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Sex and population dynamics
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SUMMARY

Chaos has been found in many mathematical models of population dynamics. This suggests that it should
be a common feature of natural populations, quite in contrast to the scarcity of systems where it has been
demonstrated. We suggest in this paper that the reason for this contrast may lie in the reproductive system.
Whereas ecological modelling traditionally deals with asexual organisms, we introduce sexual
reproduction (and thus explicit population genetics) into the population dynamic models. As specific
examples, we describe the effect of sexual reproduction on two models (a host-parasite model and a
predator—prey model) which exhibit chaotic behaviour for many sets of parameters. The results show that
sexual reproduction generally reduces the complexity of the system, leading to a stable equilibrium or
other forms of simple dynamics, or at least reducing the fluctuations of the system. Thus the chaotic
behaviour predicted by many population dynamic models may be restricted to systems with asexual

reproduction.

1. INTRODUCTION

The realization that ecological models can have very
complicated dynamics (May 1974, 1976) has attracted
much interest among population biologists. Whereas
early studies focused on single species with discrete
generations (May 1974), it has later been shown that
complex dynamics are a likely outcome in systems with
continuous time if three or more species interact
(Gilpin 1979; Takeuchi & Adachi 1983; Hastings &
Powell 1991). The extent, however, to which models
exhibiting chaos reflect the dynamics of natural systems
remains controversial. Hassell et al. (1976) estimated
the parameters of a one-dimensional difference
equation for 24 insect populations and found that in all
but two cases these parameters corresponded to a
stable equilibrium. This study led to the belief that
chaos is scarce in natural populations. Other studies
also failed to reveal chaos: Thomas et al. (1980)
concluded that Drosophila systems in the laboratory do
not exhibit chaos; Godfray & Blyth (1990) showed
that the long-term data of plankton in the North Sea
and Atlantic have annual, four-yearly or four-monthly
cycles, but fail to demonstrate any chaotic patterns.
However, Schaffer and his colleagues (Schaffer 1984;
Schaffer & Kot 1986) argued that chaos is much more
common than ecologists had earlier believed. In
particular, several simple ecological and epidemio-
logical systems with seasonality in contact rates have
chaotic dynamics (Schaffer & Kot 1985). Measles in
many cities (Sugihara & May 1990) or monocultures
of the grass Agrostis scabra (Tilman et al. 1991) could be
particular examples of this. In a recent article, Hanski
et al. (1993) reported chaotic dynamics for microtine
rodents in Arctic regions. Hastings et al. (1993) also
promote the view that chaos might be the rule rather
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than the exception. Yet the question of how often chaos
occurs in nature is far from being settled, and there is
still a tendency to believe that it does not occur
frequently (Berryman & Millstein 1989). But what
could be the cause for a prevalence of simple dynamics?
One reason may lie in the fact that blurring the details
of interactions leading to chaos can lead to more simple
dynamics. Blurring is usually modelled as demographic
and environmental stochasticity or as spatial het-
erogeneity (see, for example, Hassell et al. 1991;
Hastings 1993). Sexual reproduction, usually not
considered when studying population dynamics, might
also be expected to have such blurring effects, because
it can dampen fluctuations in allele frequencies.
Hamilton (1980, 1982; see also Hamilton et al. 1990)
studied the effect of sexual reproduction on the
dynamics of gene frequencies in host—parasite models.
He showed that the way sex changes these dynamics
can imply an evolutionary advantage. However, sex
did not generally lead to simpler gene frequency
dynamics. May & Anderson (1983) extended these
studies by assuming density-dependent population
dynamics. They examined competition between sexual
and asexual subpopulations, and they showed that
density dependence destroys the favourable effect of
sex on the dynamics of gene frequencies. However,
they did not compare the population dynamics of
sexual and asexual systems. Koella (1988) also analysed
competition between sexual and asexual populations.
In this model, which is an extension of the Lotka—
Volterra competition equations with the quantitative
genetic equations developed by Lande (1976), the
sexuals have a stable equilibrium when alone, whereas
the asexuals exhibit chaos. This leads to a lower
variance in fitness for the sexuals when they compete
with the asexuals, and as a consequence the sexuals
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win. The advantage of sex is due to its simplifying effect
on the dynamics. In another study, M. Doebeli
(unpublished results) extended a model by Hassell
(1975) with the equations describing the population
genetics of a system with one locus and two alleles.
Here the general effect of sexual reproduction is to
increase the stability of the system in the mathematical
sense of enlarging basins of attraction. In addition,
under certain conditions the attractors themselves are
simpler with sexual reproduction. In the present study
we will argue that such a simplifying effect can be
expected under rather general conditions. We show the
effect of sex in two models from different areas of
population biology. The first model describes the
regulation of populations by microparasites, and the
second describes competition among genotypes with a
common predator. For each model, we will first give an
account of the dynamics of asexual genotypes and the
conditions that lead to chaos. Then we will show how
the dynamics are changed if sexual reproduction is
introduced.

