of reproduction and dispersal in the two patches are a
strong stabilizing force. These results lend support to the intuitive idea that
conditions which favor asynchronous mixing of interactions lead to simpler
dynamics. To conclude the section 1 again show how metapopulation
dynamics can be controlled by small adjustments in the dispersal rates, and
how such self-control leads from chaos to a stable equilibrium.
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In Section 4 1 study the evolution of dispersal rates. In case the local
dynamics exhibit a stable equilibrium the problem can be solved analyti-
cally, but for chaotic metapopulations one has to use numerical simula-
tions. No clear-cut conclusions are possible as to whether evolution tends
to simplify the dynamics. However, a mutant using a control mechanism
can invade an uncontrolled resident. Thus evolution can lead from chaos
to a stable equilibrium.

2. DISPERSAL AND DyNAMICS IN ONE PATCH

Consider a population with discrete generations whose dynamics are
described by the one-dimensional difference equation

x'=f(x)=w(x)-x. (1)

Here x and x’ are population densities in successive generations, and w(x)
is the fitness function of the population. It calculates the reproductive out-
put per individual if the population density is x. This function is equal to
the intrinsic growth rate of the population if x=0 and monotonically
decreases to 0 as x tends to oo in such a way that the function fis of a
humped form; it has a single maximum and also tends to 0 as x tends to
oc. The dynamics of the population are determined by the slope of f at the
equilibrium x*, which is given by f(x*)=x*, x*>0. If |(df/dx)(x*)| <1
the equilibrium is stable. As |(df/dx)(x*)| increases above 1, the equi-
librium gives way first to a stable 2-cycle, then to a 4-cycle and more
generally to a 2”-cycle. As this modulus reaches a critical value, chaos sets
in. This route to chaos is described in May and Oster (1976). Note that in
all the models of May and Oster (1976) and of Bellows (1981), the
modulus of the derivative at the equilibrium increases with increasing
intrinsic growth rate (i.e., increasing w(0)). Thus, the dynamics tend to be
more complex for higher growth rates.

Suppose now that the population lives in a patch that is connected to its
surroundings by dispersal of individuals. There are four possible basic
scenarios, according to whether dispersal occurs before or after reproduc-
tion, and whether dispersal is away from the patch or occurs by migration
into the patch. In the present paper I will not consider situations in which
dispersal occurs before reproduction in each generation. However, [ have
studied that case as well, both analytically and numerically, and the results
did not differ significantly from those reported here.

Dispersal is usually modeled by assuming that either a constant fraction
of the population or a constant number of individuals disperses. The easiest
case is when a constant fraction d of the population moves away from the
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patch in each generation. If this happens after reproduction, model (1)
changes to

x'=(1=d) f(x)=w(x)-x, (2)

where W(x)= (1 —d)-w(x) is the new fitness function. Comparing with (1),
we see that the effect of dispersal consists of reducing the intrinsic growth
rate: w(0) < w(0). Therefore, the effect of dispersal is to simplify the
dynamics. This is a trivial but useful observation of Ruxton (1993).

More interesting is when dispersal occurs by migration into the patch.
I will consider the case where a constant number of individuals is added in
each generation, as introduced by McCallum (1992) and further analyzed
by Stone (1993). In this case model (1) changes to

X =f(x)=w(x)-x+c, (3)

where ¢ is a constant >0, Following McCallum (1992), ¢ could also stand
for a refuge that isolates a small part of the population from density effects.
Both McCallum (1992) and Stone (1993) emphasized that the dynamics
given by (3) tend to be simpler than the dynamics of the original model (1).
They used numerical simulations to show this, but the underlying analyti-
cal argument is very simple and goes as follows. Let x* be the equilibrium
of system (3). As before, the dynamics of (3) are determined by the slope
of the function f, at x*. This slope is of course the same as that of f at x*.
Thus the dynamics of (3) are determined by the modulus

d
Y ex)

o~ : (4)

It is clear that the shift of the function f induced by adding the constant
¢ causes a shift of the equilibrium to the right. That is, x* > x*, where x*
is the equilibrium in the absence of migration. It follows that the effect of
migration depends on whether the modulus |df/dx| is increasing or
decreasing at x*. Since (df/dx)(x*) <0, |df/dx) is decreasing at x* if the
second derivative (d>f/dx?)(x*) is positive, ie., if x* lies to the right of the
inflection point of f. In this case dispersal will have a simplifying effect on
the dynamics. It will have a contrary effect if (d%f/dx?)(x*) is negative.
Therefore, the effect depends on the position of x* relative to the inflection
point of f.

The results of McCallum (1992) and Stone (1993) should be viewed with
some caution, for they depend on the particular model chosen. Both
authors primarily worked with the Ricker equation (Ricker, 1954):

x'=A-x-exp(—gx). (5)

6534717
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In this model one has x*=log(i)/qg, (df/dx)(x*)=1—log(4), and the
inflection point is given by 2/g. If x* is unstable then log 4> 2; hence,
2/q < x* and dispersal always leads to simpler dynamics. McCallum (1992)
also made some simulations with the following model, which was intro-
duced by Maynard Smith and Slatkin (1973) and considered by Bellows
(1981) to be the most generally applicable:

,_ Ax
YT (ax)? )

McCallum observed the same simplifying effect of dispersal as in the Ricker
model, but this result depends on the choice of parameters. In fact, one can
show that for any type of dynamics one can choose the parameters in (6)
so that x* lies to the left of the inflection point, hence, so that dispersal
destabilizes the system. For example, (6) can have a stable equilibrium
while dispersal leads to a 2-cycle. In such a situation dispersal enhances
rather than breaks down the onset of chaos, as claimed by Stone (1993) to
be the general effect of dispersal.

