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Abstract.—We study the evolution of dispersal rates in a two patch metapopulation model. The local dynamics in
each patch are given by difference equations, which, together with the rate of dispersal between the patches, determine
the ecological dynamics of the metapopulation. We assume that phenotypes are given by their dispersal rate. The
evolutionary dynamics in phenotype space are determined by invasion exponents, which describe whether a mutant
can invade a given resident population. If the resident metapopulation is at a stable equilibrium, then selection on
dispersal rates is neutral if the population sizes in the two patches are the same, while selection drives dispersal rates
to zero if the local abundances are different. With non-equilibrium metapopulation dynamics, non-zero dispersal rates
can be maintained by selection. In this case, and if the patches are ecologically identical, dispersal rates always evolve
to values which induce synchronized metapopulation dynamics. If the patches are ecologically different, evolutionary
branching into two coexisting dispersal phenotypes can be observed. Such branching can happen repeatedly, leading
to polymorphisms with more than two phenotypes. If there is a cost to dispersal, evolutionary cycling in phenotype
space can occur due to the dependence of selection pressures on the ecological attractor of the resident population,
or because phenotypic branching alternates with the extinction of one of the branches. Our results extend those of
Holt and McPeek (1996), and suggest that phenotypic branching is an important evolutionary process. This process
may be relevant for sympatric speciation.
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Traditional evolutionary theory is an equilibrium theory.
Optimality models as well as game theoretic evolutionary
models involve the search for phenotypes which cannot be
replaced by other phenotypes and hence represent an evo-
lutionary equilibrium. Despite the success of such models
(Maynard Smith 1982; Stearns 1992; Roff 1992), just as in
ecological theory there is a need to extend evolutionary the-
ory beyond the equilibrium concept. For example, evolu-
tionary stable strategies are always equilibria for the corre-
sponding evolutionary dynamics, but in many cases these
equilibria may be unstable, so that populations that are close
to an evolutionary stable strategy evolve away from it instead
of towards it (Cressman 1992). A typical situation where
equilibrium theory may fail to capture the essence of an
evolutionary process occurs when there is an interaction be-
tween ecological and evolutionary dynamics. Often a trait
whose evolution is to be studied affects the ecological dy-
namics of a population, and the population dynamics in turn
determine the selection pressures on the trait. This can lead
to eco-evolutionary feedback mechanisms which result in
non-equilibrium evolutionary dynamics.

Here we provide explicit examples for some of the basic
features of non-equilibrium evolutionary dynamics. These
examples involve the evolution of dispersal rates in meta-
population models and include phenomena such as evolu-
tionary cycling in phenotype space and evolutionary branch-
ing, in which a phenotypic lineage becomes polymorphic and
splits into two coexisting phenotypic branches. Our work is
an extension of the pioneering work by McPeek and Holt
(1992) and Holt and McPeek (1996), who studied the evo-
lution of dispersal rates in a two patch metapopulation. Holt
and McPeek (1996) argued that if the patches have different

carrying capacities and if the local dynamics are chaotic, then
there can be selection for high dispersal rates. In addition,
they showed that different dispersal rate phenotypes could
coexist. We extend these results and put them into the frame-
work of invasion exponents (Metz et al. 1992; Rand et al.
1994) and adaptive dynamics (Metz et al. 1996, Geritz et al.
1997).

An invasion exponent describes in very general terms the
invasion success of a mutant phenotype whose environment
is determined on the one hand by the fixed biotic and abiotic
constraints of the problem, which are the same for all phe-
notypes, and on the other hand by certain aspects of the
resident population, e.g., its phenotypic composition or its
population dynamics. Technically, the invasion exponent is
the logarithm of the long-term growth rate of a mutant in an
environment given by the resident population, and a mutant
can invade if and only if its invasion exponent is larger than
zero. The invasion exponent is the main tool in the theory
of adaptive dynamics proposed by Hans Metz and his col-
leagues (Metz et al. 1996; Geritz et al. 1997). These authors
attempt to develop a general theory for evolutionary dynam-
ics in multidimensional phenotype spaces, much like the bi-
furcation theory for “‘ordinary”’ dynamical systems. We view
our results as a case study for this theory of adaptive dy-
namics.

After introducing the model and the numerical methods in
the next section, we begin the results section by considering
a metapopulation consisting of two identical patches. In this
case, non-zero dispersal rates evolve if the metapopulation
exhibits non-equilibrium ecological dynamics. Depending on
the dispersal rate, the metapopulation has qualitatively dif-
ferent population dynamic attractors, and the direction of
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selection can depend on the attractor on which the resident
is moving. This can lead to evolutionary cycling of dispersal
rates. In contrast to the equal patch case where it cannot be
observed, phenotypic branching is a likely outcome of the
evolutionary dynamics when the patches are ecologically dif-
ferent. Branching can occur when the system exhibits non-
equilibrium (e.g., cyclic) population dynamics, and repeated
branching is possible. In addition, if there is a cost to dis-
persal, evolutionary branching can alternate with the extinc-
tion of one of the branches, which again results in cyclic
evolutionary dynamics in phenotype space. Finally, in the
discussion we point out some differences between the results
of Holt and McPeek (1996) and our results, and we discuss
the potential significance of evolutionary branching for sym-
patric speciation.

MODEL AND NUMERICAL METHODS
Our metapopulation model is based on difference equations
Nioy = Nef(N), ey

where N, is the population size at time ¢, and f(N) is the
density dependent fitness function, i.e., the reproductive out-
put per individual. Here we work with the fitness function
of Maynard Smith and Slatkin (1973):

