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In modelling single species with discrete, non-overlapping generations, one usually assumes that the
density at time r + 1 is a function of the density at time 1: N, | = f(N,). The dynamical behaviour of
this system depends on the parameters in the function £, It commonly changes, as a parameter increases,
from a stable equilibrium through a series of bifurcations into stable cycles, to chaotic motion. It is
implicit in the assumptions of the model! that the population consists of identical individuals. In this
paper it is shown that variation within the population can lead to a different route to chaos. Invasion
of a mutant phenotype into a resident population can elicit intermittency. This kind of chaotic behaviour
consists of regular motion most of the time with short intermittent periods in which the system fluctuates

wildly.t

1. Introduction

It is an open question whether complex dynamical
behaviour is common in natural populations. It oc-
curs in many of the theoretical models that have been
studied. Depending on the choice of parameters in
these models, popuiation densities move on periodic
or quasiperiodic orbits, or their motion is chaotic.
Consider for example a single species with discrete,
non-overlapping generations. It can be modelled by
assuming that the density N,,, at tim¢ t+1is a
function of the density at time t:

Nr+i =f(Nr);

where /R, —R_ maps the set of positive real num-
bers to itself. Usually fis chosen in a “humped” form,
and such that (f{N) > N for small, positive N. These
conditions imply that the population can grow if
small, and that there is negative feedback at high
densities corresponding to density-dependent mortal-
ities. The non-trivial equilibrium densities are given
by the solutions of the equation f(N)= N, N > 0, and
usually f'is chosen in a way that there is only one such
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solution N* The most interesting feature of the
model is the dynamical behaviour of the system if the
population is perturbed away from the equilibrium
density N*. This behaviour is determined by the
derivative of f at N*, ie. by (df/dN)(N*). If
[([dffANYN*)| <1, the equilibrivm point s
stable, with perturbed densitics going back to N*
exponentially or via damped oscillations. If |(df/
dN)(N*)| > 1, the dynamics get more complicated,
ranging from periodic motion to chaos. One such
model, studied extensively by Hassell (1975) and
Hassell et al. (1976), is the following:

Nr+l=j"N:'(1+aNr)ﬁb- (D

Here 1 >1 is the fecundity of the species, and a,
beR, are parameters which influence the equi-
librium density and describe the type of competition
that leads to density-dependent mortality (for details
see Hassell, 1975). N* is given by

PRLE |

N*=
a 1

and it is easily seen that

& e
T WN=1-5,
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where b =5b(1 —4i~'*)> 0. The equilibrium N* is
stable if & < 2. If & increases above 2, the equilibrium
becomes unstable: a bifurcation occurs and a stable
two-cycle evolves, which itself becomes unstable as b
increases further, bifurcating into a stable four-cycle,
After going through a series of stable 2"-cycles as §
grows, the system finally reaches chaos, a state in
which it no longer exhibits regular behaviour. The
route to chaocs via bifurcations is common for single
species models (May & Oster, 1976).

If model (1) is written in the form

Noy=wN,) N, (2)

then w(n) = A(1 + aN)~t is the fitness function of the
population, i.e. the reproductive output per individ-
uval. It is implicitly assumed that there is no variation
in the population, because the fitness function is the
same for all individuals. In this article [ want to show
that variation can lead to a different type of chaos
than that described by May & Oster (1976). To do this
I regard the fitness function, respectively, the par-
ameters A, a and b, as properties of a particular

