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Abstract—This study examines the dynamics of a competition and a host-parasite model in which the interactions
are determined by quantitative characters. Both models are extensions of one-dimensional difference equations that
can exhibit complicated dynamics. Compared to these basic models, the phenotypic variability given by the quantitative
characters reduces the size of the density fluctuations in asexual populations. With sexual reproduction, which is
described by modeling the genetics of the quantitative character explicitly with many haploid loci that determine the
character additively, this reduction in fitness variance is magnified. Moreover, quantitative genetics can induce simple
dynamics. For example, the sexual population can have a two-cycle when the asexual system is chaotic. This paper
discusses the consequences for the evolution of sex. The higher mean growth rate implied by the lower fitness variance
in sexual populations is an advantage that can overcome a twofold intrinsic growth rate of asexuals. The advantage
is bigger when the asexual population contains only a subset of the phenotypes present in the sexual population, which
conforms with the tangled bank theory for the evolution of sex and shows that tangled bank effects also occur in
host-parasite systems. The results suggest that explicitly describing the genetics of a quantitative character leads to
more flexible models than the usual assumption of normal character distributions, and therefore to a better understanding

of the character’s impact on population dynamics.
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Population dynamics lies at the core of ecological and
evolutionary theory. It shapes the structure of communities
and generates evolutionary processes, determining persis-
tence and stability, invasion and extinction. The importance
of knowing the dynamic behavior of populations is reflected
in the amount of interest drawn to complex dynamics since
chaos was introduced to ecology by May (1974, 1976). May’s
models were one-dimensional and set in discrete time, but
since then chaos has been found in many multidimensional
systems with continuous time as well (e.g., Gilpin 1979; Tak-
euchi and Adachi 1983; Hastings and Powell 1991; Vander-
meer 1993). However, the ubiquity of complex dynamics in
ecological models contrasts with the scarce evidence for cha-
os in natural populations. Influential papers showing that nat-
ural systems tend to have simple dynamics include Hassell
et al. (1976) and Thomas et al. (1980). However, even if a
real population exhibits chaos, such complex dynamics would
be difficult to detect, and some authors suggest that chaos
occurs more often than commonly believed (Schaffer 1984;
Schaffer and Kot 1986; Hastings et al. 1993). A convincing
example of chaos is the dynamics of measles in many cities
(Olson et al. 1988; Sugihara and May 1990).

In an attempt to solve this controversy one can look for
general mechanisms that tend to prevent or enhance complex
population dynamics. For example, the dynamics of a me-
tapopulation can be very different from those of its constit-
uent local populations (Gilpin and Hanski 1991), and the
mixing of interactions through dispersal between local pop-
ulations can stabilize the whole system (Hastings 1993; Stone
1993; Doebeli 1995a). A mix of interactions also occurs
among different phenotypes, and one line of work examines
the influence of phenotypic variability and population ge-
netics on the dynamics of populations (Begon and Wall 1987;
Koella 1988; Saloniemi 1993; Doebeli and Koella 1994; Has-
tings and Harrison 1994; Doebeli 1995b). In particular, it has
been argued by Doebeli and Koella (1994) that sexual re-

production, with segregation at one locus, simplifies the dy-
namics.

In this paper, I study the effect of a continuously varying
character on population dynamics. I extend a nonlinear, one-
dimensional model by assuming that the strength of the in-
teractions between two individuals depends on the relative
value of the character. The genetics are modeled explicitly
by many haploid loci with two alleles that determine the
character additively. I describe a simple method to obtain a
model for quantitative genetics that keeps track of the fre-
quencies of single phenotypes.

The key questions in quantitative genetics concern patterns
of variation and the maintenance of heritability for quanti-
tative characters (Barton and Turelli 1989). When population
dynamics enter the picture, they are usually a tool rather than
the goal of study. Thus the model I use here originates in the
competition model used by Slatkin (1980) to analyze eco-
logical character displacement. However, instead of modeling
the genetics explicitly, Slatkin made the one assumption that
is almost ubiquitous in quantitative genetics: he assumed that
the distribution of the continuous character is normal in each
generation. Although convenient for his purposes, this as-
sumption implies severe restrictions on the dynamics of the
population and always leads to stability (Slatkin 1980). The
main purpose of this paper is to examine the dynamic con-
sequences of dropping the assumption of normality and in-
stead introducing explicit quantitative genetics.

To achieve some generality, I analyze two different models,
the first a model for competition, the second for host-parasite
interactions. In both cases, I first compare the dynamics of
the basic homogenous model with the dynamics of a phe-
notypically variable asexual population. The demographic
parameters of the single phenotypes in this population are
the same as those in the basic model, and the phenotypes
vary in their value of the quantitative character determining
the interactions. I then compare these results with the dy-
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namics of phenotypically variable populations in which re-
production is sexual, modeled by quantitative genetics.

Differences in population dynamics can generate evolu-
tionary change. Therefore, I compare the sexual and asexual
populations in an evolutionary context. In a pioneering study,
Hamilton (1980, 1982) observed that sex reduces the fitness
variance in frequency-dependent host-parasite systems,
which leads to a higher mean growth rate (Gillespie 1977).
This can imply a competitive advantage of sex large enough
to overcome the classical twofold growth rate of asexuals.
May and Anderson (1983) replied that this advantage is lost
with density-dependence, but Doebeli and Koella (1994) ar-
gued that there is an advantage even with density-dependence
if enough phenotypic variability is present. This is confirmed
here and extended from host-parasite systems to purely com-
petitive interactions.

The advantage of sex is enhanced if the asexual population
contains only a subset of the phenotypes present in the sexual
population, because sex eases competition from asexuals by
producing phenotypes that are not present among asexuals.
This conforms with the tangled bank theory for the evolution
of sex (Bell 1982). In the host-parasite system there is ap-
parent competition for phenotype space, which also induces
tangled bank effects. Thus the present models connect the
tangled bank theory and Hamilton’s ideas. The results suggest
that describing the genetics explicitly instead of assuming
normal character distributions leads to models that are less
rigid and give more insights about the effect of quantitative
characters on population dynamics.