A

T = T avy

@)
This model is more suitable for ecological and evolutionary
problems than other equations such as the Ricker equation
(Ricker 1954) or Hassell’s (1975) equation, because the func-
tion given by (2) has an inflection point, in contrast to the
corresponding functions in Ricker’s or Hassell’s model (see
also Doebeli 1995; Blarer and Doebeli 1996). However, the
results reported here do not depend crucially on the choice
of the basic difference equation, and similar results can be
obtained with other models, e.g., those in Bellows (1981).
In eq. (2), \ is the intrinsic growth rate of the population,
i.e., the number of offspring per individual when there are
no density-dependent effects of competition. The parameter
b reflects the type and strength of the competition that leads
to density dependence, and the parameter a scales the car-
rying capacity of the population (Bellows 1981). The car-
rying capacity N* is defined by f(N*) = 1, and hence is an
equilibrium for the dynamic process described by (1). As is
well known, the stability of this equilibrium is determined
by the slope ¢ of N-f(N) at N*. Clearly,
N* _ ()\ — l)l/b,

a

3

and

A1

c=1-b N “
If |c| < 1, N* is locally stable, and as |c| increases above 1,
the system exhibits the period-doubling route to chaos (May

and Oster 1976).
We extend model (1) to a two patch model by assuming
that in each patch and in each generation, reproductive dy-
namics given by (1) are followed by dispersal to the other
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patch. We denote the population size at time ¢ in patch 1 by
N,, and that in patch 2 by M,. Then after reproduction, but
before dispersal, the population sizes are

Nt = N, f(N,) 5)
Mt = Mt'g(Mt)7

where f and g are the fitness functions in the two patches.
They are both of the general form (2), but the parameter
values may differ in the two patches, in which case the patch-
es are ecologically different. After reproduction, a fraction d
of each local population moves to the other patch, where 0
= d = 1. The parameter d can be interpreted as the probability
that an individual born in one of the patches moves to the
other patch. After dispersal, i.e., at the start of the next gen-
eration, the population sizes in the two patches are

N, =1 —d)-N,+d-M,

= (1 — d)-N, f(N,) + d-M,-g(M,) ©6)
M, = (1 —d)M+dn,

=1 — d)-M, gM,) + d-N, fN,).

System (6) specifies the dynamics of the two patch metapopu-
lation model. In matrix form, it is written as

Net) v, @y (N 7
Mt+1 - ( ts ts ° Mt s ( )
where A(N,, M,, d) is the matrix
(1 = d) - f(N) d-g(M,)
AN, M, d) = . @8
( ) ( d- f(N,) a1 - d)~g(M,)> i

To study the evolution of dispersal, we define a dispersal
phenotype as given by a dispersal rate d. Suppose that, given
a population consisting of a resident phenotype d, a rare
mutant d™“ appears in the population. By assumption, the
mutant has the same reproductive fitness functions as the
resident. Since the mutant is rare, the local reproductive out-
put of the mutant in each patch is determined by the resident
densities. Therefore, the dynamics of the mutant vector
(N, M) are determined by the matrices A(N,, M,, d™),
i.e., given by

N’t'}kult B NTW
= AN, M,, dm- , ©
My My

where {N,, M,}7_, is the time series of the resident. It follows
(e.g., Metz et al. 1992) that the long term growth rate of the
mutant 4™ in the resident d is the 7-th root of the dominant
eigenvalue of the product of A(N,, M;, d™“*) over T time steps,
where T goes to infinity. The invasion exponent p(d, d™*) is
defined as the logarithm of this long-term growth rate:

1 T
p(d d™) = lim —In [TAaw,, m,, dm
t=1

T

, (10

where the notation |B| denotes the dominant eigenvalue of a
matrix B. The mutant 4™ can invade the resident d if and
only if

p(d, dmuty > 0. (11)
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Note that the invasion exponent depends on the ecological
time series of the resident. It is possible that for a given
dispersal rate d, there are different population dynamic at-
tractors of system (6) (Hastings 1993), leading to different
resident time series. Thus, whether an invasion exponent is
greater than zero may depend on the population dynamic
attractor of the resident. This will be important later on.

Invasion exponents are the central object of study in the
theory of adaptive dynamics proposed by Hans Metz and his
collaborators (Metz et al. 1996; Geritz et al. 1997). Here we
will use invasion exponents to construct invasion diagrams,
in which different regions of a plane with the resident phe-
notypes as x-axis and the mutant phenotypes as y-axis are
distinguished according to the sign of the invasion exponent
p(d, d™) as a function of the coordinates (d, d™) in the
resident-mutant plane. Such diagrams yield a qualitative rep-
resentation of the evolutionary process.

Unfortunately, it is often impossible to calculate the in-
vasion exponent (10) analytically, because the time series of
the resident may be too complicated. To obtain invasion di-
agrams, we therefore use a numerical procedure that consists
of simulating a four-dimensional system comprising the res-
ident and the mutant densities in both patches. For this we
assume that the fitness of both the resident and the mutant
depends on the total density in a patch, i.e., on the sum of
the densities of the resident and the mutant in that patch.
Thus the resident dynamics become

Ny = (1 = d)-Ny fN, + N7y
+ d-M,g(M, + M)

(12)
My =0 —d)-M,gM, + M)
+ d-N;  f(N, + Ny,
and the mutant dynamics are
Nt = (1 — dmay. Nt f(N, + Ny
+ dm. Mt g (M, + M) (13)

i = (1 = )My g (M, + M)
+ dmu. Nt f(N, + Ny,

To see whether invasion of a mutant is possible, one runs
(12) for a number of iterations with N = Q and M = 0
to remove transient effects, then introduces a small amount
of mutants at a certain time T and iterates eqs. (12) and (13)
for a number of further iterations. Then, at some time T +
Ty, the frequency of the mutant over the next few generations
is recorded. If the average frequency over these generations
is bigger than a certain threshold, then we set p(d, d™“) >
0. This procedure was used to produce the invasion diagrams
appearing later in this paper. For all diagrams, the transient
time T after which the mutant is initialized was set to 1000,
the invasion time 7', over which the fate of the mutant was
decided was set to 10,000, the trial time over which the
frequency of the mutant was recorded was set to 200, and
the invasion threshold was set to 0.001.