Even if immigration into the patch simplifies the dynamics as in the
Ricker model, then, by the same token, dispersal of a constant number of
individuals moving away from the patch leads to more complex dynamics.
Of course, when modeling such a situation one has to make sure that the
number moving away is not larger than the number present in the patch,
for example by requiring that not more than a certain fraction of the pop-
ulation present disperses. Such threshold density-dependent dispersal out of
the patch still leads to more complex dynamics in the situation considered
by Stone (1993), where dispersal into the patch simplifies the dynamics.
This can easily be seen by numerically simulating the Ricker model.
However, using the ideas of controlled chaos, one can envisage a scenario
in which such dispersal away from the patch nevertheless stabilizes the
Ricker model at the equilibrium x*. These ideas are reviewed in Shinbrot
et al. (1993). They show how one can use the presence of chaos in a system
to stabilize its dynamics with very small perturbations. This contrasts with
systems that exhibit simple dynamics; to change their dynamical behavior,
large perturbations are typically necessary. In an ecological and evolution-
ary context, controlling chaos has been described in Doebeli (1993). There
I showed how small adjustments of the intrinsic growth rate can stabilize
highly chaotic Ricker systems at the equilibrium density. The adjustments
consist of increasing the growth rate in years of high density and decreasing
it in years of low density. Since a high density means a subsequent crash,
and a low density a subsequent outbreak, such adjustments tend to
decrease the density fluctuations. What is interesting is that even very small
adjustments are enough to stabilize the density at x*. Similar ideas can be
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used in the present situation. For the moment, I will not go into mathe-
matical details and only will describe a recipe that works. A mathematical
treatment of the ideas will be given in Section 3 for dispersal between two
patches.

Suppose that x < x* in some year. Then dispersal away from the patch
will decrease the size of the subsequent outbreak and thus tend to decrease
the fluctuations as described above. Suppose further that the number of
dispersing individuals is proportional to the difference x* —x. To avoid
negative population densities, we also require that not more than a
certain fraction of the minimal population density x,,;, disperses in each
generation. The value of x,,;, is obtained as the value of f at the maximal
density x.,.,, which in turn is obtained as the value of f at the density for
which the derivative df/dx is 0. The dynamics of such a system are then
described as

x,={f(x)~—c if x<x* 7)

f(x) if x=x*

where ¢ =min(a - (x* — x), d- x,;,). Here a> 0 is the proportionality factor,
and 0<d<1 is the fraction of the minimal population size allowed to
disperse.

Using a computer and taking for f a chaotic Ricker function, one easily
finds, by trial and error, values for a and d such that this system always
stabilizes itsell at the equilibrium x*. In fact, & can be chosen arbitrarily
small, so that in most generations the number of individuals dispersing is
either 0 because x> x*, or it is equal to d-x,,, because a-{(x*—x)>
d - x.;,. This is similar to the case in which there is dispersal of a constant
number of individuals away from the patch. Indeed, if one only applies the
rule “no dispersal if x > x* and emigration equal to d- x,,;, if x <x*” then
the system does not stabilize itself and instead exhibits even more complex
dynamics (i.e., larger fluctuations) than the original Ricker system. Thus
what stabilizes the system is the fact that the number of individuals dispers-
ing actually gets smaller if x is very close to x*. Because the original Ricker
system is chaotic, this will eventually happen. The phenomenon is shown
in Fig. 1. Before the system gets finally trapped at x*, dispersal is almost
able to control the dynamics several times when x gets close but not quite
close enough to x*. For Fig. 1 the function f was a Ricker function, but the
phenomenon that dispersal stabilizes the system in the way described can
be seen for other difference equations such as (6), as long as they exhibit
chaos and thus ensure that the population density gets arbitrarily close to
the equilibrium in the course of time.

Note that the stabilizing effect of dispersal in this scenario is very dif-
ferent from the one described at the beginning of this section, although in
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FiG. 1. Time series for the controlled system (7). The density (vertical axis) is shown in
successive generations (horizontal axis). When the density gets close to the equilibrium x* due
to chaotic dynamics of the Ricker function f, the control mechanism starts to be effective. If
the density was not close enough, the control only works for a while, after which the density
starts to fluctuate again, but finally it is close enough to x* and the system gets trapped there.
The parameters for the figure were: A=exp(2.9) and ¢=5 for the Ricker function f, and
a=1.38 and 4=0.6 for the control mechanism (see text).

both cases dispersal is away from the patch. If a constant proportion of the
population disperses, the equilibrium density changes, and if dispersal
causes the new equilibrium to be stable, then a constant number of
individuals will disperse in the equilibrium state. In contrast, if dispersal
controls chaos, then the equilibrium density does not change, and in the
equilibrium state there is no dispersal at all. Thus the two mechanisms are
qualitatively very different.