THE QUANTITATIVE GENETIC MODEL

Let us begin with models for the dynamics of populations
with discrete generations, in which all individuals are as-
sumed to be equal:

Ny = Nefivy). (1)

Here N, is the density of the population at time ¢, and filV)
is the reproductive output per individual if the density is N,
i.e., fIilN) is the fitness function. This model is extended to a
population with many phenotypes given by a quantitative
character. Then the fitness function of each phenotype de-
pends, in general, on its own as well as on the density of the
other phenotypes. Suppose k denotes a quantitative character
that can take on values in a finite interval [0, c]. Let p,(k) be
the frequency distribution of the phenotypes at time ¢ Let
n,(k) be the density distribution of the phenotypes at time .
Then the total density N, of the population is

N, = f n,(k) dk, @)

0

and we have

nfk) = Nypdk). (3)

The fitness functions of the phenotypes now depend on n,,
i.e., on the distribution of all phenotypes. If reproduction is
asexual and the phenotypes breed true, and if f* denotes the
fitness function of phenotype k, the dynamics of the system
are described by
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(k) = nk)fHny). 4)

This equation determines the density distribution at time ¢ +
1, n,.,(k), as a function of the distribution at time ¢. For
example, it the fitness of a phenotype only depends on its
own density, then f* only depends on the value of n, at k,
and we get for each phenotype the original model (1) back:

ne1(k) = nk)fHn (k). (%)

In this case the phenotypes are independent of each other,
and the dynamics of the whole population is the linear su-
perposition of the dynamics of the single phenotypes, i.e.,
no coupling between phenotypes occurs. In general, f* will
depend on a range of values of n, i.e., on the densities of
other phenotypes as well. As we will see, such coupling can
change the dynamics quite drastically.

To incorporate population genetics, I assume the simplest
possible model, in which the quantitative character k is de-
termined additively by many haploid loci, each with two
alleles. For simplicity, I assume that the upper boundary ¢
for the character values is an integer, that there are ¢ loci,
and that the effects of the two alleles at each locus are 0 and
1. These assumptions do not imply any loss of generality,
since appropriately rescaling the allelic effects and linearly
transforming the interval [0,c] always reduces the problem
to such a situation. Since individuals are haploid, their genetic
structure is described by a string of Os and 1s of length c,
corresponding to which allele is present at each locus, and I
assume that the phenotype of an individual is given by the
number of 1s in its genetic string. Thus, if an individual has
the 0-allele at ¢ — k loci and the 1-allele at & loci, its character
value is k. This means that there is no environmental variance
in the phenotype. There are three reasons for this assumption.

First, my goal is to see the effect of quantitative genetics
on the dynamics of the population with as few confounding
factors as possible. Second, it will be clear from the definition
of the fitness function of the phenotypes that the results ob-
tained without environmental variance will remain qualita-
tively the same if a small amount of environmental variance
is introduced. Small environmental variances were used in
the models of Slatkin (1980), Taper and Case (1985) and
Koella (1988), on which the present model is based. Third,
there is no conceptual difficulty in introducing environmental
variance in the model, but it slows down the computer sim-
ulations substantially.

Phenotypes thus range from 0, displayed by individuals
having the O-allele at each locus, to ¢, which corresponds to
having the 1-allele at each locus. The dynamics of such a
population still depend on the fitness functions f*, which
determine the contribution of phenotype k to the gamete pool.
However, in a sexual population selection, given by the f*,
is followed by random mating. Compared to the asexual mod-
el, this corresponds to an intermediate step of “‘reshuffling”
that determines the frequency distributions of the phenotypes
in the next generation. To see the effect of mating, we have
to determine the phenotypic distribution of the offspring,
given the phenotypes of the parents. For this the basic as-
sumption is free recombination between loci, so that the allele
of an offspring at a particular locus has probability 0.5 to
come from either parent. This is a common assumption for
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population dynamic models in quantitative genetics (Lande
1976; Slatkin 1980; Taper and Case 1985), but it is of course
at best an approximation of the real genetics of a quantitative
character. However, without this assumption it would be dif-
ficult to keep track numerically of explicit genetics with many
loci.

Suppose then that the phenotypes of the parents are i and
J, so that one parent has i 1s and ¢ — i Os in the genome,
whereas the other has j 1s and ¢ — j 0s. The number of loci
at which both parents have the 1-allele is defined as the over-
lap o. It is easy to see that

max(0, i + j — ¢) = o < min (i, j),

(6)

see Figure 1. From the o overlap loci, the offspring inherits
the 1-allele. Also, there are i + j — o loci at which one parent
has the 1-allele and the other one has the O-allele. At these
loci the offspring has either one of the alleles with probability
0.5, since I assume free recombination between loci. At the
remaining loci both parents have the 0-allele, hence so does
the offspring. It follows that the phenotype of the offspring
lies in the interval

(7

and that the phenotype distribution in this interval is bino-
mial. Therefore, if p§ denotes the phenotype frequency dis-
tribution of offspring having parents with phenotypes i and
J and with overlap o, we have

[o,i+j— ol

i+j- 0)-(0.5)”1'0 forke [o,i +j— o]
k—o .

otherwise

pik) = (
0
®

To determine the frequency distribution p;; for the offspring
phenotype of parents i and j, we have to take the sum of the
distributions determined by the overlaps, weighted by the
probability that a particular overlap occurs:

by = 2

all overlaps

Pr(overlap = 0)-pj. 9)

By equation (6), o lies in the interval [max(0, i + j — ¢),
min (i, j)] and it is easy to determine the probability for each
overlap, given i and j. Equation (9) means that the phenotype
distribution p;; of the offspring is a weighted sum of nested
binomial distributions (Fig. 1). However, for computational
convenience I only used the outermost of these nested dis-
tributions in the numerical simulations, that is, I used the
approximation

Dij ~ pj°min, (10

where o, = max(0, i + j — ¢) is the minimal possible
overlap. This approximation assigns slightly higher proba-
bilities to extreme offspring phenotypes, and slightly lower
probabilities to common phenotypes (Fig. 1). It saves a lot
of computer time, and a few numerical experiments showed
that the quality of the results of the next two sections does
not change when the correct equation (9) is used instead of
the approximation (10). An indication of how good this ap-
proximation is given below in Figure 2.