To determine long-term evolutionary dynamics of dispersal
rates, we used a second numerical procedure, in which the
full dynamics for each of a number of phenotypes was cal-
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culated. For this an array of phenotypes was kept, and the
dynamics of each phenotype was described by two equations
for its local density in each patch. These equations are de-
termined by the dispersal rate of the phenotype and by the
fitness functions, which were the same for all phenotypes in
one patch. Again it was assumed that the fitness functions
depended on the total density of the population in a patch.
If there are r phenotypes in the populatlon this leads to the
system of equations for i = 1, , T

Ni, = (1 — d)-Ni- (2 ) + di-Mi (Z Mf;>
=1 (14)

Miq =1 - d")-M‘}'g<E1 Mf}) + di'N’?'f<.21 Nf;>,
J= J=

where a superscript i indicates that the corresponding quantity
is phenotype i specific. System (14) was iterated starting out
with a single phenotype (i.e., r = 1). At the start of each
generation, a new mutant phenotype appeared with proba-
bility equal to the mutation rate. If a new phenotype appeared,
it was initialized at low densities in both patches, and the
dimensionality of system (14) was increased by two (i.e., r
was increased by one) for the ensuing iterations. At regular
time intervals phenotypes that fell below a certain threshold
density were considered extinct and removed from the pop-
ulation. By keeping track of the phenotypes that are present
in the population, one can thus numerically follow the evo-
Iutionary dynamics of the dispersal rate. We always used a
mutation rate of 0.005. If a mutation occurred, it was assumed
that the new phenotype had mutated from one of the phe-
notypes already present in the population, which was selected
with a probability that represented its frequency in the pop-
ulation (i.e., phenotype i was chosen as giving rise to the
mutation with probability (NI + M{)/2/_; (N} + MJ)), and
the mutant was then drawn from a Gaussian distribution with
mean equal to the dispersal rate of the chosen resident phe-
notype and with standard deviation equal to 0.02. (If nec-
essary, the corresponding random procedure was repeated
until the dispersal rate of the mutant was in the feasible
interval [0, 1].) While the results presented in the next section
depend quantitatively on the numerical values for the mu-
tation rate and the mutational variance, extensive numerical
experiments suggest that the qualitative nature of the results
is independent of these quantities.

RESULTS
Equal Patches

We first assume that the patches are ecologically identical,
i.e., that the fitness functions in the two patches are the same.
Suppose that the local dynamics have a stable equilibrium.
Then the coupled system (6) will also be at an equilibrium
with the equilibrium population size in both patches being
equal to N*, equation (3) (Gyllenberg et al. 1993; Lloyd
1995). In particular, at equilibrium the fitness is the same in
both patches (and equal to one). It is intuitively clear that in
this situation there is no selection pressure on the dispersal
rate. A mutant cannot gain by moving either less or more of
its offspring between the patches, because the fitness, as de-
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termined by the resident, is the same in both. Thus, dispersal
is selectively neutral, and all invasion exponents are zero.

This simple case reflects a general fact: selection on dis-
persal rates is neutral whenever the resident dispersal rates
are such that they lead to population dynamics such that at
each time step the fitness is the same in both patches. In case
the patches are equal, fitness in the two patches is the same
if and only if the local populations are synchronized, i.e., if
N, = M,. Such synchronized dynamics play a central role in
the equal patch case: they determine the endpoint of the evo-
lutionary dynamics of dispersal, as we shall see in a moment.

As the equilibrium of the local dynamics becomes unstable,
attractors with non-synchronized dynamics start to appear in
system (6) for very low as well as for very high dispersal
rates d, while a range of intermediate dispersal rates tend to
yield synchronized metapopulation dynamics (Hastings
1993; Gyllenberg et al. 1993, Lloyd 1995). Our extensive
numerical work revealed two very clear trends: (1) if the
resident dynamics are unsynchronized and the dispersal rate
is low, then only mutants with higher dispersal rates than the
resident can invade, (2) conversely, if the resident dynamics
are unsynchronized and the dispersal rate is high, then only
mutants with lower dispersal rates than the resident can in-
vade. Both these trends persist until dispersal rates reach the
intermediate range causing synchronized dynamics, where
evolution of dispersal comes to a halt. These phenomena can
occur with any type of non-equilibrium metapopulation dy-
namics, be they periodic or chaotic. They are comparable to
results of McPeek and Holt (1992), who observed the evo-
lution of intermediate dispersal rates when temporal fluctu-
ations in fitness were driven extrinsically by parameter vari-
ation in metapopulations with two identical patches.

To be more clear about what we mean by unsynchronized
dynamics, we discuss two typical cases. The first is a stable
source-sink equilibrium that occurs for high dispersal rates
despite possibly very complicated local dynamics (Doebeli
1995). In this equilibrium, one of the patches (the sink) has
a very high population density, that is, fitness is very low in
this patch, while the other patch (the source) is almost empty
at the start of each generation. After reproducing, the situation
is reversed due to the different fitness values in the two patch-
es. But high dispersal then brings the system back to the
original state at the start of the next generation. Doebeli
(1995) proved that such source-sink equilibria are locally
stable for a range of (high) dispersal rates. In a source-sink
equilibrium, there is thus spatial heterogeneity in population
abundance, but no temporal heterogeneity between genera-
tions. In such a situation, it can be shown, following the
arguments in Hastings (1983) and Holt (1985), that a mutant
can invade a resident if and only if the dispersal rate of the
mutant is lower than that of the resident. Therefore, starting
with dispersal rates leading to source-sink equilibria, evo-
lution decreases dispersal. Then, for lower dispersal rates,
synchronized attractors for the metapopulation dynamics start
to appear and coexist with the source-sink attractor. As dis-
persal rates decrease further, the basin of attraction of the
synchronized attractor increases, while that of the source-
sink equilibrium decreases, until this equilibrium looses sta-
bility for low enough dispersal rates, and only the synchro-
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Fic. 1. Invasion diagram in the equal patch case. Low resident

dispersal rates can only be invaded by higher mutants, and the
opposite holds for very high resident dispersal. In the neutral region
between circa 0.3 and 0.7 all invasion exponents are zero. The
scatter of points at the borders of the neutral region indicates de-
pendence of the invasion exponent on the population dynamic at-
tractor of the resident. Here the invasion exponent is only > 0 if
the random initial conditions used to initialize the resident lead to
the asynchronous resident attractor. On the synchronous attractor
invasion exponents are zero. The parameter values in the fitness
function (2) were N = 4, a = 0.1, and b = 6.67.

nized attractor is left, at which point selection on dispersal
becomes neutral.

