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SUMMARY

We extend the analysis of a previously published type of model representing a linear set of habitat
fragments each of which supports populations which reproduce in (synchronized) discrete generations.
The populations are linked by a dispersal phase which occurs after each reproductive bout. Previously,
this model has been shown to produce transient behaviour lasting thousands of generations and
characterized by sudden changes in behaviour. We confirm the existence of these effects and characterize
the conditions under which they are likely to occur. We also demonstrate that the model predicts
organized spatial heterogeneity across the system. This means that the dynamics of the ensemble can be
a poor predictor of the behaviour of individual populations, and further, that different populations within
the same linked system can experience quantitatively very different dynamics. We also demonstrate that
the model predicts that the peripheral populations should be subject to greater temporal variation than
the interior. We discuss the appropriateness of the model to a variety of natural systems and the

implications of its predictions.

1. INTRODUCTION

The existence of spatial heterogeneity in many eco-
logical systems has inspired much investigation of the
properties of population models representing many
different types of spatial structure (see Kareiva 1990
and de Roos & Sabelis 1995 for an overview). One
particularly well studied model is that of a meta-
population: a group of distinct populations which are
linked by migration of individuals between them (for a
review, see Gilpin & Hanski 1991). The most common
mathematical representation of a metapopulation is as
a collection of one-step difference equations with
added transport terms. These models are often termed
coupled map lattices (Kaneko 1989).

There is good empirical and theoretical evidence
that spatial structure can have profound effects on
population processes (e.g. promoting species coexist-
ence (Tilman 1994), and preventing extinction
(Huffaker 1958; Holt & Hassell 1993)). Several
theoretical papers have argued that coupling between
populations can have a simplifying effect on population
dynamics (Gonzalez-Andujar & Perry 1993 ; Hastings
1993; McCallum 1994; Stone 1994; Doebeli 1995;
Lloyd 1995; Janosi & Scheuring 1995). In contrast,
however, Hastings & Higgins (1994) demonstrate that
a system of linked Ricker maps can display very long
and unpredictable transient behaviour.

If the behaviour of the Hastings & Higgins model
mirrors that of natural populations then this suggests
that the traditional emphasis on the final solution of
model ecological systems is misplaced, as the transient
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leading to the final solution will be of much greater
biological relevance. Coupled map lattices are also
studied in physics and very long ‘supertransients’ have
been reported (Lai 1995; Lai & Winslow 1995). Hence
one aim of our study is to investigate whether Hastings
& Higgins observations can be extended to a related
but more general model. If this proves so, we will probe
the conditions which need to be satisfied for super-
transients to be produced. Further, Hastings & Higgins
only reported on the behaviour of the total ensemble
population size. It is well established, however, that the
dynamics of metapopulations can be very different
from that of their constituent local populations (Gilpin
& Hanski 1991). Hence we will investigate how long
transients are characterized both at an ensemble and at
a local population level.

2. THE MODEL

We envisage a metapopulation consisting of many
localized populations existing in discrete habitat
fragments. These fragments are distributed along a
one-dimensional ecosystem, such as a sea coast, a lake
shore or the edge of a forest. We label the local
populations 0, ...,R. Each population reproduces in
synchronized discrete generations, each reproductive
bout being separated by a period where individuals
can migrate between populations. We define each
generation to start with a reproductive bout followed
by migration. At the start of a given generation ¢, the
population size in the ith habitat fragment is denoted
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N[i]. To model density-dependent reproduction, we
use the difference equation due to Maynard Smith &
Slatkin (1973). The density of individuals after
reproduction (but before dispersal) in each patch is
given by

AN,[7]

M[i] = N,[Z)f(N,[2]) = TF @[]

(1)

The parameter A is the intrinsic growth rate, a is the
inverse of the carrying capacity of the environment and
b describes the intensity of competition (for a fuller
description of the biology behind this formulation see
Hassell 1975).