2. SEXUAL REPRODUCTION IN A
HOST-MICROPARASITE MODEL

May & Anderson (1983) described the population
dynamics of a host population with discrete, non-
overlapping generations whose density is regulated by
a pathogen. In their model, the pathogen spreads
throughout each generation of the host before re-
productive age is reached, and a fraction / of the host
population is infected and killed. If the reproductive
rate of the hosts in the absence of disease is A > 1, and
if N and N’ denote host densities in successive
generations, this system is governed by the equation

N = AN(1—1). (1)

The fraction I of infected hosts depends on the density
N and is given by the equation

I—=I=exp[—I(N/Ny)] (2)

(May & Anderson 1983, Appendix). Here N, is the
threshold density of the host below which the pathogen
cannot establish itself in the population. An extensive
analysis of this system was done by May (1985). He
showed that it exhibits chaos for all growth rates, A. To
study competition between sexual and asexual popula-
tions, May & Anderson (1983) introduced population
genetics in this model by assuming that the diploid
hosts mate randomly and that their dynamics are
governed by one locus with two alleles, 4 and a.
Because they were only interested in competition
between sexuals and asexuals, they did not compare
the dynamics of sexual and asexual systems separately.
In fact, if they had, they would not have noted any
difference, as they assumed complete dominance in the
sexual system, i.e. they assumed that the three
genotypes produce two phenotypes: it can be shown
along the lines of the analysis in May (1985) that the
sexual system with two (identical) phenotypes also
exhibits chaos for all growth rates A. However, this
changes rather drastically when the three genotypes
produce three phenotypes, as we will now show. We
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assume that each of the three genotypes is susceptible
to a unique pathogen, i.e. the growth rate of each
genotype is governed by equations (1) and (2)
independently of the density of the other genotypes.
Thus, for each genotype 77, the fitness function is

Wy = /\ij<1 _Iz'j>>

and the infection rate /;; is determined by

1 —1; = exp [—1;(py N/NTﬁ)L

where N, is the threshold density of genotype , p; is
its frequency, and N is the total host density. The

equations for the dynamics of the frequency p of allele
4 and the total density N are

P =plpw,,+(1 —p>wM]/w,}
N’ =aN,
where

w =p2wAA+2p(1_p> wAa+<1_p)2waa

is the mean fitness. For our results we compared this
sexual population with a population consisting of three
phenotypes that reproduce asexually. We assumed that
in both populations all phenotypes have the same
growth rate and the same threshold density. Figure 1
shows the dynamic behaviour of the sexual and the
asexual systems in dependence on the growth rate, A.

The asexual system consists of three uncoupled
subpopulations and therefore still exhibits chaos for all
A. The genetic coupling in the sexual system has two
consequences: it leads to a stable 2-cycle for low values
of A (A £ 1.6), and to smaller fluctuations in density for
all values of A. Whereas the latter result is simply
obtained by observation (figure 1), the former can be
proved analytically. One can also show, by using
May’s (1985) results, that the sexual system never has
a stable equilibrium. However, for small values of A,
the fluctuation in the stable 2-cycle is very small, so
that in practice one could not distinguish the 2-cycle
from a stable equilibrium. Just after the 2-cycle
becomes unstable (A = 1.6), the fluctuations are again
very small and the system stays close to an equilibrium.
If the sexual system is on a stable 2-cycle, one of the
homozygotes is immune against infection because its
density is always below the threshold, the heterozygote
is always above the threshold and the other homo-
zygote alternates between densities below and above
the threshold. Thus the stable 2-cycle is due to sexual
reproduction immunizing one of the phenotypes by
keeping its density low.