We can now determine the dynamics of the sexual popu-
lation. Let p,(k) and n,(k) be the frequency and density dis-
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Figure 1a
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Figure 1b

frequency
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offspring phenotype

M overlap=0 [ overlap=1 [ overlap=2

Fic. 1. Schematic description of the quantitative genetic model.
la shows how different overlaps of the parent genomes lead to
different distributions of the offspring phenotype. The distributions
are shown in 1b. In this example, the genomes have seven loci. At
each locus, the 0-allele is shown as a white and the 1-allele as a
black rectangle. In the offspring genome, a grey rectangle indicates
that the chance of having either allele at the corresponding locus
is 0.5, because the parents have different alleles at this locus. The
number of black rectangles is the minimal, the sum of black and
grey rectangles the maximal possible phenotype value. The prob-
ability of having a particular phenotype within this range is given
by binomial distributions. In this example, the overlap in the parents
is either 0, 1, or 2. For different overlaps, the number of black and
grey rectangles in the offspring genome varies, leading to the dif-
ferent distributions shown schematically in 1b. The sum of these
distributions, weighted by the probability that the corresponding
overlap occurs, determines the total distribution of offspring phe-
notypes. For the numerical simulations, I only used the distribution
corresponding to the minimal possible overlap, 0 in this example,
giving the widest range of phenotypes. This distribution is indicated
by dark shading in 1b.

tributions of the phenotypes at time ¢. To describe the dy-
namics we have to give a recursive formula for p,, (k) and
n,,1(k), and for this it is enough to know p,, (k) and the total
density N,,; by equation (3). Let f* be the fitness function
of phenotype k as before. Then

W, = kgo pi(R)-f4(n,) (11)

is the mean fitness of the population at time ¢, and clearly
the total density at time ¢ + 1 is

Nyt = Newy. (12)
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Fic. 2. Dynamics of the competition model: (a) Basic model (15) without phenotypic variability; (b) and (d) Asexual population with

quantitative phenotypic variability; (c) Sexual population with quantitative genetics. The figures show the mean fitness, defined as N,, /
N,. where N, is the total population density at time 7, in successive generations. The basic model exhibits chaotic dynamics for the chosen
parameters (2a). With the same parameter values for the single phenotypes and an intermediate niche width o, the quantitatively variable
asexual population also exhibits chaos, but with smaller fitness fluctuations (2b), and the sexual population moves on a simple two-cycle
(2c) with still smaller fluctuations. This behavior is typical for a wide range of parameters: the quantitative character reduces fitness
variance; this effect is magnified when reproduction is sexual, and sex leads to simpler dynamics. For some parameter combinations,
phase locking can occur between the phenotypes in the asexual population (2d), such that their fluctuations cancel each other, and the
total density remains almost constant over time. In this case, the asexual system exhibits simpler dynamics than the sexual system. Phase
locking depends on the initial conditions, and the corresponding attractor seems to be small. It cannot occur in sexual systems because
of recombination. The parameter values for Figures 2a, 2b, and 2c: ¢ = 40, such that there were 40 loci in the genetic model; A = 12,
d = 2 (note that a choice of d determines b once \ is given), a(k) = a = 0.1 and 03 = 27; for Figure 2d: ¢ = 30, A = 7, d = 2.5, a(k)
= 0.1 and o2 = 6; note that the value of d in 2d implies chaotic and highly fluctuating dynamics in the basic model (15).

Selection takes place before reproduction, and the distribu-

tion g, in the gamete pool at time ¢ is given by
p,(k)f"(n,)

t

q,(k) = 0=k=c 13)
Here g/(k) is the frequency of gametes coming from parents
with phenotype k. The frequency distribution of the pheno-
types in the next generation is now given as the sum of the
offspring distributions p; coming from parents i and j, eq.
(9) respectively eq. (10), weighted by the frequency of mat-
ings between i and j, i.e., by the factor ¢,(i) - q,(j), where g,
is given by eq. (13). Thus

C

Pt = 2 aa0)-py- (14)
Equations (12) and (14) describe the dynamics of the sexual
population, once the fitness functions f* are determined.

The quantitative genetics in the model are described by
the phenotype distributions p;; of the offspring from parents
with phenotypes i and j, equation (9). This formula was de-
rived under the assumption of free recombination between
haploid loci. In principle, one could derive analogous equa-
tions for more complicated genetic assumptions such as dip-
loidy and linkage, but I have not explored these possibilities.
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In the next two sections I describe results obtained nu-
merically using equations (11)—(15) in two different popu-
lation dynamic settings, in which the fitness functions are
determined by different mechanisms. In the first, the quan-
titative character influences the competition between phe-
notypes, and in the second it determines the susceptibility to
parasites. In both cases the fitness functions are nonlinear,
so that the basic model (1) without phenotypic variation can
exhibit complex dynamics. The results describe how quan-
titative phenotypic variability can affect these dynamics in
both asexual and sexual populations.