We assume that dispersal is density independent.
The proportion of the population on patch i which
moves to patch j is given by a Gaussian distribution:

plij) = ﬁexp(—D(i—m. (@)

This proportion is maximized when ¢ = j, this being the
fraction of each population which remains on the patch
of their birth. Generally, the further two patches are
apart, the smaller the proportion of migrants which
transfer between them. The size of the proportions is
controlled by the parameter D: the smaller D is, the
greater the spatial spread of migrants. D is assumed
always to be positive and is bounded above such that
the sum of p(i,j) over all possible values of j is always
less than unity.

The size of each local population at the start of the
next generation is given as the number of its own
offspring which remain from the last generation, plus
all the migrants from other patches,

Noalt] = ZoM ] x pls, j 1. (3)

We assume dissipative boundary conditions. A fraction
of migrants from each patch will disperse beyond the
edges of the system, and are considered lost.

3. POPULATION DYNAMICS

Hastings & Higgins (1994) investigated the be-
haviour of a model very similar to that used in this
investigation except for their use of the Ricker function
to describe within-patch dynamics. Bellows (1981) &
Doebeli (1995) argue that the function used in our
study has properties which make it more generally
applicable than the simpler Ricker function. Hastings
& Higgins (1994) reported that their model displayed
long transients featuring very sudden changes in the
form of the dynamics. This behaviour was also observed
in our study (see figure 14). In this example, we can see
that for the first 3000 generations coupling seems to
have little effect, with the ensemble varying chaotically
over a wide range. Then there is a sudden shift in
behaviour, the population still appears aperiodic but
the fluctuations are contained within a much narrower
band of values. After another 1500 generations, the
system switches back to the broad-band fluctuations.
At around 7000 generations there is another switch to
a completely different type of behaviour. Now the
ensemble population appears to perform something
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close to a two-point cycle for periods, interspersed with
periods of wild chaotic fluctuations. This behaviour is
strongly reminiscent of intermittent chaos, akin to that
shown by Doebeli (1993, 1994) and Vandermeer
(1993). After showing this behaviour for over 1000
generations, the system switches back to broad-band
chaos.

We found, however, that the conditions required for
the observation of such behaviour were quite strict.
First, the density dependence in the reproduction
function must be sufficiently strong that the popu-
lations would behave chaotically in the absence of
migration. Second, the parameter D (which controls
dispersal) must be tuned to a value within a narrow
range of possible values. Ifit is too high, then migration
is too weak to influence the dynamics and the ensemble
behaves like a collection of uncoupled populations; if it
is too low, the coupling is sufficiently strong to bring
the populations under control after a very short
transient (as illustrated in figure 15). We also note that
long transients are often associated with parameter
values which lead to multiple attractors. In this case,
the initial values chosen at the start of the simulation
can affect the final dynamic attractor which is selected,
and hence the transient phase leading to that attractor.

In figure 154, the transient lasts less than 300
generations and leads to a two-point cycle with a very
small amplitude. Hastings & Higgins (1994) only
reported the dynamics of the ensemble, not of the
individual populations. Figure 24 shows the final
behaviour of all the individual populations of the
ensemble used in figure 1 4. It can be seen that the final
attractor is characterized by strong spatial structuring.
At any instant, the local population sizes are arranged
to form a wave structure across the length of the spatial
domain. Each local population undergoes a two-point
cycle, and in this respect the behaviour of the ensemble
is a good guide to the behaviour of the individual
populations, although this is not always true (see later
and figure 24). Moreover, the behaviour of the
ensemble is a very poor indicator of the amplitude of
fluctuations experienced by the local populations. As
can be seen in figure 2 4, some local populations exhibit
very high amplitude oscillations with their populations
changes over orders of magnitude between successive
generations, whereas some others exhibit such small
oscillations that they are effectively at a steady state.