We have seen that the transition from two to three
phenotypes changes the influence of sexual repro-
duction on the dynamics. That variability enhances
the stabilizing effect of sex becomes clear when one
considers a system with three alleles. Then the host
population has six genotypes, and the dynamics of the
gene frequencies and of the total density are again
described by standard population genetic equations
(see, for example, Crow & Kimura 1970, chapter 5).
For the sake of brevity we omit the details, but we
emphasize that, in the resulting system, the stabilizing
effect of sex is much greater (figure 1¢). In particular,
the sexual population now has a stable equilibrium for
growth rates A < 2. These simple dynamics result

(3)
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Figure 1. Time distribution of the mean fitness in the
host-pathogen system for a range of values of the basic
growth rate A. The mean fitness of the host populations is
defined as N’/ N, where N and N’ denote total densities in
successive generations. (¢) The asexual system with three

phenotypes is chaotic for all growth rates A. For low values of -

A the system stays close to a 2-cycle. (b) In the sexual system
with one locus and two alleles, hence with three genotypes,
which produce three phenotypes, low values of A lead to a
stable 2-cycle, which gives way to chaos for A 2 1.6. For all
values of A the fluctuations in the fitness are considerably
smaller than in the asexual system. (¢) In the sexual system
with one locus and three alleles, hence with six genotypes,
which produce six phenotypes, low values of A lead to a stable

equilibrium, which gives way to chaos for A 2 2. For all °

values of A the fluctuations in the fitness are considerably
smaller than in the sexual system with three phenotypes or in
the asexual system. The results were obtained with numerical
simulation of equations (1)—(3), respectively their analogues
for the system with three alleles. All threshold densities are set
equal to 1. The value of the threshold density has only a
scaling effect and does not influence the type of dynamics
displayed by the system.

again because sexual reproduction immunizes some
phenotypes by keeping their density below the infection
threshold: at the equilibrium all homozygotes are
immune. For growth rates around 2 the system starts to
fluctuate erratically, although first with very small
amplitudes. The size of the fluctuations gradually
increases, but it is always smaller than in the
corresponding sexual population with three pheno-
types or in the asexual population.
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3. SEXUAL REPRODUCTION IN A
PREDATOR-PREY MODEL

The second model describes competition among two
species with a common predator. It is again set in
discrete time and based on the Ricker equation (Ricker
1954) for a population with non-overlapping genera-
tions. This equation is first extended to describe
competition between species, and then the predator is
included. The model was originally introduced by
Comins & Hassell (1976) to study stabilizing effects of
predation on a system of competing prey species. Their
equations were:

Ni=A, Nyexp[—q,(N;+oy Ny) =B, M],
Ny = A, Nyexp[— gy (Ny+ o, Ny) —f, M],
M’ = N[l —exp(—p, M)]

+ No[l—exp (=, M)].

Here N, and N, are the densities of the prey
competitors, M is the density of the predator, and the
prime indicates successive generations. The parameters
A, are the basic growth rates of the prey species, the a;
describe the competitive impacts of the species on each
other, and the ¢; measure the ability to cope with the
environment in the absence of the predator. The
predator finds, kills and converts prey &, into offspring
atarate l —exp (—pf, M), 1 = 1,2. The parameters f;
and f, are the searching efficiencies of the predator.
Hassell & Comins (1976) showed that the system of
competitors without predator tends to have complex
dynamics for high competitive impacts, o, o, > 1, and
for high growth rates A;. In Comins & Hassell (1976)
they showed further that a predator can dampen
fluctuations in prey densities and lead to simpler
dynamics. Typically, in the purely competitive system,
where M =0, one of the prey species goes extinct.
Predation can then induce a stable three-species
equilibrium if predation on the superior competitor is
sufficiently intense. We will now show that this
stabilizing effect is much stronger if the prey reproduces
sexually. To do so, we again assume the simplest
genetic model of one locus with two alleles 4 and a.
The fitness function for the genotype 44 is

(4)

Waq = Ayq€Xp [—Gaa(Nyatoiah Ny +05% Noy)
_ﬁAA M],

and similarly for the other two genotypes. Here a4%
and a%% measure the competitive impact of genotypes
Aa and aa on AA. The sexual system is now determined
by the three equations

P=plpwaat+ (1—p) wy,]/0,
N’ =aN,
M’ = p*N[1—exp (= f,4 M)] (5)
+2p(1—p) N[1—exp (=4, M)]
+(1=p)*N[1 —exp (=B M)],