RESULTS
The Competition Model

For competition, the fitness function for the basic model
(1), first used by Maynard Smith and Slatkin (1973), has the
form

A

T = T @y

15)
The parameter X > 1 is the intrinsic growth rate of the pop-
ulation. Depending on the assumptions about the competitive
process that leads to density-dependence, the parameter b
reflects different types of competitive interaction (e.g. Hassell
1975; Schoener 1976). The parameter a measures how well
the individuals can cope with the environment. It influences
the equilibrium density N*, which can be thought of as the
carrying capacity of the population. It is defined as the density
at which the fitness of the population is 1:

JN®) =1, (16)
hence,

()\ — l)l/b
——a .

N* = a7
Model (15) was considered by Bellows (1981) to be the most
generally applicable one-dimensional ecological model. If
perturbed away from the equilibrium N*, its dynamic be-
havior is determined by the derivative at this point, more
precisely by the modulus

daf

AN—1
I N*
dN(N)

1 -b——|.
b’)\

d= = (18)

Note that the parameter a does not occur in the expression
for d, hence does not influence the dynamic behavior of the
system. If d < 1, N* is stable, with perturbed densities re-
turning either exponentially or with damped oscillations to
the equilibrium. This stability is lost when d > 1. As d in-
creases, the systems displays the familiar bifurcation behav-
ior (May and Oster 1976), going from a stable two-cycle to
a stable four-cycle and, more generally, to a stable 2"-cycle
before it reaches chaos at a value of d ~ 1.7.

To extend this model to a population with a continuously
varying character ke[0, c], we must specify how the fitness
function of phenotype &, f*, depends on k and on the density
distribution of the phenotypes, n,(k), at time ¢, taking into
account that the strength of competition between two phe-
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notypes depends on how similar they are. Following Slatkin
(1980), the fitness of phenotype k at time ¢ is

A
c b-
1+ {a(k)- f n, (DB 1) dl}

0

k) = 19)

The function B(k, [) measures the strength of competition
between individuals of phenotypes k and /, so that the weight-
ed sum

f n,(DB(k, 1) di (20

0

is the density that an individual of phenotype k experiences
under competition in a population with phenotype distribu-
tion n,. In this paper I use the following form for this com-
petition function:

—(k — 1)

Bk, 1) = exp 792 , 21
B

where the parameter o, is the within phenotype niche width.
Note that the function B(k, [) only depends on the relative
position of two phenotypes, that is, only on the difference &
— [, and not on their absolute character values. Competition
is strongest between similar phenotypes. Although the choice
of this function conforms with existing literature (e.g., Slatkin
1980; Taper and Case 1985; Koella 1988), it has the caveat
of representing density-independent competition coefficients.
It has been argued that density-dependent competition co-
efficients are more realistic (Abrams 1980), but I have not
explored this complication of the model.

It is implicitly assumed in the model that all phenotypes
have the same growth rate A and experience the same type
of competition, given by b. This implies that all phenotypes
have the same dynamic behavior when alone. The parameter
a(k) depends in general on the phenotype, reflecting an effect
of the phenotype on the ability to cope with the environment.
Recall that, for fixed \ and b, the parameter a determines the
equilibrium density, equation (17). If the basic model (15)
is extended to a model for competition between two species,
the one with the higher equilibrium density is the stronger
competitor (Doebeli 1995c¢). One then typically assumes that
extreme phenotypes near the edges of the interval [0, c] have
a lower equilibrium density, i.e., a higher a, due for example
to a lower ability to use the available resources (Slatkin
1980). This implies a competitive disadvantage for extreme
phenotypes. However, for most of my results I assumed that
a(k) is a constant. I did this to keep the model as simple as
possible and to see the effects of the quantitative character
alone, without any additional effects such as differential re-
source use. It is straightforward to model a nonconstant a(k)
that takes on higher values at the edges of [0, c¢] and has a
minimum in the middle. With such a(k) the results do not
change qualitatively, and some indication of the quantitative
change is given below. The changes are generally as one
would predict, knowing that a higher a-value implies a com-
petitive disadvantage for extreme phenotypes.

Once the parameters \, b and o, as well as the function
a(k) are specified, the fitness functions f¥, equation (20), are
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used to determine the dynamics of asexual and sexual pop-
ulations by iterating equation (4), respectively equations
(12)—(14).

Asexual Reproduction

For numerical simulations the system has to be made dis-
crete. For this I assume, in analogy to the sexual model, that
the upper boundary of the character interval is an integer,
and I consider only integer phenotypes in [0, c]. For large ¢
this gives a good approximation to the continuous model.

If the niche width o, is large (63 > c), competition is
intense, and most of the phenotypes in the asexual population
go extinct. This leads to a spiked distribution #,. In the ex-
treme case, only the phenotypes 0 and ¢ survive. Then the
system effectively describes competition between two pop-
ulations. In such systems competition can lead to simple dy-
namics when both populations would have complex dynamics
when alone, as was shown by Hassell and Comins (1976).
Similar phenomena can be observed here. However, I am
more interested in niche widths that allow all phenotypes to
coexist. For such o, the general effect of the continuous
character is to decrease the size of the fluctuations in the
system, as compared to the basic model (15). When making
this comparison, it is assumed that the parameters in the basic
model are the same as those for the single phenotypes in the
phenotypically variable population. In principle, to account
for the wider resource distribution for the phenotypically
variable population, one should assume a lower value of the
parameter a, that is, a higher carrying capacity, in the ho-
mogenous model. However, as mentioned above, the param-
eter a has no influence on the dynamics. Rescaling it can
therefore be omitted, since I am only interested in the dy-
namic properties of the systems. What is important is that
the basic, homogenous model has the same dynamics as
would be displayed by a single phenotype of the variable
population, which is achieved by assuming equal parameter
values.