3. DisPERSAL AND DynNaMics IN Two PATCHES

Recently, three studies modeling metapopulations that consist of two local
populations connected by migration have been published. Biologically the
most interesting is Hastings (1993). He assumed symmetric dispersal and the
same dynamics in both patches. One of his conclusions was that dispersal can
have a stabilizing effect on the dynamics. In particular, intermediate dispersal
rates can lead to a stable 2-cycle despite chaotic local dynamics. This result
is supported by the more formal study of Gyllenberg et al. (1993), who
also assumed symmetric dispersal. However, in the third paper, Gonzalez-
Andujar and Perry (1993) noted a stabilizing effect only when dispersal
was asymmetric. They also note that very high dispersal rates can induce a
stable equilibrium, but they did not have an explanation for this.
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All three papers assumed that the local dynamics in each patch are given
by the logistic equation f(x)=rx(1~— x). This model is biologically not
very relevant, mainly because [ is negative for large x. Moreover, the range
of values of r that yield both chaos and a biologically meaningful situation
is rather small, so that the use of this model to study stabilizing effects is
restricted. (For example, Gonzalez-Andijar and Perry (1993) include the
results from simulations they made with a value of r = 4.2, which is biologi-
cally meaningless since negative x-values will occur.) Hastings (1993)
remarks that his results can be repeated with the Ricker equation (5). As
mentioned in the previous section, this model is not generic either, and it
does not exhibit the same flexibility as model (6) of Section 2, which I will
use. In the first part of this section I show that simple dynamics are more
likely with asymmetric dispersal and why high dispersal rates induce a
stable equilibrium. I then discuss another stabilizing effect: different timing
of reproduction and dispersal in the two patches also greatly simplify the
dynamics of the whole system. Despite the stabilizing effect of dispersal, it
is of course still possible to have chaotic dynamics for the whole system if
the local dynamics are chaotic. I show how one can control chaos by slight
adjustments of the dispersal rates in each generation. Such adjustments can
stabilize the system at an equilibrium, similar to the situation discussed at
the end of the last section.

Asymmetric Dispersal

I consider a metapopulation consisting of two local populations. In each
patch discrete density-dependent dynamics are followed by dispersal of a
fixed fraction of the local population to the other patch. The census is
made after dispersal. In the absence of dispersal the dynamics are given by
x"=f(x) in patch 1 and by )’ =g(y) in patch 2, so that the dynamics of
the metapopulation are given by

x'=(1—d\)-f(x)+d,-g(y)
y=(1=d)) -g(y)+d,-f(x).

(8)

Here 0 < d,, d,< 1 are the fractions of the populations leaving patch 1 and
2 in each generation. Both Gyllenberg er al. (1993) and Hastings (1993)
assumed that d:=d, =d, <0.5, and for the most part they also assumed
that f'=g, i.e., identical local dynamics in the two patches. One of the main
results is that even if the local dynamics are chaotic, intermediate dispersal
rates d~0.1-0.2 can induce a state in which both local populations cycle
between two densities. They are out of phase, so that the total density is
constant (assuming that both patches are of equal size, see Fig. 2a). This
2-cycle sometimes occurs together with other locally stable cycles. The
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dynamical behavior of the system then depends on the initial conditions,
and the different attractors can have fractal boundaries of their basins of
attraction. Somewhat in contrast to these results are those of Gonzalez-
Andujar and Perry (1993), who find no stabilizing effect for symmetric dis-
persal (see Table 2 in their paper), only for asymmetric dispersal, i.e., when
d, #d,. But their study is rather limited and not very conclusive. For
example, their results for the symmetric case are biased by the fact that
they always used symmetric initial conditions, in which case the system
stays on the diagonal x =y and behaves in exactly the same way as the
local populations would without dispersal. However, the result that a
stabilizing effect is more likely if dispersal 1s asymmetric is correct. In Fig. 2
I used bifurcation diagrams to show the consequences of asymmetric dis-
persal. I assumed that the local dynamics are given by the function f(x) =
4x/(1 + (ax)?) (model (6) in Section 2), that both local dynamics are identi-
cal, and that they are chaotic without dispersal. Then, for fixed dispersal
rates d,, the dependence of the dynamics of the system on the dispersal rate
d, is displayed. Although chaos is common, there are windows of values of

Fig. 2. Bifurcation diagrams in which the dynamics of the total population size x +y in
systemn (8) (vertical axis) are shown in dependence on dispersal rates (horizontal axis). System
(8) was first iterated long enough to eliminate transients, then plots were obtained from 200
iterations. In Hastings's symmetric model more than one attractor for simple dynamics
existed for certain parameter values, so that the outcome of simulations depended on initial
conditions. In the example chosen here this only happened when dispersal rates were high
enough to induce a locally stable equilibrium (see text). In these cases only the equilibrium
dynamics are shown in the figures. The parameters of the functions fand g in model (8) are
4=8, b=2%, and a=0.1. These parameters imply chaos for the local dynamics in each
patch. Similar patterns as shown here are observed for other parameters implying chaos.
(a) Recapitulation of Hasting’s and Gyllenberg er al’s results for symmetric dispersal rates
d=d, =d, between 0 and 0.5. There is a window of simple dynamics for 0.1 <d<0.2. For
these dispersal rates the local populations move out of phase on a 2-cycle, so that the total
density is constant. For the rest of the figure the dispersal rate d, from patch 1 to patch 2 was
fixed at different values, and the dependence of the dynamics on the dispersal rate d, from
patch 2 to patch 1 is displayed. (b) d, =0.04. A window of simple dynamics exists for inter-
mediate values of d,. The value of 4, (indicated on the x-axis) does not lie in this window,
so that symmetric dispersal results in chaos. Also, there is a window of large dispersal rates
d, with simple dynamics. The right-hand side of this window shows the locally stable equi-
librium induced by high dispersal (see text) and can be seen for all values of d,. (¢) d, =0.12.
In the intermediate window the system now typically moves on a 2-cycle. The value of d,
(indicated on the x-axis) lies inside this window, so that the stabilizing effect of dispersal can
be seen with symmetric dispersal. In this case the total population is constant, which is seen
to be a special case of a 2-cycle. (d) d, =0.175. The window of 2-cycles gets smaller, and the
value of ¢, (indicated on the x-axis) lies again outside this window, so that a stabilizing effect
can only be seen with asymmetric dispersal. (e) d, = 0.6. The window of 2-cycles vanishes for
d, 2 0.2, but for large values of d, a new window for simple dynamics appears for low values
of d,. Again symmetric dispersal yields chaos, but simple dynamics result, for example, for
d, =0, ie., if dispersal occurs in only one direction.
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d, for which simple dynamics occur. If 4, is small (Fig. 2b), symmetric dis-
persal results in chaos, but there is a window of intermediate values of d,
with simple dynamics. As d, is increased, a stabilizing effect can be seen
with symmetric dispersal, because the value of 4, lies inside a window of
d,-values for 2-cycles. The constant total population size for symmetric dis-
persal is seen to be a special case of a 2-cycle. As d, is increased further,
the stabilizing effect can again only be seen with asymmetric dispersal
(Fig. 2d). For d, large enough (Fig. 2e), a new window of 2-cycles appears
for low dispersal rates ¢,. Again chaos prevails with symmetric dispersal,
but the system exhibits a simple 2-cycle if there is no dispersal in one direc-
tion at all (i.e., if d,=0).
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These results show that the stabilizing effect of dispersal is much larger
with asymmetry. Hastings’s (1993) and Gyllenberg et al’s (1993) results are
for a special case, and in contrast to their symmetric situation simple
dynamics can be obtained with asymmetric dispersal for very low as well
as for high dispersal rates.