phenotype. One can then ask what kind of parameters
imply an evolutionary advantage. More precisely,
given a resident population consisting of only one
phenotype, one can ask when a mutant phenotype
with a different fitness function is able to invade the
resident. Metz ez al. (1992) derived a criterion for the
parameters of a mutant phenotype to allow invasion.
It is shown that for suitable choices of these par-
ameters a successful invasion can resuolt in intermit-
tent chaos. In this form of irregular motion the total
density, i.e. the sum of the densities of the resident
and of the mutant, remains close to the equilibrium
density of the resident for a long time, undergoes
fluctuations for a short, intermittent period, and then
returns to values close to the equilibrium density,
from where it starts to fluctuate again after a long
period, and so on. This type of chaos was first
described in the literature by Pomeau & Manneville
{1980). Generally it occurs as a parameter g increases
through a critical value 4,. While a4 < a, the system
returns to regular motion after small disturbances. As
a increases above a,, small disturbances result in the
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FiG. 1. The total density N is plotted against time ¢ (which is a discrete variable), N is determined iteratively by eqn (5). Invasion is
simulated by introducing a small amount of mutant individuals into the stable resident population. Fixed parameter values are 5, =5,
b, = 1'8, b, = 500, b, =21, a, = 0-003, hence N'* = 2000. The values for A; determined by b, and b, i =m, r, are A, ~ 152 and 4, ~ 60. (2)
N /N¥ = 1. Besides N also the densities ¥,, (lower graph) and N, (middle graph) are shown. The system evolves rapidly to a new equilibrium
where both densities N, and ¥, are positive, and where ¥ = N*. (b) N /N* = 1-002. Intermittency has set in. Again the densities N, and
N, are shown. As N, increases N, decreascs, while N remains constant, until N, is big enough to drive the dynamics of the system for
a short time period, after which it is back at low values. (¢) N*/N* = 1-02. Only N is shown. Qualitatively the same behaviour is seen
as in (b}, but the frequency of the outbursts is higher. (d) N*/N* = 1-09. As N* /N further increases intermittency starts to dissoive into

a completely erratic motion.

following behaviour: for most of the time the system
tracks the regular motion, except for short periods
in which it fluctuates wildly. For values of a such
that @ — a, is small the magnitude of these fluctu-
ations is approximately constant in time and indepen-
dent of 4, and the frequency of the outbursts is
approximately proportionate to (¢ — a.)~ "2 (for more
details on the intermittency route to chaos and the
conditions under which it occurs see Schuster (1984,
chapter 4).

If such behaviour exists in nature, its most obvious
biological implication is that one might fail to detect
chaotic dynamics if density data are collected over a
period of time in which the system stays close to the
equilibrium density. It might also stand as an alterna-

tive explanation for occasional population outbursts,
which are usually explained by a combination of
weather and interspecific interactions. The model
used here could also serve to describe changes in
density and gene-frequency at a locus with two alleles
in a haploid population (May, R., personal communi-
cation). In this framework it generalizes some of the
attempts to undersiand gene-for-gene host—parasite
interactions, ¢<f. May & Anderson (1983). One con-
clusion from their paper is that density- and fre-
quency-dependent selection can maintain genetic
polymorphism, and may do so in chaotic fashion. The
results here then add yet another possibility to the
range of dynamical behaviour in this context: inter-
mittency.
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2. The Invasion Scenario

Assume that one is given a resident population N,
consisting of one phenotype and described by model
(2). Its fitngss function w,(N) is given by parameters
A, a, and b,. Note that this is a special case of a
non-constant fitness function that is determined by
the environment, the relevant component of the en-
vironment being the density of the population. Sup-
pose further that there is a mutant phenotype N,, with
fitness function w, (N) given by parameters 4, «
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FiG. 2. The total density N is plotted against time . N is
determined by eqn (5). Invasion is simulated as for Fig. 1. Fixed
parameter values are N%/N* =102, b, =500, , =18, b, =21,
@, =0-003, hence N'*=2000. As in Fig. 1 b, and 6, determine
A~ 60.(a) §, = 2-73, hence 1, ~ 16. The system approaches a limit
cycle of period 2. Note that this §, value codes for a stable cycle
of much higher period if only the mutant population is present. (b)
b, = 5, hence 4, ~ 152, The same as 1{c), now for 10 000 time steps.
(c) b, = 12, hence i, ~ 1-9 x [0°. Obvious intermittency, but com-
pared to (b} the frequency of the outbursts is much lower. On the
other hand, these outbursts are less evenly distributed over time.

and b,. When both phenotypes are present, the
relevant component of the environment is the total
density N, = N,, + N,,,. Thus the time development of
the mutant phenotype is given by

Nm.l+l =wm(Nr)' Nm,:' (3)

In the invasion scenario the mutant is rare, hence
N,=N,, in (3). The mutant can invade if its fitness
function is on average >1, i.e. if

T-1 ’
lim 1 Y logw,{(N,,)>0. 4
T=x TI=O !