The main difference between the two models is that the
variance in the mean fitness w, of the phenotypically variable
population is smaller (Fig. 2). Thus the continuous character
stabilizes the system in the intuitive sense of decreasing its
density fluctuations. This is a general phenomenon and hap-
pens for all parameters. In addition, the dynamics can change
qualitatively, and the phenotypically variable population can
exhibit periodic behavior when the basic model (15) is cha-
otic. However, this reduction in complexity is confined to a
small region in parameter space. It only happens if the the
dynamics of the single phenotypes, given by d in equation
(18), are not too chaotic, that is, if d is not too large, and
only for a small range of intermediate niche widths o,. More-
over, the corresponding simple attractor is not global and
coexists with chaotic attractors. Thus it depends on the initial
conditions whether the system displays the simple dynamics.
But even if it moves on the chaotic attractors, its fitness
variance is lower than that in the basic model (15). Another
phenomenon that occurs is phase locking: for some niche
widths o, the variation in fitness can become very small, so
that the total density remains almost constant. In this state
the fluctuations of the single phenotypes tend to cancel each
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Figure 3a
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FiG. 3. Fluctuating phenotype distributions when sexual repro-

duction induces a stable equilibrium for the total population size.
At the equilibrium, the phenotypes alternate between the two dis-
tributions shown. In 3a, the approximation (10) was used in the
quantitative genetic model. Using the exact formula (9) yields qual-
itatively the same result (3b), but intermediate phenotypes are
slightly more common, as expected. The parameter values for the
figure were: ¢ = 30, A = 10, d = 1.2, a(k) = 0.1 and o3 = 8. The
total density of an asexual population with the same parameters
moves on a two-cycle.

other because the interaction width given by o, has reached
a critical value. An example is shown in Figure 2d. Like
complexity reduction, phase locking only occurs for a small
region in parameter space, and it depends on the initial con-
ditions in the system. In summary, the main effect of quan-
titative phenotypic variability in the asexual population is a
decrease in the size of the density fluctuations as compared
to the basic model without variability.

Sexual Reproduction

With sexual reproduction no phenotypes go extinct even
with large niche widths o, because they are constantly re-
created through random mating. Therefore, the dynamics of
the sexual system can be more complex than that of the
asexual population if niche widths are very large. However,
with niche widths for which the asexual population can main-
tain all the phenotypes, the stabilizing effect of the contin-
uous character is magnified in the sexual population. In gen-
eral, the fluctuations are smaller than in the asexual popu-
lation. Moreover, the sexual population tends to have simpler
dynamics. Two examples are shown in Figures 2 and 3. In
Figure 2, the sexual population moves on a two-cycle, where-
as the asexual population is chaotic. In Figure 3, sex changes
the dynamics from a two-cycle to a stable equilibrium. How-
ever, the system ‘‘remembers’’ the two-cycle: at the equilib-
rium for the total density, the frequency distribution of the
phenotypes is cycling with period 2, and the density of each
phenotype moves on a two-cycle, whereas the total density
remains constant. The phenomenon that phenotype frequen-
cies have nontrivial dynamics when the total population size
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is at a stable equilibrium occurs for all parameter values for
which the basic model has complex dynamics that are reduced
to a stable equilibrium by quantitative genetics. What is also
shown in Figure 3 is an example of the effect of using the
exact formula (9) instead of the approximation (10) in the
genetic model. Qualitatively, the result is the same, but there
are small quantitative differences in the cycling phenotype
distributions.

In general, sex reduces the fitness variance as compared
to the asexual system for a wide range of parameters. In fact,
the higher the complexity d and the intrinsic growth rate A
in the system, the more pronounced is the effect. Increasing
either one of these parameters increases the size of the fluc-
tuations in the basic model (15) (Doebeli 1995¢). It follows
that the stabilizing effect of sex is enhanced with more com-
plex dynamics of the single phenotypes.

With sex, the reduction in dynamic complexity happens
for a much larger region in parameter space than without sex.
Even for quite complicated dynamic behavior of the single
phenotypes, sex induces simple dynamics for intermediate
niche widths o,. Moreover, these simple dynamics are robust:
they seem to be globally attracting and do not depend on
initial conditions. This confirms an observation made in Doe-
beli (1995b) for a different genetic system, namely that at-
tractors in sexual populations have larger basins of attraction
than those in asexual systems, which reflects a greater ten-
dency for asexual models to have multiple attractors.

The fact that it is really the quantitative variability that
makes the dynamics more stable can be seen by comparing
models with different numbers of loci. Figure 4 shows the
dynamics of the sexual system for fixed parameters b, d, and
a for the single phenotypes, but for variable lengths c of the
character interval. To make the comparison, the niche width
o, has been adjusted in each case to a fixed proportion of c.
Although the basic model (15) exhibits chaos for the given
parameter values, the sexual model with 10 loci has a stable
cycle of high order. Increasing the number of loci reduces
the period of the stable cycle as well as its amplitude. Thus
the phenotypically more variable systems are dynamically
more stable.

The reduction of fitness variance and dynamic complexity
does not happen for the parameters for which phase locking
with almost constant densities occurs in the asexual popu-
lation. Because of recombination, locked phases are not pos-
sible in the sexual system. In general, sexual reproduction
tends to maintain normal character distributions: intermediate
characters are more common than extreme characters. How-
ever, the distributions can have more than one maximum, and
they can change over time (Fig. 3). The simpler the dynamics
of the system, the closer the character distributions are to
being normal and constant. However, even when the total
density reaches a stable equilibrium, the explicit modeling
of the quantitative genetics can lead to nonequilibrium dy-
namics for the genetic structure, as is shown in Figure 3.