A similar but opposite process can happen for residents
with low dispersal rates. With non-equilibrium local dynam-
ics, such dispersal rates can lead to out-of-phase 2-cycles, in
which the total population size remains constant, but the local
populations alternate asynchronously between a high and a
low density (Hastings 1993, Lloyd 1995). We show in the
Appendix that such metapopulation dynamics induce selec-
tion for increased dispersal rates. Higher dispersal rates in
turn lead to the existence of synchronized attractors (Gyl-
lenberg et al. 1993), whose basins of attraction increase with
increasing dispersal rates, whereas the basin of attraction of
the out-of-phase 2-cycle decreases. Therefore, dispersal rates
increase until again only the synchronized attractor is left,
which is when evolution stops.

These phenomena are illustrated by the invasion diagram
in Figure 1. For a set of equally spaced resident dispersal
rates on the x-axis, the invasion exponent of mutant dispersal
rates was calculated as described in section 2. If a mutant
d™ could invade a resident d, the pair (d, d™*) was marked
with a dot, otherwise this coordinate was left blank. Clearly,
for very low resident dispersal rates only mutants with higher
dispersal rates can invade, while the oppcsite is true for very
high resident dispersal. For these dispersal rates the residents
move on unsynchronized attractors. As resident dispersal
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rates increase from low values respectively decrease from
high values, these unsynchronized attractors coexist with syn-
chronized attractors, and the basin of attraction of the syn-
chronized attractor gets larger. Therefore, the chance that the
random initial conditions used to calculate the time series of
the resident and the invasion exponent are attracted by the
synchronized attractor increases, so that the likelihood that
an invasion exponent is greater than zero decreases. This can
be seen by the less dense distribution of the dots marking
positive invasion exponents in the regions of resident dis-
persal between circa 0.2 and 0.3 and between circa 0.7 and
-0.8. Finally, for intermediate resident dispersal rates between
circa 0.3 and 0.7, only the synchronized attractor is present,
hence all invasion exponents are 0. The invasion diagram
reflects that whether there is selection on dispersal may de-
pend on the population dynamic attractor, and that evolution
tends to move dispersal rates away from the extreme values
0 and 1 to the edges of an intermediate range of dispersal
rates in which dispersal only evolves by drift.

To further illustrate the interaction between ecological and
evolutionary dynamics, we incorporate a cost to dispersal in
the metapopulation model by replacing system (6) with

Nyi=0A —d)N-f(N) +d-s-M,-gM,)
M, =

(15)
(1 —d)yM,-gM,) + d-s-N, f(N,).

Here s is the chance of a dispersing individual to survive the
dispersal phase, which we assume to be the same for all
phenotypes.

With a cost of dispersal, the region of selectively neutral
dispersal rates in Figure 1 disappears. The corresponding
invasion diagram is shown in Figure 2, in which everything
is the same as in Figure 1, except that s = 0.8 in (15). Not
only high resident dispersal rates, but also all resident dis-
persal rates that previously belonged to the neutral region
can now be invaded by lower dispersal mutants. For low
resident dispersal rates the selection for higher dispersal rates
seen in Figure 1 is now counteracted by the cost of dispersal.
Moreover, the relative strength of these opposing forces de-
pends on the population dynamic attractor: if the resident is
on a synchronized attractor, only the trend to decrease dis-
persal because of its cost is present. However, if the resident
is on an unsynchronized attractor, selection for lower dis-
persal due to the cost is counteracted by the selection for
higher dispersal due to unsynchronized dynamics (Appen-
dix). For low resident dispersal rates, the latter force is stron-
ger than the former, and higher dispersal mutants can invade.

«—

Fic. 2. Effects of a cost to dispersal. Figure 2a is the same as
Figure 1, except that s = 0.8 in (15). The neutral region disappears.
The scatter of points between resident dispersal rates of circa 0.25
and 0.35 indicates dependence of invasion success on the resident
attractor. This dependence leads to the evolutionary cycling shown
in Figure 2b (see text). Here, at intervals of 25 time steps all dis-
persal phenotypes are shown whose frequency in the population is
greater than five percent. In Figure 2c, every 25 time steps the
difference between the fitness values in the two patches of the
metapopulation is plotted. Synchronized dynamics correspond to
zero difference and match the decreasing phases of the cycles in
2b.
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This ecological dependence of the direction of selection is
seen in the invasion diagram in Figure 2a as a region of
resident dispersal rates between circa 0.25 and 0.35 which
can be invaded by both lower and higher mutant dispersal
rates, depending on which of the two coexisting population
dynamic attractors the resident is moving.

The dependence of the selection pressure on population
dynamics results in cyclic evolutionary dynamics of the dis-
persal rate, which is shown in Figure 2b. Here the evolu-
tionary dynamics were started from a low dispersal rate cor-
responding to an unsynchronized attractor. Despite the cost,
dispersal increases until it reaches values which induce syn-
chronous dynamics. As soon as this happens, only the se-
lective force due to the cost of dispersal is present, and dis-
persal starts to decrease. The decrease persists as long as the
population remains on the synchronized attractor. Eventually,
when dispersal rates are low enough, the system moves back
to an attractor with unsynchronized dynamics, on which se-
lection for higher dispersal kicks in again. The correspon-
dence between the decreasing and the increasing parts of the
resulting evolutionary cycle with synchronized and unsyn-
chronized metapopulation dynamics is illustrated in Figure
2c, which shows the difference between the fitness values in
the two patches as a function of time. Fitness differences of
zero indicate synchronized dynamics, and these periods
match the decreasing part of the cycles in Figure 2b, while
the periods of unsynchronized dynamics with non-zero fitness
differences match the increasing part of the cycles. Thus, a
cost to dispersal can cause evolutionary cycling due to the
dependence of the direction of selection on population dy-
namic attractors.

Unequal Patches

In this section we assume that the two patches in the me-
tapopulation are ecologically different, i.e., that the fitness
functions f and g in (6) are not the same. Up to now, the
ecological dynamics of such systems have not been studied
extensively, and such studies promise to be difficult. As an
example of the dynamic complications that can arise, we note
that with unequal patches it can happen that both local dy-
namics have a stable equilibrium when alone, but that the
dynamics of the coupled metapopulation are chaotic (M. Doe-
beli, pers. obs.)! This is in stark contrast to the equal patch
case, where local stable equilibrium dynamics always induce
a stable equilibrium for the whole metapopulation (Rohani
et al. 1996). However, here we simply want to present a few
interesting evolutionary phenomena, without going into
much population dynamic detail.