Figure 2 also shows that high dispersal rates can induce equilibrium
dynamics. More precisely, if one of the dispersal rates is high enough
then the total population as well as the populations in each patch can
approach a locally stable equilibrium. This can be shown by an analytical
approximation as follows. Suppose that the local dynamics have an
unstable equilibrium, and that one of the dispersal rates, say d,, is high.
Numerical simulations show that the system can then approach a stable
equilibrium, in which the population size x* in patch 1 is approximately a
fraction d, of the total size:

x* ~dy - (x* +p¥). 9)

Also, x* is very high, so that the reproductive output in patch 1 is near
zero due to density effects:

S(x*)~0. (10)
Using this and the first equation of (8) to determine the equilibrium yields
x*=d,-g(y*). (11)

Since x* =d,(x* + y*), we have y* = ((1 — d,)/d,) x*, and substituting this
into the last equation and using the expression (6) for g yields

_[AM1—d)—11""-d,

* 12
a1 —d;) (12)
The corresponding equilibrium density in patch 2 is then
AMl—dy)—1]"
P CIL s g 1)

a

To determine the stability properties, one has to calculate the Jacobian of
system (8) at this equilibrium. Note that for the function (6) one has df /dx =
(1/x —s(x))-f(x) with s(x)=ab(ax)?"'/(1 + (ax)?). Since f(x*)~0, it
follows that (df/dx)(x*)~0. Therefore, the Jacobian at the equilibrium is
given by

1
0 d, [}—Y;—S(y*)} g(y*)

{ (14)
0 (I—4d,) [;;—S(y*)] g(y*)
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Using the formula for y* above, one sees that the dominant eigenvalue of

this matrix is
1
1—hl 1 ————]. 15
( A(l—dz)> (1)

The equilibrium is locally stable if the modulus of this eigenvalue is <1,
ie., if

b
l————<dy<1—= (16)

{Note that > 2 if (6) is to have an unstable equilibrium.) This condition
for d, is an approximation, since I used approximate equilibrium sizes x*
and y*

Interestingly, in such an equilibrium state the total population is much
larger than the sum of the potential equilibrium sizes in each local popula-
tion (Fig. 3a). At equilibrium, one of the patches has a very small popula-
tion. This population serves as a source, producing many offspring in each
generation, most of which move to the other patch due to high dispersal.
The other patch is a sink with a large population that produces very few
offspring due to density effects. In each generation the sink population gets
restocked by dispersal from the source patch, and this mechanism stabilizes
the whole system. This situation is very similar to the one described in
Pulliam (1988), although the underlying mechanisms are quite different. In
general, the source-sink equilibrium is not a global attractor, and different
dynamical behaviors can be seen for different initial conditions. If the equi-
librium loses stability but the dispersal rate is still high, a route to chaos
that leads to intermittency can be observed; if the dispersal rate inducing
a stable equilibrium is decreased, the equilibrium gives way to a stable
2-cycle. Further decrease can result in intermittent chaos (Fig. 3b). In this
form of chaotic motion the dynamics are regular for most of the time,
except for short intermittent periods with erratic fluctuations. High disper-
sal is almost able to control the dynamics and keeps the population on a
2-cycle for most of the time, but occasionally the control fails. Intermittent
chaos due to sporadic failure of a control for simple population dynamics
has been reported previously (Doebeli, 1993, 1994). Other forms of inter-
mittency are shown in Mikhailov (1992) and Vandermeer (1993).