Competition between Sexuals and Asexuals

Reducing the variance in the mean fitness increases the
geometric mean growth rate of a population (Gillespie 1977).
This is the basis of Hamilton’s theory for the evolution of
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FiG. 4. Effectof increasing the number of loci in the sexual system.
With 10 loci (¢ = 10, 4a), the system moves on a stable cycle of
order 16. With increasing number of loci, the period of the cycle
is reduced to four (¢ = 20, 4b), and finally to two (¢ = 70, 4c),
whereas the amplitude of the fluctuations also becomes smaller. The
parameters for the figures were X = 5, d = 2 and a(k) = 0.1. In
each case, the niche width o} was set at a fixed proportion of 0.75
of the number of loci c.
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sex in host-parasite systems (Hamilton 1980, 1982). In his
models, sex reduces fitness variance, which enables the sex-
uals to outcompete the asexuals despite their classical twofold
advantage of not having to invest in male function (Maynard
Smith 1978). In the present situation, competition between
a sexual and an asexual population is modeled by assuming
that the fitness functions of the phenotypes depend on their
joint distribution in the two populations. Thus I assumed that
the competitive impact of sexuals on asexuals is the same as
that of asexuals on asexuals and vice versa. In particular,
sexuals and asexuals have the same niche width. Furthermore,
I assumed that the asexuals have twice the growth rate of the
sexuals, but that the single phenotypes have the same equi-
librium density and the same dynamic complexity, given by
d in equation (18), in both populations. This is the traditional
way of modeling the twofold advantage of asexuals (Ham-
ilton 1980; May and Anderson 1983), and it implies an in-
trinsic advantage for the asexuals in the present model. This
can be seen by considering the basic model (15). If this model
is extended to model competition between two populations
with the same equilibrium densities and the same dynamic
complexity, then the one with the higher intrinsic growth rate
is the stronger competitor and drives the other to extinction
(Doebeli 1995c). A twofold disadvantage of sexuals is a
“worst case’’ scenario, because in reality, the disadvantage
may be reduced by mechanisms like unequal sex ratios, sex-
ual dimorphism or parental care (Maynard Smith 1978).
However, as mentioned before, a higher growth rate also leads
to larger fluctuations in the system (without changing its
dynamics qualitatively). Therefore, the sexual advantage of
having a lower fitness variance than the asexuals is enhanced
by having only half their growth rate. On the other hand,
recombination leads to another disadvantage for the sexuals.
Because recombination tends to produce many intermediate
phenotypes, a sexual population cannot match the uniform
resource distribution as well as the corresponding asexual
population. This leads to a lower carrying capacity of the
sexuals. The effect can be seen when comparing populations
exhibiting a stable equilibrium. Then the equilibrium pop-
ulation size of the asexuals is larger than that of the sexuals,
which suggests that the carrying capacity is also larger for
the asexuals when the equilibrium is unstable and the dy-
namics are complex. As already mentioned, higher carrying
capacities have no effect on the dynamics displayed by the
system, but they imply a competitive advantage. This is an
example where recombination leads to a decrease in a fitness
component, which is reminiscent of the work of Abrams et
al. (1993), who show that sexual populations undergoing fre-
quency-dependent selection can get trapped at trait values
that minimize fitness.

In summary, when competing against a corresponding
asexual population, the sexuals have the disadvantage of hav-
ing half the growth rate and a lower carrying capacity than
the asexuals, but they have the advantage of a lower variance
in fitness, which could enable them to coexist with the asex-
uals. Moreover, coexistence should be more likely for high
d and \, for which the stabilizing effect of sex is larger, as
was explained above.

Numerical simulations confirmed these predictions. For
low d and M\, the asexuals outcompete the sexuals and drive
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them to extinction (Fig. 5). Increasing either one of these
parameters increases the fluctuations in the asexual system
and the advantage of sex due to its stabilizing effect on the
dynamics (Fig. 5). As a consequence, the sexuals can coexist
with the asexuals. Coexistence can lead to complicated dy-
namics, in which crashes and outbursts of the proportion of
sexuals alternate irregularly.

Because of phase locking in the asexual system, one would
expect that the asexuals would drive the sexuals to extinction
even for high d and M if the niche width is chosen appro-
priately. However, phase locking is a rather delicate phenom-
enon, and the corresponding basin of attraction for the dy-
namics seems to be small. Thus phase locking is not robust
against perturbations such as the presence of a sexual pop-
ulation, and I have never observed that phase-locked asexual
populations could withstand invasion of sexuals if such in-
vasion was possible for nearby parameter values for which
there was no phase locking in the asexuals.

It is worth mentioning that the advantage of sex tends to
increase when the resource distribution is unimodal rather
than uniform, at least when niche widths are small. The rea-
son is that the sexuals can match a unimodal resource dis-
tribution much better than a uniform distribution, whereas
the difference is small for asexuals. Therefore, unimodal dis-
tributions reduce the sexual disadvantage of having lower
carrying capacities. Another way to favor sexuals in this
model is to increase the number of loci, i.e., the range of
phenotypes. This enhances the stabilizing effect of sex (Fig.
4), whereas it again does not seem to affect the dynamics of
asexual populations very much. Thus larger numbers of loci
increase the sexual advantage of having a lower fitness vari-
ance.