where p is the frequency of allele 4, N is the total prey
density, and

= prwy 4+ 2p(1—p) wy+ (1—p)*w,,

is the mean fitness. To compare equations (5), which

2-2
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Figure 2. Regions in parameter space are shown for which coexistence in the predator—prey model is possible. The
axes in the parameter space are the predation efficiencies on the inferior (x-axis) and on the superior (y-axis) prey
phenotype (see text). The areas are labelled as follows: 1 refers to coexistence with a stable equilibrium in the sexual
system; 2 refers to coexistence with cyclic or chaotic motion in the sexual system; A and B correspond to stable
coexistence and coexistence with cyclic or chaotic motion in the asexual system. In (a) and () the asexual system is
compared with the sexual system in which the dominant allele produces the superior competitor. This is done for two
sets of parameters. In both figures the combined regions labelled either 1 or 2, corresponding to coexistence in the
sexual system, are considerably larger than the regions labelled A or B, corresponding to coexistence in the asexual
system. In (a) the region of stable coexistence is the same for both systems (area 1 A), but in () the region labelled
1 is larger than that labelled A, hence stable coexistence is more likely in the sexual system. Note the different scales
used in (a) and (4). In (¢) and (d) the asexual system is compared with the sexual system in which the dominant allele
produces the inferior competitor. The same two sets of parameters were used as in (a) and (b). Again, in both cases
the regions of parameters allowing coexistence are much larger in the sexual system. In (c), coexistence implies stable
coexistence in the sexual system (hence no area labelled 2 occurs), and in both figures the regions for stable coexistence
in the sexual system are larger. In (<), regions labelled 2 correspond to 2-cyclic motion, and the label 2’ indicates more
complex dynamics. Note again the different scales in (¢) and (d). The two sets of parameters used are (the subscript
inf refers to the inferior, the subscript sup to the superior phenotype), for (a) and (c); A, =3, A,
%y = 2, gy = 1.5, g1y = 1, ¢, = 0.8; and for (4) and (d); A, = %, Agp = 6%, o = 1.2, ooy = 0.7, ¢ipp = 1,
Jsup = 0.8. All results are approximations obtained by numerical simulations of equations (4) and (5).

= ol

describe three genotypes, with equations (4), we
assume that the three genotypes produce two pheno-
types. Then the sexual system is determined by pairs of
parameter values corresponding to the two phenotypes
and by the dominance behaviour of the alleles. In a
system in which the heterozygote produces one
phenotype and the two homozygotes produce the other
(overdominance), sufficiently large predation rates on
the homozygotes stabilize the system: whereas the
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fitness function of the homozygotes tends to 0 for high
predation rates, the heterozygotes produce new homo-
zygotes through random mating in each generation.
This stabilizes the system at a constant density and a
gene frequency of 3, guaranteeing polymorphism.
Obviously, such a mechanism cannot work in the
asexual system.

More interesting is the dominant system, where the
heterozygote produces the same phenotype as one of
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the homozygotes. To compare the sexual with the
asexual system, we chose two sets of parameters for the
prey phenotypes which imply competitive exclusion in
both systems in the absence of the predator. In the first
set of parameters, exclusion is caused by high com-
petitive impacts «,, in the second by high growth rates
A;. Figure 2 shows the combination of searching
efficiencies f; for which predation induced coexist-
ence. We considered two kinds of coexistence: stable
equilibrium, and cyclic or chaotic motion. For both
sets of parameters, we considered a sexual system in
which the dominant allele produces the superior
competitor (figure 24,b) and one in which it produces
the inferior competitor (figure 2¢,d). In general, the
parameter regions allowing coexistence are much
larger in the sexual than in the asexual system. When
the dominant allele produces the superior competitor
(figure 2a,b), coexistence with complex dynamics is
much more likely for the sexual than for the asexual
system, whereas the region allowing stable coexistence
is larger for sexuals in figure 2 4, but almost the same for
asexuals and sexuals in figure 24. When the dominant
allele produces the inferior competitor (figure 2¢,d),
the regions for both types of coexistence are larger for
the sexual than for the asexual system. When com-
petition is intense (figure 2¢), coexistence implies
stability for the sexuals, but not for the asexuals.
Although this is not the case when growth rates are
high (figure 24), the dynamics of the sexual system, in
form of a 2-cycle, are simpler than that of the asexual
system for a wide range of parameters.

Itis clear from these results that sexual reproduction
can fundamentally alter the dynamics of the predator—
prey system. It can be a strong stabilizing force as well
as an agent maintaining coexistence while the system
exhibits complex dynamics. Of course, the two sets of
parameters are just two cases in an infinite variety, but
numerous numerical simulations showed that these
cases are typical. The conclusions hold in general: the
sexual system tends to be more polymorphic and to
have simpler dynamics than the asexual system.