Asynchronous Dispersal

Dispersal can have an even greater stabilizing effect if the timing of
reproduction and dispersal is different in the two patches. It has been noted
by May et al. (1981) that the timing of density effects and parasitism in
host-parasite systems can have a profound effect on the dynamics. A similar
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FiG. 3. Time series of the population size for high dispersal rates. The parameters for the
functions fand gin (1) are =7, b=4.9, and ¢ =0.1. The dispersal rate d, is set equal to 0.4
(a) d, =0.8. d, is high enough for the whole system to be stable (see text). In this state the total
population size (continuous line) is much larger than the sum of the {(unstable) equilibrium
sizes in the two patches (dotted line). Patch | has a large population (upper dashed line) and
is a sink (see text), while the population is low in the source patch 2 (lower dashed line). If 4,
is lowered, the stable equilibrium gives first way to a stable 2-cycle (not shown). As d, is further
decreased, this 2-cycle is broken up sporadically by irregular fluctuations. This is shown in (b),
where d, =0.754. The total population size is displayed in successive generations. The system
now exhibits intermittent chaos. The motion is regular for most of the time, except for short
periods in which the control by high dispersal fails. For a theoretical treatment of the intermit-
tency route to chaos see Schuster (1984, Chap. 3).
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observation was made in Doebeli (1995a) for competition between species.
In the present situation, I assume that in each generation reproduction first
occurs in patch 1, followed by dispersal from patch 1 to patch 2. The patch
2 population now experiences its own density, as well as that of the newly
arrived patch 1 individuals. After reproduction in patch 2, dispersal occurs
from patch 2 to patch 1. If we write f{x)=x - w(x) and g(y) =y -v(y) for the
local dynamics, where w and v are the fitness functions in the patches (sce
Section 2), the model for this system is

x'=(1—=d)-x -wx)+d, y-v(y+d,-x-wix)) (17)
y=(0-d)-y-o(y+d -x-wx))

Figure 4 shows the dynamics of this system in dependence on the dis-
persal rates if the local dynamics are chaotic. In Fig. 4a symmetric dispersal
is assumed, in Figs. 4b—d, d, is fixed at different values, while d, is varied
continuously. For the functions f and g (resp. w and v) the same parameter
values as for Fig. 2 are used. For high dispersal rates one or both local
populations go extinct, but overall it is clear that the difference in the
timing of reproduction and dispersal enhances the stabilizing effect of dis-
persal greatly. For example, for d, =0.45, chaos only occurs for very small
values of d, (Fig. 4d).

Controlling Chaos

To conclude this section I show how small adjustments in dispersal rates
can lead to a stable equilibrium when the undisturbed system (8) exhibits
chaos. To see this, write system (8) in the form

:l:F(Z’dl’dz), (18)

where z = (x, y) and where I explicitly include the dependence of the system
on the dispersal rates d, and d,. I assume that the system exhibits chaos
for some dispersal rates d, and d,. Suppose now that the system is close to
an equilibrium z* at some point in time, so that [z — z*| is small (an equi-
librium is of course a state z* with F(z*)=z*). For parameter values d,
and d, close to the nominal values d, and d,, respectively, we then have the
linear approximation

Z—z*=A-(z—z*)+B,-(d,—d,)+ B,-(d,— d,). (19)

Here A is the Jacobian matrix 0F/dz, and B, and B, are the two-dimen-
sional column vectors B,=0F/0d, and B,=0F/0d,, where the partial
derivatives are evaluated at z==z*, d, = (7,, and d,=d,. I assume that one
can adjust the dispersal rates in each generation; a small change is made
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on the basis of the value of z. More precisely, we adjust the dispersal rates
according to the densities in each patch,

d—d, = —k,-(x—~x¥)
1 L 1 (20)

dz“g2= —ky-(y—y%),

where k, and k, are constants which have to be chosen appropriately and
where z* = (x*, y*). Thus the dispersal rate from patch 1 to patch 2 is
controlled linearly by the density in patch 1, and similarly for patch 2.
Substituting (20) into (19) one obtains

Pt = A (2= —k By (= X*) —ky By (¥~ %) o)

= (A= C)-(z=2%),

where C is the 2 x 2-matrix C=(k,B,, k,B,) (recall that B,, B, are two-
dimensional column vectors and that (z —z*) = (x — x*, y — p*)). It follows
that the system will approach the equilibrium z* if the values of &, and &,
are chosen such that the modulus of the dominant eigenvalue of the matrix
A —Cis <. In principle, stabilization of the system is achieved by waiting
until the system gets close to z* and then applying the perturbations (20).
The closer the system is to z*, the smaller are the perturbations needed.
Typically, a chaotic attractor contains points which are arbitrarily close to
an equilibrium. Thus the system gets arbitrarily close to such an equi-
librium in the course of time. Therefore, in principle very tiny perturbations
suffice to stabilize the system, although the smaller one allows them to be,
the longer one might have to wait until stabilization occurs. This is in
striking contrast to systems exhibiting regular dynamics, e.g., a cycle. To
stabilize such a system at an equilibrium, large perturbations would be
necessary.