Assume first that the resident is at a stable equilibrium
with constant local population sizes. Since the patches are
unequal, the local equilibrium sizes are different, and hence
there is spatial but no temporal heterogeneity in population
abundance. As for the source-sink equilibrium in the equal
patch case, it then follows that selection favors smaller dis-
persal rates. As a consequence, if successive replacements of
residents by mutants with lower dispersal always lead to sta-
ble equilibrium dynamics, then the dispersal rate will evolve
to zero. Thus, instead of being neutral over the whole range
of dispersal rates as in the equal patch case, dispersal rates
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FiG. 3. Evolutionary branching of dispersal rates. Phenotypes with

a frequency greater than five percent are plotted at intervals of 60
time steps. Branching occurs after circa 20,000 generations. At the
evolutionary endpoint there are just two phenotypes with a fre-
quency greater than five percent in the population. Their frequencies
fluctuate, but are on average approximately equal. The parameter
in the fitness functions in the two patches were: a = 0.05, A = 10,
and b = 4.44 in patch 1; a = 0.1, A = 10, and b = 4.44 in patch
2. Thus patch 1 had twice the carrying capacity of patch 2.

evolve to zero in the unequal patch case with equilibrium
dynamics. (Note that no explicit cost to dispersal is assumed.)

This has also been noted by Holt and McPeek (1996), who
argued that the same is true as long as the dynamics are not
chaotic. They used the Ricker fitness function f(N) =
Aexp[—aN] for their basic model. In this model the com-
plexity is ¢ = 1 — In \, and the equilibrium density is N*
= In Ma. Holt and McPeek (1996) considered patches that
are different in their carrying capacity N*, but not in their
complexity, i.e., they assumed that the \’s are the same in
the two patches, but that the a’s are different. In our model,
this would correspond to assuming equal \’s and b’s, but
unequal a’s, cf. equations (3) and (4). If this is done, very
similar results to those of Holt and McPeek (1996) are ob-
tained: For complexities |c| that do not lie in the chaotic
region dispersal rates evolve to zero, and as complexities
reach the chaotic region, non-zero dispersal rates can be
maintained.

In addition, if |c| is large enough, different dispersal phe-
notypes can coexist. Evolutionary dynamics resulting in such
a polymorphism are shown in Figure 3. In this example,
starting out from a very low dispersal rate of 0.005, dispersal
first evolves to a value of circa 0.15, where it splits into two
branches, one that evolves to zero and another that evolves
to circa 0.3. Similar polymorphisms have been observed by
McPeek and Holt (1992) in metapopulations with unequal
patches in which fitness fluctuations were driven extrinsically
by stochastic parameter variation. The intrinsic fluctuations
in population dynamics during the evolutionary process
shown in Figure 3 are always chaotic, as Holt and McPeek
(1996) claimed to be necessary for polymorphisms in the
deterministic case.

We extend the results of Holt and McPeek (1996) by as-
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suming that the patches differ not only in their carrying ca-
pacity, but also in their intrinsic growth rates. This can be
achieved by assuming that the a’s and the b’s are the same
in the two patches, but that the \’s are different. Under these
conditions phenotypic branching leading to polymorphisms
can be observed even if the local and global dynamics are
not chaotic. Moreover, there can be repeated branching,
which leads to three instead of just two coexisting phenotypic
branches. An example is shown in Figure 4a. Starting out
from very low dispersal rates, the first branching occurs at
a dispersal rate slightly lower than 0.2, and the upper branch
then splits again at a dispersal rate of circa 0.8. The popu-
lation dynamics are periodic during most of this evolutionary
process, as is illustrated in Figure 4b. Nevertheless, the eco-
logical dynamics change qualitatively and become more com-
plicated as a consequence of the evolutionary dynamics of
dispersal.

Branching like that shown in Figures 3 and 4a is reflected
in invasion diagrams. The invasion diagram corresponding
to Figure 4a is shown in Figure 4c, in which the resident-
mutant pairs (d, d™) with p(d, d™*) > 0 are again marked
by a dot, while those with p(d, d™*) = 0 are left blank. The
boundary of the blank region consists of the ““O-isoclines™
of the invasion exponent, i.e., of those points (d, d™*) with
p(d, d™* = 0. This boundary has two parts, one being the
diagonal (since p(d, d) = O for all d by definition), the other
being a curve that intersects the diagonal at (d, d™#") ~ (0.2,
0.2). It is no coincidence that 0.2 is close to the first branching
point in Figure 4a! The technical reason for branching can
be best appreciated by considering a slightly more idealized
version of the invasion diagram 4c, which is shown in Figure
5. Here the 0-isoclines of p(d, d™*) consist of two straight
lines (one again being the diagonal), which separate regions
of positive and negative invasion exponents, and which in-
tersect such that the angle they form in the positive regions
is > 90°. This means that the resident value corresponding
to the intersection point can be invaded by all mutant phe-
notypes.

Given such an invasion diagram, and assuming that in-
vasion of a mutant implies extinction of the resident, the
following evolutionary scenario will occur. Starting with a
low dispersal resident phenotype X, only mutants with higher

—

20,000, the upper branch splits again at circa generation 120,000.
At the evolutionary endpoint, there are three strains of dispersal
rates present in the population. Again, their frequencies fluctuate,
but are on average approximately equal. Figure 4b shows the me-
tapopulation dynamics with the same time resolution. In the be-
ginning the metapopulation is on a 2-cycle. Only one point of the
cycle can be seen, because population size was plotted only every
seventieth generation. Eventually, the 2-cycle changes into a 4-cycle
(of which only two points can be seen), which, after being briefly
interrupted by a period of complex dynamics, assumes a more con-
stant form as the three dispersal branches become established. At
circa generation 235,000, the middle branch becomes polymorphic,
which induces what appear to be quasi-periodic population dynam-
ics. Figure 4c is the corresponding invasion diagram. The angles
that the + region forms with the O-isoclines of the invasion exponent
are much larger than 90 degrees (cf. Fig. 5). The parameter values
were: a = 0.1, A\ = 3, and b = 2.925 in patch 1; a = 0.1, A = 9,
and b = 2.925 in patch 2.
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FiG. 5. Schematic invasion diagram corresponding to Figure 4c.