This is precisely the invasion criterion of Metz et al.
(1992) (see Box 2 therein).

In the sequel it is assumed that the resident popu-
lation is at a stable equilibrium N¥, i.e. it is assumed
that the corresponding value 5, =b,(1 — 4,') < 2.
Then N, ,=N}Y=(4/"—1)ja,, and inequality (4)
becomes

S a, (A1 — 1)t

lim — 1 B E— > (),

lim ngo ogl,,,[] + . 0
Since there is no time dependence, this inequality
becomes upon rearranging:

Albm— g Al
"’ > :

G a

In other words, the mutant is able to invade if its
equilibrium density is bigger than that of the resident.
Of course, this is not a condition on the dynamics of
the mutant. In the remainder of the article some of the
phenomena that occur when the parameters of the,
mutant’s fitness function code for chaos are described,
i.e. when b, =b, (1 — A7 ") is much larger than 2.
I thus analysed numerically what happens to a popu-
lation when a mutant phenotype with complex
dynamics invades a resident population that has a
stable equilibrium.

3. Results

Resuits were obtained by numerically simulating
the following equations, describing the situation out-
lined in the previous section:

Nr.t+i = j“rNr..v(l + a,(N,_, + Nm.r))_b'
Npror = QN (L + @, (N, + Ny D70 ()

Here N, and N,, are the densities of the resident and
of the mutant as before. To initialize the simulations
it is assumed that the resident is at its equilibrium N}
and then a small amount of individuals of the mutant
phenotype was introduced. Of course, the outcome of
the simulations depended on the particular choice -
of parameters. Tokeep things simple two main routes of
parameter change were followed. The first followed
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the system’s behaviour as the equilibrium density N}
of the mutant increased across a given fixed value of
N*, while the dynamics of the mutant was determined
by a fixed value of b, which was >2. The second
tracked the behaviour as the dynamics of the mutant
got more complicated, i.e. as the parameter 5,
increased, while N* /N * was set at a given value which
was slightly bigger than 1, i.e. such that invasion was
possible.

Along the first route the parameter values were
5, =5and b, = 1-8. For N* < N* the system returned
to the equilibrium state N,,=0 and N, =N}, ie.
invasion was not possible, as predicted. If N¥=NF¥,
the system evolved to a state in which the total density
was again N¥, but the densities of both types were
now positive. This can be thought of as a neutral
state. As N} increased above N*, the system exhib-
ited intermittent chaotic dynamics: for long time
periods the total density N = N, + N, was close to the
equilibrium density N*, while it fluctuated wildly for
short intermittent periods. In the period where N was
constant, the density N, of the mutant gradually built
up from low values, while N, decreased, until ¥, was
big enough so that its complex dynamics could cause
fluctuations, after which N, was back at low values
and started to grow again. Thus the irregular motion
was caused by ¥, taking on high enough values for
its dynamic to drive the system for a short period,
during which it was eventually brought back to low
values by fluctuations. Corresponding time series are
shown in Fig. 1 for different values of N*/N*  Figure
1{a) shows the approach to the equilibrium value
N}¥=2000 as N*/N¥=1. Here, as in Fig. 1(b), the
graph at the top is the total density N, while the other
ones represent the densities N, (upper) and N,, (lower)
respectively. In Fig. 1(b) N} /N¥=1-002, and inter-
mittency has set in. In Fig. 1(c) N}/N¥ = 1-02. Only
the total density is shown. Intermittency is stili pre-
sent, but the frequency of the outbursts is higher than
in Fig. 1(b). In Fig. 1(d) N*/N* = 1-09, and intermit-
tency starts to dissolve into a completely erratic
motion,

Of course, the system’s behaviour depended on
other parameters as well, in particular on the values
for 2,,and A, for which §, = 5 and b, = 1-8. There was
a threshold value for 4, below which the intermittency
ceased to exist. As A decreased through this
threshold, the system exhibited a stable limit cycle of
period 2 for a relatively large range of A -values, If 4,
decreased further, there was a small range of higher
order periodic or quasi-periodic orbits, after which 4,
and hence N} was small enough for the dynamics of
the mutant to dominate, with the system behaving
according to the value of £,,. Similarly, there was a

threshold value for A, above which intermittency
disappeared, and a similar route to chaos as for
decreasing A, was observed for increasing 4,,. The
particular parameter values used to obtain Fig. 1 are
listed in the legend.