While the mechanism described could be applied to a metapopulation
from outside the system by artificially altering dispersal rates, it is also
possible that a population has evolved to control itself by adjusting dis-
persal rates according to its density. For such a scenario the mechanism
described is not very reasonable. Why should the population adjust dis-
persal rates only when it is close to an equilibrium state? A more realistic
mechanism would be to apply the control law (20) at all times; i.e., not
only when the density is close to z*, but to put a limit to the magnitude
of the adjustment by requiring that the change of dispersal rates is not
more than a certain fraction of the nominal value. Numerical experiments
show that such a mechanism also works (cf. Fig. 5a). Note that not in all
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FiG. 4. Bifurcation diagrams in which the dynamics of the total population size x+ y in
system (17) (vertical axis) are shown in dependence on dispersal rates (horizontal axis).
System (17) was first iterated long enough to eliminate transients, then plots were obtained
from 200 iterations. The parameters for the local dynamics in the patches were the same as
for Fig. 2. Similar patterns are obtained for different sets of parameters implying chaos. For
high dispersal rates one or both populations (depending on initial conditions) go extinct, and
the dynamics are only displayed if this does not happen. (a) Symmetric dispersal rates,
d,=d,, between 0 and 0.5, analogous to Fig. 2a. The window for simple dynamics is larger
than the corresponding window for system (8). For the rest of the figure the dispersal rate d,
from patch 1 to patch 2 was fixed at different values, and the dependence of the dynamics on
the dispersal rate d, from patch 2 to patch 1 is shown. {b) 4, =0.07. For low 4, similar pat-
terns as for system (8) with a window of simple dynamics for intermediate and one for large
dispersal rates d, can be seen. (c) d, = 0.3. For most values of 4, simple dynamics can be seen,
in contrast to system (8), where for this value of d, only large dispersal rates 4, yield simple
dynamics. (d) d, = 0.45. Now only very small dispersal rates d, result in chaos, in sharp con-
trast to system (8). Hence it is clear that the stabilizing effect of dispersal is enhanced in
system (17), ie., if the timing of reproduction and dispersal is different in the two patches.



DISPERSAL AND DYNAMICS 99

d,=03

- %-M"_mﬁiﬁr

L

Total density
[\~
wn

e . e
Al
0 " e
[¢] 0.3 04 0.8
Dispersal rate dz
d1=0.45
d 4of ;

Total density
Ny
(=)

0 0.45 0.8

Dispersal rate dp

Fi1G. 4—Continued

cases, where the metapopulation exhibits chaos for some given dispersal
rates, does there exist an equilibrium in the vicinity of the chaotic attractor.
In these cases the mechanism does not work. However, other types of
regular dynamics such as higher order cycles are then close to the attractor,
and a similar rule can be applied to stabilize such cycles.

In Doebeli (1993) I have shown how a population can stabilize itself by
small adjustments of its growth rate. If the population is a metapopulation,
no intrinsic property of the local populations has to be adjusted to control
chaos. Slightly altering the rates of dispersal can be sufficient. The mere
presence of dispersal offers the possibility of stabilization.
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4. EVOLUTION OF DISPERSAL RATES

In this section 1 study under what conditions a mutant with different
dispersal rates can invade a resident metapopulation. I assume that the
mutant has the same local dynamics and only differs with respect to dis-
persal rates. I write the system of the resident population in the form

' =G(z) 2 (22)

Here z = (x, y) is the vector consisting of the densities in the two patches
and G(z) is the matrix

((1 —d)-wlx)  dy-v(y) )
y)

di - w(x) (t—d,)-v(y (23)

where w and v are the fitness functions in the two patches. Suppose that the
local dynamics in each patch exhibit a stable equilibrium and that the
resulting global dynamics also have a stable equilibrium z*. (Note that this
does not necessarily follow. A counterexample can be constructed along the
lines of the example mentioned in Section 2: if the equilibrium point of the
function defining the local dynamics lies to the right of the inflection point
of this function, dispersal can be destabilizing.) Let w* :=w(x*) and
v¥* :=uv(y*) be the values of the fitness functions at z*. At the equilibrium,
the dominant eigenvalue {(d,, d,) of the matrix

(1—d) -w* d, v* ) (24)

G(‘"*):< d-w* (1 —d,)-v*
is one:
C(dladz)=%{(l_dl)“"*+(1*dz)v*

+ /(L —d)w*— (1 —dy) v* > +4d,dyw*o*} = 1. (25)

To determine the evolutionary optimum for the dispersal rates, one has to
calculate the derivatives d{/dd, and 0(/dd,. Using (25), we get

ﬁ(:__w*[ v* —1 ]
ad, 4 |2—(1—d)w*—(1—d,)v*
1 ( )w*F—( 2) (26)

a& v we— | ]
od, 4 |2—(1—d)w*—(1—dy)v*]|

It easily follows that { is a global maximum, hence the resident in an
evolutionary stable state, if and only if w* =v* =1, that is, if and only if
the local populations x* and y* are at the local equilibrium densities x,
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and y, (i.e., the equilibria for the local dynamics when considering the
patches independently). From the equilibrium equation

x*=(1—d,) -w*x*+d, v*y* (27)

it now follows that in such a state

dy="2.d,. (28)

Yo

Thus { has global maxima along a line in the d,—d,-plane, and each point
on this line is evolutionarily stable. For example, if the local dynamics are
identical in the two patches, then each state with symmetric dispersal is
evolutionarily stable. One can show that if a series of invasions leads to an
evolutionary optimum, then every invasion results in the elimination of the
resident, so that no polymorphism is possible. Moreover, it can be seen
numerically that the total density is maximized at an evolutionary stable
state. Thus the system undergoes a form of K-selection.
If the local dynamics exhibit a higher order cycle when considered alone,
a similar analysis can be performed. In particular, if the dynamics in both
patches are the same, then again all states with symmetric dispersal are
evolutionarily stable. With numerical simulations one can check that this is
also true if the (identical) local dynamics are chaotic. If the local dynamics
differ general invasion criteria are hard to obtain. In principle, one has to
do the following (see Metz et al, 1992). Let G™ be the fitness matrix of
the mutant, so that a metapopulation consisting of the mutant alone is
described by z' = G™(z) - z. If the mutant tries to invade a resident popula-
tion, it is initially rare, and the relevant component for its dynamics is the
density of the resident. Therefore, the time series z" of the mutant is given
by
oy =G"(z}) -z, (29)

r

where z is the density vector of the resident population at time ¢. The
invasion criterion is now simply that the modulus of the dominant eigen-
value of the matrix G™(z) is on average larger than 1. If the resident
undergoes chaotic fluctuations, an invading mutant has to be successful at
those densities that are often attained by the resident. Thus, to obtain
invasion criteria one has to know the nature of the chaotic fluctuations,
and typically only numerical techmiques are available. I am currently
investigating how to obtain general criteria for when invasion against a
chaotic resident is possible (Doebeli, 1995b). In the case considered here
numerical studies yield the following result: as in the case of stable
equilibrium dynamics, a difference in equilibrium densities in the two
patches causes a shift of the evolutionary optima away from the diagonal.