The competitive advantage of sex due to lower fitness vari-
ance is also more prominent when only a subset of all possible
phenotypes is present in the asexual population (Fig. 5). This
conforms with the tangled bank theory for the evolution of
sex (Bell 1982), according to which a sexual population has
a broader niche width and can therefore exploit the environ-
ment more efficiently than a phenotypically more uniform
asexual population. The asexuals cannot avoid competition
of sexuals with the same phenotypes, but the sexuals can
avoid the asexuals partly by producing phenotypes that are
not present in the asexual population. In turn, these pheno-
types replenish those that compete most strongly with asexu-
als. This puts the asexuals at a disadvantage. Numerical sim-
ulations show that whenever a sexual population can coexist
with an asexual population in which all phenotypes are pres-
ent, then the proportion of sexuals increases if a few of the
asexual phenotypes are missing. It is also possible that sex-
uals can only coexist with an asexual population that lacks
some of the phenotypes (Fig. 5d), so that only a tangled bank
allows coexistence. The present model thus connects the tan-
gled bank theory for the evolution of sex with Hamilton’s
theory, in which sex reduces fitness variance. Although Ham-
ilton found this mechanism in host-parasite systems, it has
been shown here to work in competition models as well. On
the other hand, we will see in the next section that tangled
bank effects can also occur with host-parasite interactions.
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Fic. 5. Competition between sexuals and asexuals. The figures show the proportion of sexuals in the total population as a function of
time. In 5a, the advantage of the sexuals gained from having a lower fitness variance is not enough to avoid extinction. Increasing the
fluctuations in the asexual system increases the advantage of sex. Fluctuations can be magnified by increasing the intrinsic growth rate
N\ (5b) or the dynamic complexity d (5c). In both cases, the sexuals are now able to coexist with the asexuals. Coexistence can lead to
complicated dynamics, in which crashes and outbursts of the sexuals alternate irregularly. Figure 5d is the same as 5a, but now the
asexual population contains fewer phenotypes than the sexual. This tangles the bank for the asexuals and again allows the sexuals to
coexist. The parameters for the figures were ¢ = 30, a(k) = 0.1 and ¢} = 7 for all; A = 10 and d = 2.5 in 5a; A = 30 and d = 2.5 in
S5b; A = 10 and d = 3.3 in 5¢c; A = 10 and d = 2.5 in 5d (same as 5a), but the 10 outer phenotypes (i.e., phenotypes 0, 1, 2, 3, 4 and
26, 27, 28, 29, 30) are missing in the asexual population.

The Host-Parasite Model N7 is the threshold density of the host: if N < Ny, the only
solution to equation (23) is I = 0, i.e., the parasite cannot
spread. May (1985) showed that a host population with fitness
given by equation (22) exhibits chaotic dynamics for all
growth rates A > 1, regardless of the size of the threshold
density N7

Although this dynamic property is certainly not a common
feature of host-parasite models, there are many examples in
AN) = N1 — I(N)). (22)  nature where parasites regulate host populations (e.g., Pacala

May and Anderson (1983) derived the density-dependent and Hassell 1991), and theoretical models of such interactions

fraction I(N) from epidemiological considerations as the so- typically can have very complicated dynamics. More com-
lution of the equation mon forms of such models are derived from the Nicholson-

Here the basic model was introduced by May and Anderson
(1983) and describes a host population whose density is reg-
ulated by a parasite. The parasite spreads in each generation
of the host before reproductive age is reached, and a fraction
I(N) of the host population N is killed. Thus, if A\ > 1 denotes
the intrinsic growth rate of the host, the fitness function is

Bailey equations (e.g., Holt and Hassell 1993), but the model
1 — I = exp|— IN ) (23) used here has the advantage that only the host species is
Ny explicitly described, and that the impact of the parasites is




QUANTITATIVE GENETICS AND POPULATION DYNAMICS

derived using the epidemiological rather than phenomeno-
logical Kermack-McKendrick differential equations (May
and Anderson 1983).

May and Anderson (1983) extended the model with pop-
ulation genetics based on gene-for-gene interactions between
the host and the parasite. Then each host genotype, respec-
tively the corresponding phenotype, is susceptible to a unique
parasite, and the fitness of each genotype is given by equa-
tions (22) and (23) independently of the density of the other
genotypes. May and Anderson (1983) considered one locus
with two alleles and dominance, and Doebeli and Koella
(1994) studied systems with one locus and two or three alleles
without dominance, as well as systems with two haploid loci.

Here I assume that the host-parasite interaction is deter-
mined by a host character that is quantitative in the sense
that it is additively determined by many haploid loci ac-
cording to the quantitative genetic model. I also assumed that
the character k takes on discrete values in the interval [0, c],
and that the corresponding phenotypes are susceptible to a
unique parasite. This generalizes the gene-for-gene principle
to an additively determined character. The metaphor in the
gene-for-gene model is that of key and keyhole, in which a
parasite can only attack that host genotype to which it has
the right key. Here the keyholes are the phenotypes given by
the character value, and a particular parasite can attack a
phenotype if the latter has the right number of 1-alleles, re-
gardless of where these alleles occur in the genome. Thus
the interactions with the parasites are based on additive
matching. This is the natural extension of gene-for-gene in-
teractions to quantitative genetics.

Then the phenotypic fitness functions f* only depend on
the density of phenotype k. Thus, if n, is the density distri-
bution of the phenotypes as usual, these fitness functions are
given by

i) = N1 = In(k))],

where I(n/(k)) is the solution of

24)

1 —1=exp 25)

_In®
Ny |

I assume that all phenotypes have the same growth rate \ in
the absence of the parasites, and the same threshold density
Ny. To be a bit more realistic, one can assume that the spec-
ificity of the parasites is not complete. Then the phenotype
k-specific parasite can also attack other phenotypes with sim-
ilar character values, although less efficiently. This implies
that f* also depends on the densities of other phenotypes, and
could be modeled by

frn) =\ , (26)

1—<%m@6®0)

=

where B(k, [) is a function that has its maximum value of 1

at k = [, for example

—(k — 1)?
20%

The parameter o is then a measure for the specificity of the

parasites. However, reasonable choices of o, do not change
the conclusions, and to see the pure effects of the genetics

Bk 1) = exp 27)
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in the model I report the results obtained from equations (24)
and (25), i.e., with complete parasite specificity.

Population Dynamics

For the numerical simulations I used the fitness function
(24) in a discretized version of equation (4) for the asexual
population and in equations (12)—(14) for the sexual popu-
lation. The asexual population consists of ¢ + 1 uncoupled
phenotypes, each of which exhibits the same dynamic be-
havior as the basic model (22). Thus its dynamics are chaotic
for all growth rates \. However, sensitive dependence on
initial conditions of the dynamics of the single phenotypes
leads to a thorough mixing of their density fluctuations.
Therefore, the phenotypically variable population has a much
lower fitness variance than a single phenotype (Fig. 6). This
phenomenon is independent of initial conditions. Thus phe-
notypic variability again has a stabilizing effect on the dy-
namics, because it induces a lower fitness variance. With
sexual reproduction the system exhibits simple dynamics in
form of a stable equilibrium or a two-cycle for low to inter-
mediate growth rates (Fig. 6). For higher growth rates, when
the dynamics become more complex, the fitness variance in
the sexual population is again lower than in the asexual pop-
ulation. Similar phenomena were observed in Doebeli and
Koella (1994), where we noted that increased phenotypic
variability strengthens the stabilizing effect of sex. This is
confirmed here, as the dynamics with the quantitative char-
acter are much simpler for a wide range of growth rates than
the dynamics of the systems we studied in Doebeli and Koella
(1994).