4. DISCUSSION

In this note we have shown that sexual reproduction
can stabilize population dynamics in two ways: (i) sex
can increase the parameter space that leads to the
coexistence of different genotypes; and (ii) sex gen-
erally decreases fluctuations in the density of individual
genotypes and of the population as a whole. We have
used two models to illustrate this phenomenon. The
first model describes a host population regulated by a
pathogen. It was introduced by May & Anderson
(1983) and analysed by May (1985). May & Anderson
(1983) have already studied the influence of sex in this
model, but only in the context of competition with an
asexual population. Moreover, they only considered
sexual systems with two host phenotypes which exhibit
the same population dynamic behaviour as asexual
systems. We have shown that this changes quite
radically when there are three or more genotypes.
Whereas the asexual system still exhibits chaos for all
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host growth rates, low growth rates lead to a stable 2-
cycle in a sexual population with three genotypes and
to a stable equilibrium in a sexual population with six
genotypes (figure 1). These results also suggest that the
stabilizing effect of sex is enhanced when there is
greater genetic and phenotypic variability. The second
model was introduced by Comins & Hassell (1976) and
describes the interaction of a predator with two prey
phenotypes. Introducing sexual reproduction in the
prey enlarges the regions in parameter space for which
the system has a stable equilibrium with the predator
and both prey present. Moreover, the regions for which
more complicated coexistence is possible, ranging from
cycles to chaotic motion, is also greatly enlarged (figure
2). The intuitive explanation for the stabilizing effect
of sex is that sexual reproduction evens out the
fluctuations of the phenotypes. This cannot only lead
to a stable equilibrium or otherwise regular motion
when the asexual system exhibits chaos, but it also
decreases the fluctuations when both the sexual and
the asexual system exhibit coexistence with complex
dynamics. This is illustrated in figure 3, which shows
time series of the sexual and asexual systems in the
predator—prey model. For the chosen parameter
values, both systems exhibit chaotic motion, despite the
apparent patterns. It is obvious, however, that the
fluctuations of the sexual system are much smaller. A
similar observation holds for the host—pathogen system
(figure 1).

Following Thomas et al. (1980) and Berryman &
Millstein (1989), this observation could be used to
explain an evolutionary advantage of sex with group
selection arguments: systems with smaller fluctuations
are less threatened by extinction due to chance events.
However, because a smaller variance in fitness implies
a higher geometric mean fitness (Gillespie 1977),
decreased fluctuations can in principle lead to an
evolutionary advantage of sexual reproduction based
on individual selection. This fits into the line of
arguments used by Hamilton (1980, 1982) to show the
advantage of sex in host—parasite coevolution. As an
example, consider again the host-parasite model
(equation (1)). May & Anderson (1983) showed that
there is no advantage of sex in this model when there
are two phenotypes. This is because sex does not
change the dynamics as compared to an asexual system
with two phenotypes. However, with three or more
phenotypes the dynamics of the sexual and asexual
populations differ as described above, and it can be
shown that this implies an advantage of sex under
certain conditions. For example, with the same
parameter values as were used for figures 8 and 9 in
May & Anderson (1983) to show that asexuals
outcompete a sexual population with two phenotypes,
the sexual population with three phenotypes out-
competes the corresponding asexual population. A
similar remark holds for the sexual population with six
phenotypes. Most often, an evolutionary advantage of
sex is assumed to be due to recombination. In contrast,
in our situation the advantage of sex is due to
segregation, as we consider only one locus. That
segregation without recombination can be sufficient for
sex to be advantageous has been noted by Kirkpatrick
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Figure 3. Time series for (@) the asexual and (b) the sexual

predator—prey systems corresponding to figure 24 with
parameters f,,, = 0.4 and S, = 4.65. The total density of
the prey population is shown in successive generations.
Despite the apparent patterns, both systems exhibit chaotic
motion, as can be seen by computing dominant Liapunov
exponents. (Liapunov exponents can be used to detect chaos
(Schuster 1984). If they are positive, the system exhibits
sensitive dependence on initial conditions, a hallmark of
chaos.) It is clear that the size of the density fluctuations is
smaller in the sexual system.

& Jenkins (1989) in a different context. We remark,
however, that results similar to the ones reported here
can be obtained with a haploid 2-locus model, where
the advantage of sex is due to recombination.

In conclusion, we have shown that the intuitive idea
of sexual reproduction decreasing fluctuations and
preventing phenotypes from going extinct is correct in
two models from different areas of population biology.
Together with other work (Koella 1988; M. Doebeli,
unpublished results), the study suggests that the
stabilizing effect of sex on population dynamics could
be a general phenomenon. In view of this idea, it is
remarkable that the one clearest example of chaotic
dynamics in nature, the dynamics of measles (Sugihara
& May 1990), occurs in an asexual system.

We thank Steve Stearns for inspiring this work, and Isabelle
Olivieri and Yannis Michalakis for comments on earlier
drafts of the manuscript. M.D. was supported by the
Janggen-Pohn Foundation, Switzerland.
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