653:47.1-8
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FiG. 5. Invasion of a mutant using the self-control mechanism described in Section 3 into
a resident population without control. The parameters of the resident system (8) are: 4= 1.7,
b=85, and a=0.1 for the local dynamics in the two patches, 4, =0.1 and d,=0.2. The
parameters for the local dynamics of the mutant are the same. The mutant’s control
parameters of Eq. (20) are k; = 1.3 and k&, =0.6874. The resident exhibits chaos when alone.
After 200 generations a small amount of mutants is introduced. Time series of the mutant and
the resident are shown. (a) The total density of the mutant increases on average. After the
resident is reduced to very low densities, the control mechanism stabilizes the mutant at the
equilibrium. This happens when the mutant’s density gets close enough to the equilibrium.
(b) The resident population first exhibits chaos and then goes extinct due to invasion of the
mutant.
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As in Eq. (28), the dispersal rate from the patch with the higher equilibrium
density is reduced. A difference in complexity of the local dynamics causes
a shift in the other direction; the dispersal rate from the patch with the
more complex dynamics tends to be higher in an evolutionary stable state.
Since no general criteria for invasion against a chaotic resident are
available, no general conclusions can be made as to whether evolution
tends to simplify the dynamics. For example, if the local dynamics are
identical, evolution leads to symmetric dispersal, which may or may not
have a stabilizing effect.

However, one instance where evolution does iead from chaos to a stable
equilibrium is worth mentioning. It can be seen numerically that a mutant
that exerts the self-control mechanism described in Section 3 can invade a
resident with the same parameters but without control. Figure 5 shows
how the invading mutant eliminates the resident and transforms a chaotic
metapopulation into one with a stable equilibrium.

5. DiIscUSSION

Dispersal leads to mixing of interactions and can therefore be expected
to have a stabilizing effect on the dynamics of populations (May, 1985;
Gilpin and Hanski, 1991). For example, Hastings (1993) and Gyllenberg
et al. (1993) found a stabilizing effect of symmetric dispersal in a system of
two local populations with discrete logistic dynamics. On intuitive grounds,
the effect should be enhanced if the mixing of the interactions is asymmetric
or asynchronous. The present study supports this idea. The results of
Section 3 show that the tendency for simple dynamics is stronger with
asymmetric dispersal (Fig. 2). A stabilizing effect is even more likely with
asynchrony. If the timing of reproduction and dispersal differs in the two
populations, simple dynamics occur for a larger range of dispersal rates
(Fig. 4).

In addition, very high dispersal rates induce a stable equilibrium even if
the local dynamics are highly chaotic when considered alone (Section 3).
At such an equilibrium the total population density is much larger than the
sum of the potential equilibrium densities in the two patches (Fig. 3a). If
the control by high dispersal is relaxed, the route to intermittent chaos can
be observed (Fig. 3b). In this form of “almost stable chaos” the population
density behaves regularly for most of the time, except for short, inter-
mittent periods in which it fluctuates erratically.

I have shown that by choosing the right parameters in the right model,
dispersal can very well be destabilizing and lead, for example, from a stable
equilibrium to cyclic dynamics (Section 2). An analogous remark was made
by Ruxton (1993) for continuous time models. On the whole, however, it
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seems that dispersal tends to simplify the dynamics and that this tendency
is stronger under conditions of asymmetry and asynchrony. It will be inter-
esting to try to extend these results to metapopulations with more than two
patches.

For chaotic local dynamics the dynamics of the whole metapopulation
can, of course, also be chaotic. The presence of dispersal then allows one
to apply a control mechanism that leads to a stable equilibrium. This
mechanism consists of small adjustments of the dispersal rates in each
generation. The control works in one-patch models as well as in two-patch
models (Figs. 1 and 5). It might be applied by an agent outside the system
such as a system manager, but it is also conceivable that the individuals of
a population have evolved to apply the control themselves: they might
exert self-control by adjusting the dispersal rates according to their density
in each generation. With the possibility of such self-control a general
problem arises. If demographic parameters such as dispersal rates or equi-
librium densities were measured for a population using the control
mechanism they would only differ slightly from those of an uncontrolled
population. Thus the two populations would be classified as the same, even
though they exhibit very different dynamical behavior. This casts some
doubt on methods of estimating demographic parameters to determine the
dynamics of a population. (In fact, a similar observation holds for a pop-
ulation exhibiting intermittent chaos: if measurements were made during
the long phases of regular dynamics, such a population would not be
distinguished from a nonchaotic one.)