In the regions marked by + the invasion exponent for a mutant-
resident pair is positive, and the mutant can invade the correspond-
ing resident. In regions marked by — invasion exponents are neg-
ative, indicating that invasion is impossible. On the solid lines in-
vasion exponents are zero. Starting from a low value X, dispersal
evolves to X* as indicated by the arrows. Due to the relative position
of the O-isoclines, X* can be invaded by both higher and lower
mutants (indicated by vertical arrows), which results in evolutionary
branching and polymorphic populations.

dispersal can invade. Dispersal will therefore gradually
evolve to higher values. The vertical arrows in Figure 5 in-
dicate successful invasions, and the horizontal arrows indi-
cate replacement of the resident by the invading mutants. A
similar but opposite trajectory would result when starting out
with very high dispersal residents. Clearly, in both cases the
phenotype will reach the value X*, corresponding to the in-
tersection point of the O-isoclines. However, due to the rel-
ative position of these isoclines, X* can be invaded by both
lower and higher dispersal mutants, as indicated by vertical
arrows. Therefore, after having gradually evolved to X*, the
population will split into a polymorphism with coexisting
phenotypic branches (Metz et al. 1996).

Even though the reality of the model may be more com-
plicated than the schematic description of Figure 5 (e.g., in-
vasion of a mutant may not cause immediate extinction of
the resident), this is the basic scenario leading to the branch-
ing observed in Figures 3 and 4a. The example indicates how
invasion exponents and invasion diagrams can be used to
study evolutionary processes. Note, however, that the inva-
sion diagrams used here only serve to detect whether branch-
ing occurs in a monomorphic population, but more infor-
mation would be needed to determine the evolutionary dy-
namics beyond the initial branching. For example, the second
branching event shown in Figure 4a cannot be detected by
such diagrams, because at this point the resident is already
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Fic. 6. Effects of noise. Same as Figure 4a, but with the deter-
ministic fitness values in (14) replaced by Gaussian random vari-
ables with standard deviation equal to 12 percent of the determin-
istic means. The second branching of Figure 4a is lost because of
the stochasticity.

polymorphic. See Metz et al. (1996) and Geritz et al. (1997)
for a discussion of these points, as well as for possible bi-
ological interpretations of the O-isoclines in invasion dia-
grams.

Based on our extensive numerical work we believe that
the results presented in Figures 3 and 4 are typical for the
evolution of dispersal in the unequal patch case: non-zero
dispersal rates can be maintained as soon as local and global
dynamics are not at a stable equilibrium, and evolutionary
branching into two or three branches is possible under these
conditions. (We have never observed more than three branch-
es in our simulations.) In addition, branching can also be
observed when there is noise in the system. For example, in
Figure 6 we have introduced stochasticity in the system used
for Figure 4a by assuming that the deterministic fitness values
fGr; Nj) and g(3/_; M}) in equation (14) are replaced by
normally distributed random variables with mean the deter-
ministic values and variance a certain proportion of the
means. In the presence of noise a split into two phenotypic
branches still occurs. However, if the noise level is large
enough the second branching event of Figure 4a is lost, be-
cause stochasticity ‘‘cuts the edges’ of the selection regime
producing this polymorphism.

To conclude we again assume a cost to dispersal. Apart
from generally lowering the evolutionarily stable dispersal
rates, a cost can have the effect that phenotypic branches die
out. An example is shown in Figure 7, which is the same as
Figure 3, except that the basic metapopulation model (6) was
replaced by system (15) with s = 0.8. The system ‘‘remem-
bers” the branching that would occur without a cost (Fig.
3). However, due to the cost the high branch goes extinct
some time after its appearance. When this happens, the lower
branch starts to increase again (as would be predicted by
considering the corresponding invasion diagram), until it
reaches the branching point, and the process repeats itself.
Similar to Figure 2b (but for different reasons), the result is
evolutionary cycling in phenotype space of the lower branch,
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Fig. 7. Effects of a cost to dispersal on branching. This is the
same as Figure 4a, except that s = 0.8 in system (15). Due to the
cost, the upper dispersal branch dies out about 20,000 generations
after it has appeared. This induces cyclic evolutionary dynamics of
the lower branch (see text). The time resolution for the plot was
105 time steps.

with the additional feature of the repeated temporary ap-
pearance of a high dispersal phenotype.

DiscussIioN

We studied the evolution of dispersal rates in metapopu-
lation models consisting of two patches with local dynamics
given by difference equations. The local dynamics and the
dispersal rate between the two patches determine the eco-
logical dynamics of the metapopulation. For the evolution of
dispersal rates, two basic ecological situations can be distin-
guished. If the metapopulation is at a stable equilibrium, then
selection on dispersal is either neutral, which happens if the
local populations sizes are equal, or selection leads to dis-
persal rates of zero, which occurs when the local abundances
are different at the equilibrium.

In contrast, if the metapopulation exhibits non-equilibrium
dynamics, non-zero dispersal rates can be maintained by se-
lection (Figs. 1, 3, 4), and interesting evolutionary dynamics
occur. Most notably, if the patches are ecologically different
evolutionary branching into coexisting phenotypes can occur
(Figs. 3, 4). Such branching can happen repeatedly, with three
coexisting phenotypes at the evolutionary endpoint (Fig. 4).
If the patches are ecologically identical, dispersal rates evolve
to values inducing synchronous metapopulation dynamics. In
this case, a cost to dispersal can produces non-equilibrium
evolutionary dynamics, because different dispersal rates lead
to qualitatively different population dynamic attractors in the
metapopulation, which induce opposite selection pressures
on dispersal. High dispersal rates lead to synchronized at-
tractors, on which there is selection for lower dispersal rates
if there is a cost to dispersal. In contrast, lower dispersal rates
induce out-of-phase dynamics, which select for higher dis-
persal (Appendix). This interaction between ecological and
evolutionary dynamics leads to evolutionary cycling in phe-
notype space (Fig. 2). Such cycling can also occur if a cost
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to dispersal is imposed on a system with evolutionary branch-
ing. Then, because of the cost the high dispersal branch dies
out some time after its appearance through branching, the
remaining low dispersal branch evolves back to the branching
point, and the process repeats itself, leading to adaptive cy-
cling (Fig. 7).