Investigating the population dynamics at a local
level can also be instructive when the ensemble in
undergoing transient behaviour, as illustrated in figure
2b. This shows the state of all of the populations at
three instants, each separated by two generations, for
the system used to create figure la. These measure-
ments were taken at generations ¢ = 3000, 3002 and
3004, when the ensemble was displaying narrow band
aperiodic oscillations. Perhaps rather surprisingly, most
populations within the system do not show the wild
oscillations shown by the ensemble but are very close to
a simple two cycle. Only at one extreme, i.e. for i < 10,
do the populations exhibit less orderly behaviour.
Extensive numerical investigations suggest that
ordered behaviour of most of the system with wild
oscillations only in the peripheral populations is
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Figure 1. The sum of the populations in a system of 100 patches described by equations (1)-(3). Each patch is
initialized with a population value drawn independently from [0,1/a]. The dispersal parameter D is (a) 0.0769 or (4)
0.06. The first case produces complex and long-lived transient behaviour; the second produces a short transient
leading to a simple two point cycle of small amplitude. The parameter values @ = 1, b = 4.8, A = 7 are used in both
(a) and ().
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Figure 2. (a) The sizes of each individual population at generations 500 < ¢ < 600 for the simulation used to construct

figure 16, filled squares represent even numbered genera

tions, open circles represent odd ones. Each population

undergoes a two cycle. However there is a strong self-organized spatial wave structure across the system, which leads
to strong and systematic variation in the size of the oscillation experienced by each population. () The sizes of each
individual population at generations ¢ = 3000 (squares), 3002 (circles) and 3004 (triangles) for the simulation used
to construct figure 14. Again a self-organized spatial wave structure is observed. Most populations approximate a two

cycle, however those for which ¢ < 10, show wild aperiodi
narrow band chaos shown for 3000 < ¢ < 4000 in figure 1

characteristic of the narrow band aperiodic behaviour
of the type illustrated in figure la. Again, this shows
that observation of the behaviour of the sum of the
populations can be a poor indicator of the behaviour of
individual populations. Observation of figure la
around ¢ = 3000 and figure 14 around ¢ = 500, would
lead us to expect that the dynamics of local populations
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¢ fluctuations. Such ‘loose ends’ are characteristic of the
a.

would be quite different in both cases. However figure
2 demonstrates that, for most of the populations, there
is little qualitative difference in behaviour between the
two cases. It also emphasizes that there can be radical
differences in behaviour between different populations
within the same system, as a result of self-organized
spatial wave structures.
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4. DISCUSSION

Hastings & Higgins (1994) found that their model of
coupled Ricker maps displayed long lived and complex
transients featuring sudden shifts in behaviour. We
have observed similar behaviour in a more general
model. This result has important implications for the
use of models in ecology. Until now, the focus of model
analysis has been on the long term equilibrium
behaviour of models. However, if transient behaviour
(in the absence of external influences) can last many
thousands of generations, as has been shown here, then
this transient behaviour may be of much more practical
relevance than the final attractor. Further it is very
unlikely that a system of populations would experience
a unchanging environment over this timescale. En-
vironmental fluctuations may extend the length of the
transient still further (Rand & Wilson 1991), although
more research into the effect on noise on spatial
dynamic systems is required. The observation that the
transient can show periods of hundreds of generations
featuring generally similar behaviour followed by a
sudden change in behaviour is also of practical
importance. When a natural population suddenly
undergoes a population explosion or crash, we nat-
urally look for some external force which triggered this
change. Our work, and that of Hastings & Higgins,
suggest that there may not always be an external
trigger, such dramatic changes in behaviour may be an
intrinsic feature of the population dynamics.

Given the great import of these long and complex
transients, it is vital that we evaluate how likely they
are to occur in natural populations. Hastings & Higgins
report that in their system of linked Ricker maps, ‘if
the density-dependence is strong enough, then the time
required to reach the final dynamics is usually very
long and there are typically very sudden changes in the
form of the dynamics.’ In our model, we also find that
a necessary condition for long transients is strong over-
compensation in recruitment, so strong that the
populations would behave chaotically if isolated. Even
in this case, we can only obtain long transients for a
restricted range of the dispersal parameter D. If D is
too low, then coupling between populations is
sufficiently strong that the chaos is reduced to a simple
cycle after only a short transient. If D is too large, then
coupling is too weak and the system simply behaves
chaotically, as if the populations were uncoupled.
Further studies must investigate if less general but
more realistic models can also be made to show this
long, complex transients. One obvious generalization
of our model would be to relax the restriction that the
reproduction function is the same for each population
in the system. In physics, Brayman et al. (1995) have
demonstrated that removing this homogeneity in a
system of linked oscillators considerably reduced their
propensity to exhibit chaos, although the resulting
dynamics were still very complicated.