To follow the second route to chaos NX/N* was
fixed at 1-02, and again 5, = 1-8. The critical value
when intermittency sets in was then + co: if b, was
large, the (average) frequency of the intermittent
outbursts was low; these outbursts were unevenly
distributed over time. As b,, decreased, the intermit-
tent periods occurred more frequently and more
evenly over time. Also, the regular motion present for
most of the time developed into a cycle of period 2
with increasing amplitude. Below a certain value
intermittency disappeared, and a stable limit cycle of
period 2 evolved, which was present until another
threshold was reached below which the mutant popu-
lation was able to eliminate the other type, hence the
system’s dynamics were that of the mutant given by
b,,. Figure 2(a)-(c) correspond to increasing values of
b,,. In Fig. 2(a) the approach of the totai density to
a cycle of period 2 is shown. Figure 2(b) is the same
as Fig. 1(c} for longer times. In Fig. 2{(c) the frequency
of the intermittent time periods is low, the time
intervals between them are of uneven size. Again, the
values of the other parameters influenced the dynam-
ics. The values chosen for Fig. 2 are listed in the
legend.

In general, for given values of 6, and b, the
dynamics tended to be more complex for low values
of 4,, and high values of A,. For example, high values
for %, caused a shift of the threshold b, to the right.
Also, higher values of N}/N* made the dynamics
more complex. Given a fixed value of b, the intermit-
tent behaviour was seen for b’ < b, <2, where b’ >0
depended on &,,. A rather curious observation was the
following: in all the numerical simulations with
N*/N*>1, b <2 and §,>2, the region in par-
ameter space for which there was intermittency was
surrounded by a relatively large region for which the
system had a stable limit cycle of period 2, indepen-
dent of the particular dynamical behaviour of the
mutant population that was coded for by &,,.

4. Conclusions

Introducing variation into a population modelled
by N,,,=AN,(1+aN,)"*? elicits intermittent chaos
for the total denmsity if the parameter values are
appropriately chosen. Invasion of a mutant pheno-
type with complex dynamics into a resident popu-
lation with simple dynamics can cause the total
density to remain constant over long periods of time,
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while it fluctuates for short intermittent time periods.
This type of chaos is different from that described in
May & Oster (1976). Since the condition for invasion
is a higher equilibrium density of the mutant, the
system undergoes a form of K-selection. However,
invasion does not usually lead to the extinction of the
resident population, as is often assumed when study-
ing evolutionary population dynamics (see e.g. Ferri-
ére & Clobert, 1992 or Marrow ¢t af., 1993). Rather,
in the situation considered here successful invasion
usually results in coexistence. Even if the invading
mutant has very complex dynamics when alone, the
dynamical behaviour of the coexisting phenotypes
can be regular due to simple dynamics of the resident
[see Fig. 2(a)].

In population dynamical models intermittent
phenomena have been observed by Mikhailov (1992)
and by Vandermeer (1993). Mikhailov (1992} studied
a stochastic differential equation with spatial diffusion
term. The presence of noise causes rare, spatially and
temporally confined population outbursts. These
“spikes” wander in space due to diffusion, and they
are separated by large regions with very low popu-
lation density. In this model the intermittent out-
bursts are due to stochastic effects and not to
deterministic chaos.

Vandermeer (1993) showed the existence of deter-
ministic intermittent chaos in a predator-prey model
set in continuous time. Again the intermittent popu-
lation outbursts occur on a background of very low
population densities.

In Doebeli {in press) another invasion scenario is
discussed that leads to the kind of intermittency
reported in the present paper, where the regular
motion during most of the time consists of staying
near the equilibrium density. If such dynamical be-
haviour exists in nature, one obvious implication is
the possibie failure to detect complex dynamics if

population densities are measured outside the inter-
mittent periods of fluctuations. This would lead one
o believe that the population density is at a stable
equilibrium when in fact it could start to fluctuate
unpredictedly.

I thank 8. Stearns for bringing the subject to my atten-
tion, R. May for comments on an early draft of the
manuscript and an anonymous reviewer for pointing out
the paper by Mikhailov.
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