Our results are examples of non-equilibrium evolutionary
dynamics and fit into the theory of adaptive dynamics pro-
posed by Metz et al. (1996). Our work extends that of Holt
and McPeek (1996), who concluded that non-zero dispersal
rates can be maintained if the metapopulation dynamics are
chaotic, and that two dispersal phenotypes could coexist in
this case. Our results are different in that not only chaos, but
any type of non-equilibrium dynamics can lead to the phe-
nomena observed by Holt and McPeek (1996). The critical
requirement for selection for non-zero dispersal rates is tem-
poral as well as spatial heterogeneity in population size,
which can be achieved by non-chaotic dynamics (but not with
stable equilibrium dynamics). Also, we observed additional
features such as evolutionary cycling and the occurrence of
repeated branching with more than two coexisting pheno-
types.

We note that the evolutionary cycling described here is
different from that in Holt and McPeek (1996), in which
different coexisting dispersal phenotypes merely fluctuate in
the frequencies in which they occur in the population. These
fluctuations occur over much shorter time scales than the
evolutionary cycles in our examples (Figs. 2, 7), in which
there is repeated occurrence and subsequent extinction of new
phenotypes in the population. Nevertheless, fluctuations in
the frequencies of different phenotypes do occur. Indeed, it
may happen that a rare mutant is able to invade but subse-
quently goes extinct again, because invasion of the mutant
induces a qualitative change in the dynamics of the meta-
population such that the new dynamic regime selects against
the mutant (Doebeli 1997).

That a relatively small cost to dispersal can affect the evo-
lutionary dynamics is apparent when comparing invasion di-
agrams with and without costs (Figs. 1, 2a): even a small
cost to dispersal destroys the selectively neutral region of
dispersal rates in the equal patch case. In fact, costs can have
rather dramatic and counterintuitive effects for evolutionary
dynamics, as the following example shows. If we consider
dispersal phenotypes not as given by only one dispersal rate
d, but by two different rates d, and d, describing dispersal
from patch 1 to patch 2 and dispersal from patch 2 to patch
1 separately, we obtain a straightforward extension of the
metapopulation model (6), and of the corresponding model
with a cost to dispersal given by (15). Then the evolutionary
dynamics take place in a two-dimensional phenotype space.
In this case, it again often happens that without a cost to
dispersal, there is branching into two different phenotypes,
each given by two numbers (d;, d,). However, it can now
happen that a cost to dispersal increases the number of co-
existing branches from two to three. Figure 8 shows a system
in which a cost leads to three branches, whereas no cost would
lead to only two branches. Moreover, the three branches in
Figure 8 occur simultaneously, i.e., there is a simultaneous
split into three branches, instead of two successive splits with
two branches each as in Figure 4a. The reason why a si-
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Fi1G. 8. Evolutionary branching in 2-dimensional phenotype space.
This figure shows an example of a simultaneous split into three
branches in the system with two dispersal rates d; and d, and a cost
to dispersal that was the same for both directions of dispersal (s =
0.8). Figures 8a and 8b show the evolutionary dynamics of d; and
d, respectively, with a time resolution of 25 time steps. Triple
branching occurs around generation 10,000. The branches labeled
with the same number in the two panels constitute one phenotype.
At the evolutionary endpoint, the population consists of the dis-
persal phenotypes (1,1), (0.48,0.0), and (0.0,0.35). During the whole
evolutionary transient the metapopulation exhibits simple 2- or 4-
cyclic ecological dynamics (not shown). Without a cost, dispersal
would split into only two branches (not shown). The parameters
were a = 0.1, N = 6, and b = 2.54 in patch 1; a = 0.1, A = 18,
and b = 2.54 in patch 2.

multaneous split into three branches is possible is that we
assumed a two-dimensional phenotype space. In general, the
number of branches into which a phenotypic lineage can split
in one particular branching event is 1 + the dimension of
phenotype space (Metz et al. 1996).

The models we used are very simple, but on general the-
oretical grounds evolutionary branching can be expected to
occur in many other models as well (Metz et al. 1996, Geritz
et al. 1997). For example, branching is likely if frequency
dependence leads to changes in the distribution of a quan-
titative character such that the character mean evolves to-
wards a fitness minimum, as in the predator-prey models of
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Abrams et al. (1993), or in Lotka-Volterra competition mod-
els with quantitative characters (Doebeli 1996). Technically,
the only requirement for evolutionary branching is the ex-
istence of invasion diagrams which qualitatively look like
Figure 5. These considerations lead us to believe that branch-
ing of the type observed in the present paper is of general
evolutionary importance. Branching is a form of ‘‘phenotypic
speciation,” and it could be a fundamental mechanism un-
derlying sympatric speciation. In sexual populations, how-
ever, recombination and segregation would lead to the con-
stant production of phenotypes that are intermediate between
the branches, which would prevent speciation. To overcome
this problem, there must be evolution of assortative mating,
e.g., because intermediates have a selective disadvantage. For
example, if there is branching into one very low dispersal
rate and one very high dispersal rate, the difference in dis-
persal behavior could be reflected in morphological differ-
ences (e.g., wings) on which assortative mating could be
based. Another possibility is that the low- and high-dispersal
phenotypes evolve different reproductive timings within the
season, which would again lead to assortative mating. Several
recent empirical and theoretical studies suggest that sym-
patric speciation is more common than generally believed
(Schluter 1994; Schliewen et al. 1994; Feder 1995; Johnson
et al. 1996; Doebeli 1996; Kawecki 1996), and combining
models for evolutionary branching with population genetic
models for assortative mating promises to yield more insights
into the mechanisms and processes of sympatric speciation.
There are many other possible extensions of the simple
metapopulation models considered here. For example, one
could consider models with more than two patches, and mod-
els in which dispersal is not given by constant rates, but by
density-dependent rates. Janosi and Scheuring (1997) con-
sidered metapopulations in which dispersal occurs when the
local population density in a patch reaches a certain threshold.
In their model, more mobile phenotypes have a selective
advantage if there is temporal and spatial variation in pop-
ulation abundance. Moreover, Janosi and Scheuring (1997)
argue that the evolutionary stable dispersal strategies prevent
chaotic metapopulation dynamics, which relates to another
problem that deserves close inspection: the evolution of the
population dynamics as a consequence of the evolution of
dispersal. In our model sudden changes in the ecological
dynamics occur during the long evolutionary transients, and
the evolution of dispersal rates often leads to more compli-
cated population dynamics (Fig. 4). Thus, the ecological me-
tapopulation dynamics influence the evolutionary dynamics
of dispersal rates, and the evolutionary change in dispersal
rates feeds back to induce changes in the ecological dynam-
ics. Clearly, the work presented here is at most a preliminary
step towards understanding the details of this interaction and
its implications for ecological complexity and speciation.
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APPENDIX