Systems of difference equations linked by migration
terms (‘coupled map lattices’ sensu Kaneko 1989)
have become increasingly popular in the ecology
literature: see, for example, Hassell et al. 1991, 1994;
Allen et al. 1993; Ruxton 1994; Bascompte & Sole
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1995; Rohani & Miramontes 1995. Given this intensive
study of such systems, why have long, complex
dynamics not been more widely reported? Most
modelling studies assume either that all populations
are equally well connected (migrants from any one
patch divide equally among all the patches in the
system) or they assume that migration is only possible
between nearest neighbours (but, for an exception, see
Neubert et al. 1995). We have been able to observe long
and complex transients in our model with D values
around unity, ie. when long range dispersal is
relatively uncommon and 989, of individuals either
stay on their original patch or move to one of the two
nearest-neighbours. However, if the model is modified
so that all migrants which would have moved further
than the nearest neighbours are instead forced to land
on these patches, then we cannot obtain long transients.
This highlights another requirement for obtaining
long, complex transients: there must be some (albeit
possibly very small) long-range migration. Another
reason why many published studies will be less likely to
show this behaviour is that many use periodic
boundary conditions, which means that the ends of the
habitat would be joined to form a continuous ring. In
this case, even if long-range dispersal is allowed, the
concept of peripheral habitat fragments has no
meaning, and the ‘loose ends’ phenomenon illustrated
in figure 25 could not be observed. Although we have
followed Hastings & Higgins in studying a one-
dimensional chain of habitat fragments, we expect that
our qualitative conclusions will be preserved in higher-
dimensional systems. Grassberger (1994) found very
similar boundary effects to those reported here in a
two-dimentsional coupled map lattice.

One ubiquitous feature of our model which occurs in
both the transient and final dynamic regions of
simulations is the emergence of the strongly self-
organized spatial wave structures illustrated in figure
2. Although they do not discuss this, simulations of the
model presented by Hastings & Higgins (1994) also
show this behaviour. Again this feature may have
ramifications for our view of the natural world. If the
populations of a certain species were measured in a
number of habitat fragments and great variety in
population size was found, it might be tempting to
interpret this as mirroring an underlying variability in
habitat ‘suitability’. However, our results suggest that
if the fragments are linked into a metapopulation
through dispersal, this strong spatial variability may
arise spontaneously and may have nothing to do with
underlying variability in environment. Similarly our
results suggest that the observation that some popu-
lations within the system fluctuate much more than
others, may not necessarily indicate that some popu-
lations are subject to stronger environmental
fluctuations than others, nor that they differ in intrinsic
population-regulation properties. The self-organized
pattern is a property of the system as a whole, hence
another prediction from our model is that local
alterations to the system could induce the self-
organized pattern to re-adjust, thus potentially causing
large changes in the behaviour of parts of the system
which need not be strongly coupled to the modified
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portion. The warning for human impact on natural
ecosystems is obvious. Yet another ramification of the
strong spatial structuring is the observation that the
behaviour of the ensemble is a very poor predictor of
the behaviour of individual local populations. Hence
sampling exercises done at different scales may produce
very different findings.

In view of the apparent generality of the conditions
required to produce long and complex dynamic
transients, and the serious ecological consequences of
such behaviour, we believe that further research in this
area is warranted. More complex models must be used
to confirm our predictions as to the conditions required
for the formation of long and complex transients, and
to identify these conditions it terms of variables that
can be measured in the field. We can then assess how
common this behaviour is in the natural world.
Another strand of worthwhile research would be to
construct experimental systems of linked populations,
to test some of our predictions (e.g. the existence of self-
organization within the system and the loose ends’
behaviour of peripheral populations). If long complex
transients are commonplace in the natural world, then
the ramifications for theoretical and applied ecology
will be considerable.
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