Under some circumstances a mutant using the control mechanism can
invade a resident with the same parameters but without control, so that
evolution can lead from chaos to a stable equilibrium (Fig. 5). A similar
evolutionary advantage of controlled chaos has been described in Doebeli
(1993). In general, the problem of the evolution of dispersal rates has an
analytical solution only in case the local dynamics are regular. If the
dynamics in the two patches are identical, symmetric dispersal rates are
evolutionarily stable. Numerical simulations show that this is also true for
chaotic local dynamics: if they are the same in the two patches symmetric
dispersal rates evolve. For more general situations it can be seen numeri-
cally that evolution tends to favor higher dispersal rates from the patch
with the more complex dynamics. It is an open problem to find general
criteria describing when invasion into a resident population with chaotic
dynamics is possible.

ACKNOWLEDGMENTS

I thank Jacob Koella and Tad Kawecki for helpful discussions and Steve Stearns and Jacob
Koella for comments on the manuscript. This research was supported by the Janggen-Pohn
Foundation, St. Gallen, Switzerland.



DISPERSAL AND DYNAMICS 105
REFERENCES

BeLLows, T. S., Jr. 1981. The descriptive properties of some models for density dependence,
J. Anim. Ecol. 50, 139-156.

BERRYMAN, A. A., AND MILLSTEIN, J. A. 1989. Are ecological systems chaotic—and if not,
why not? Trends Ecol. Evol. 4, 26-28.

Comins, H. N., HasseLL, M. P., anp May, R. M. 1992, The spatial dynamics of
host-parasitoid systems, J. Anim. Ecol. 61, 735-748.

DoeBeL1, M. 1993. The evolutionary advantage of controlled chaos, Proc. R. Soc. London B
254, 281-286.

DoEBELI, M. 1994. Intermittent chaos in population dynamics, J. Theor. Biol. 166, 325-330.

DokeBeLI, M. 1995a. Phenotypic variability, sexual reproduction, and evolutionary population
dynamics, J. Evol. Biol., in press.

DoeBeL1, M. 1995b. Evolutionary predictions from invariant physical measures of dynamic
processes, J. Theor. Biol., in press.

GiLeiN, M., aND Hanski L. (Eds.) 1991. “Metapopulation Dynamics: Empirical and Theoreti-
cal Investigations,” Academic Press, London.

(GONZALEZ-ANDUIJAR, J. L., AND PERRY, J. N. 1993. Chaos, metapopulations and dispersal,
Ecol. Model. 65, 255-263.

GYLLENBERG, M., SODERBACKA, G., AND ERICSSON, S. 1993. Does migration stabilize local
population dynamics? Analysis of a discrete metapopulation model, Math. Biosci. 118,
25-49.

Hanski, 1. 1991. Single-species metapopulation dynamics—concepts, models and observa-
tions, Biol. J. Linn. Soc. 42, 17-38.

HasseLL, M. P., Comins, H. N., aND, MAy, R. M. 1991. Spatial structure and chaos in insect
population dynamics, Nature 353, 255-258.

HasTINGs. A. 199]. Structured models of metapopulation dynamics, Biol. J. Linn. Soc. 42
57-7L.

HASTINGS, A. 1993. Complex interactions between dispersal and dynamics: Lessons from
coupled logistic equations, Ecology 74, 1362-1372.

Hort, R. D., aNp Hasserr, M. P. 1993. Environmental heterogeneity and the stability of
host-parasitoid interactions, J. Anim. Ecol. 62, 89-100.

Levins, R. 1970. Extinction, i “Some Mathematical Questions in Biology™ (M. Gerstenhaber,
Ed.), pp. 77-107, Am. Math. Soc., Providence, RI.

May, R. M. 1974. Biological populations with non-overlapping generations: Stable points,
stable cycles and chaos, Science 186, 645-647.

May, R. M. 1976. Simple mathematical models with very complicated dynamics, Nature 261,
459-467.

May, R. M. 1985, Regulation of populations with non-overlapping generations by
microparasites: A purely chaotic system, Am. Nar. 125, 573-584.

May, R. M., HasserL, M. P., AnDErsoN, R. M., anp Tonkyn, D. W. 1981. Density
dependence in host-parasitoid models, J. Anim. Ecol. 50, 855-865.

May, R. M., aND OsTER, G. F. 1976. Bifurcations and dynamic complexity in simple ecologi-
cal models, Am. Nat. 110, 573-599.

MAYNARD SMITH, J., AND SLATKIN, M. 1973. The stability of predator-prey systems, Ecology
54, 384-391.

McCacLrum, H. 1. 1992, Effects of immigration on chaotic population dynamics, J. Theor.
Biol. 154, 277-284.

MIKHAILOV, A. 1992. Spatio-temporal intermittency in population explosions, Physica A 188,
367-385.

PurriaM, H. R. 1988. Sources, sinks, and population regulation, Am. Nat. 132, 652-661.



106 MICHAEL DOEBELI

Ricker, W. E. 1954. Stock and recruitment, J. Fish. Res. Bd. Can. 11, 559-623.

RuxTtoN, G. D. 1993. Linked populations can still be chaotic, Oikos 68, 347-348.

ScHUSTER, H. G. 1984. “Deterministic Chaos: An Introduction,” Physik Verlag, Weinheim.
SHiNBrOT, T., GREBOGI, C., OTT, E., AND YORKE, J. A. 1993. Using small perturbations to

control chaos, Nature 363, 411-417.
STONE, L. 1993. Period-doubling reversals and chaos in simple ecological models, Nature 365,

617-620.
TayLoRr, A. D. 1990. Metapopulations, dispersal, and predator-prey dynamics: An overview,

Ecology T1, 429-433.
VANDERMEER, J. 1993. Loose coupling of predator—prey cycles: Entrainment, chaos, and inter-
mittency in the classic MacArthur consumer-resource equations, Am Nat. 141, 687-716.