Here we prove that a resident whose metapopulation dynamics
are given by an out-of-phase 2-cycle (Hastings 1993) can be invaded
by nearby mutants if and only if the mutant dispersal rate is higher
than that of the resident. An out-of-phase 2-cycle is characterized
by two densities P and Q such that the metapopulation density vec-
tor (ANl) alternates between é ) and (). Thus the time series of the
resident looks like (5) — (,5—) (5) — . ... Let d, be the dispersal
rate of the resident, and let p = f(P) and q f(Q) be the fitness values
corresponding to the densities in the two local patches. (Note that
the ensuing arguments are independent of the particular form of
the ﬁtness function in model (1)). Then the transition matrix from

@) to (D) is given by

_ (@ —=dp d.q
X ( dp (- d»q)’ (AD
and that from (§) to (§) by
— (1 - d,)q drp
Y < dg (- d,.>p>' A2

Then, since we are on a 2-cycle,
P P
=Y-X- ,
<Q> (Q)
where

pg(l = d)? + p2d} (pq + g1 = d,)d,
rx= <(Pq + pH(1 — d)d, pq(l —d,)? + 2d3)- (A3)

Let J denote the dominant eigenvalue of this matrix. Then J is the
geomemc mean fitness over two generations. Hence J = 1, since
(Q) is a stable equilibrium point for the 2-step dynamlcs given by
Y-X, so that the modulus of the other eigenvalue is smaller than 1.
To determine the selection pressure on the dispersal rate, we have
to calculate the derivative of the dominant eigenvalue J with respect
to the dispersal rate and evaluate it at the resident dispersal rate.
When doing this, we can treat the quantities p = f(P) and g = f(Q)
as fixed parameters, since the mutant is initially rare and has no
influence on the population dynamics given by the resident out-of-
phase 2-cycle. Our claim that such cycles induce selection for higher
dispersal rates follows from the next

Proposition:

aJ
—d,) >
5790 > 0,

that is, higher dispersal rates than that of the resident will lead to
a higher dominant eigenvalue of the two-step transition matrix, and
hence rare mutants with higher dispersal rates have a long-term
growth rate that is larger than 1.

Proof: Let us first consider the one step transition of the resident,
from which we will extract some useful information. This transition
is given by
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(7)-x(e)
ie.,
0= (1~-4d)pP +d.qQ
P =d,pP + (1 — d,)q0. (AS)

Adding the two equations in (A5) yields P + Q = pP + ¢gQ, and
hence
-1

p=01— - (A6)
1-p
Since P, Q > 0, this implies that not both p and q are simultaneously
< 1 or > 1. Without restriction, we assume that p < 1 and ¢ > 1.
Since p = f(P), this implies that P is above the carrying capacity
of the local populations, and similarly, Q is below the carrying
capacity. In particular, P > Q. From this we conclude from (A6)
that (¢ — 1)/(1 — p) > 1, i.e., that

ptqg—2>0. (A7)

We now derive an expression for d, as a function of p and g. Inserting
(A6) into the first equation of (A5) we obtain

-1
0= (1=~ d)p — 0+ da0

-1
=ola- d,)p‘f—_—p + d,q). (A8)

It follows that (1 — d,)p(g — 1)/(1 — p) + d,q = 1, and after some

rearranging that

__l-prg
pt+tq—2pq

Moreover, from (g — 1)(p — 1) <0 we see that pg — p — g + 1

< 0, hence that

(A9)

r

p+q—2pg>1-pq, (A10)

and since 0 = d, = 1, it follows from (A9) that the right hand side
of (A10) is = 0, and hence that

p+q— 2pqg>0. (A11)

After these preparations, we now calculate the derivative of the
dominant eigenvalue J(d). From (A3), standard procedures lead to
the two eigenvalues of Y-X as functions of the dispersal rate d being
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®2+ 4 ,

X2 =pq(l —d)? + )

* %\/(p + @)%d*[4pq(l — 2d) + (p + @)%d?].  (Al2)

Since pg(1 — d)? + (p2 + q?)d?/2 > 0, the dominant eigenvalue
J(d) is

d2

J@) = pg(1 — dy? + %q—z)

+ %\/(P + @)?d*[4pq(1 — 2d) + (p + ¢)%d?]. (Al13)
For the resident dispersal rate d, we have J(d,) = 1, and it follows
from (A13) that
Vip + ¢)2d?l4pq(1 = 2d,) + (p + g)%d?]
=2 - 2pq(1 —d)? - (p* + qHd?.
Now, taking the derivative of J(d) with respect to d yields

(A14)

aJ
5@ = ~2pa(L — d) + (> + qVd

2(p + g)%dl4pg(1 — 2d) + (p + ¢)%d?]
4V(p + q)2d?’[4pg(1 — 2d) + (p + g)%d?]
(p + 9)%d’[—8pg + 2d(p + g)*]
AV + @*dlapg(1 — 2d) + (p + 9)%d°]
Using (A9) for d,, and (A14) for the value of the square root at d,,

we get after some algebra that is most easily done using a program
for symbolic mathematics:

(A15)

2(p + g — 2pq)?
p + q — 4pq + p%q + pq?®

By (A11), the nominator of this equation is > 0. The denominator
can be written as a sum

oJ
2 = (Al6)

p+q—4pg + p*q+ pg® = (p + q — 2pq)
+pap +q—2). (AlT)

By (A11) and (A7) both summands on the right hand side of (A17)
are > 0, which completes the proof.