Competition between Sexuals and Asexuals

May and Anderson (1983) studied competition between an
asexual population with two phenotypes whose fitness func-
tions were given by equation (22), and a sexual population
with two phenotypes that were susceptible to the same par-
asites, but had only half the growth rate of the asexuals.
Contrary to Hamilton’s (1980) pioneering study, they showed
that the asexuals always drove the sexuals to extinction. How-
ever, in Doebeli and Koella (1994) we argued that the ad-
vantage of sex could be restored with greater phenotypic
variability, at least for high growth rates. This is confirmed
and extended here.

To model competition, I assumed that the parasites attack
sexuals and asexuals equally. Consequently, the fitness func-
tion of a phenotype depends on the sum of its densities in
the sexual and asexual populations. This leads to an apparent
competition for phenotype space between sexuals and asex-
vals. As in the competition model of the last section, the
fitness of a phenotype is inversely density-dependent, but
here the reason is the parasites. Consequently, the fitness of
a phenotype decreases if the same phenotype is also present
in a coexisting population. Holt and Lawton (1993) have
proposed that apparent competition for enemy free space be-
tween host species may often lead to competitive exclusion
and may thus play an important role in structuring host spe-
cies communities. Here the apparent competition is between
phenotypes, and the question is whether genetic coupling
between them confers an advantage over breeding true. To
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FiG. 6. Time distribution of the mean fitness in the host-parasite
system for arange of intrinsic growth rates \. Mean fitness is defined
as N,.,/N,, where N, is the total population density at time ¢z Even
though the basic model (22) stays close to a two-cycle for small A
(6a), it is chaotic for all growth rates (May 1985), as is the asexual
system with phenotypic variability (6b). However, the latter has a
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model competition I again assumed that the asexuals have
twice the growth rate of the sexuals.

With the quantitative character determining the interac-
tions, the asexuals cannot outcompete the sexuals even when
intrinsic growth rates are low (Fig. 7a). Again, this seems to
be due to lower fitness variance in the sexual population. The
asexual advantage of having twice the growth rate of the
sexuals also implies a disadvantage, because higher growth
rates induce more fluctuations and a larger fitness variance.
The point is that with quantitative phenotypic variability, the
balance tips in favor of the sexuals when growth rates are
still low.

In addition, a tangled bank phenomenon can be observed
if the asexual population contains only part of all possible
phenotypes. Then the sexuals often drive the asexuals to ex-
tinction (Fig. 7c). Since the degree of parasitism of a phe-
notype increases if the same phenotype is also present in the
other population, the sexual population can produce pheno-
types that are less heavily parasitized because the corre-
sponding phenotypes are missing in the asexual population.
In contrast, every asexual phenotype is also present in the
sexual population, which decreases their fitness. This para-
sitic tangled bank offsets the asexual advantage of having
twice the growth rate of the sexuals.

DiscusSION

The competition model and the host-parasite model both
display more stable dynamics when a quantitative character
determines the interactions. When reproduction is asexual,
phenotypic variability reduces the variance in the mean fit-
ness of the populations, and it can change the dynamics qual-
itatively. Sexual reproduction, modeled by explicit quanti-
tative genetics, magnifies these effects. It decreases the fitness
variance further and lowers the dynamic complexity of the
system, generally leading to simpler dynamics, for example
from chaos to a two-cycle.

Since May (1974, 1976) showed that very simple ecolog-
ical models can have very complicated dynamics, there has
been a debate about how often such dynamics occur in natural
populations. Although the early studies of May and others
focused on models set in discrete time, it has later been shown
that complex dynamics are a likely outcome in models with
continuous time if three or more species interact (Gilpin
1979; Takeuchi and Adachi 1983; Hastings and Powell 1991;
Vandermeer 1993). This lead some authors to propose that
chaos should be the rule rather than the exception (Schaffer

“—

much lower fitness variance because of asynchrony in the fluctu-
ations of the single phenotypes. The sexual system (6c¢) has simple
dynamics for the growth rates shown. For A < 2, it has a stable
equilibrium, and for 2 < A < 7 it moves on a two-cycle. For higher
A the dynamics become more complex. For these growth rates (not
shown), the fitness variance is lower than in the asexual population.
For all figures, the threshold density Ny, which has no effect on the
dynamics, was set = 1. The different systems were first iterated
long enough to eliminate transient behavior, and then the mean
fitness was plotted for many generations. This was done for discrete
values of \ in the interval [1, 5] with stepsize 0.01. The number
of phenotypes was 20, i.e., ¢ = 19.
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FiGc. 7. Competition between sexual and asexual host populations.

The figures show the proportion of sexuals in the total population.
The asexuals have twice the growth rate of the sexuals, which is
set = 5. Even for this low growth rate, the sexuals can coexist with
the asexuals, because sexuals with growth rate 5 have a much lower
fitness variance than asexuals with growth rate 10. In fact, with the
given phenotypic variability, ¢ = 30, the sexuals can resist com-
petition from asexuals for all growth rates = 2.5, and they drive
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1984; Schaffer and Kot 1986; Olson et al. 1988; Hastings et
al. 1993). However, the real systems where it has been dem-
onstrated are few (e.g., Sugihara and May 1990), and there
are quite a few empirical studies suggesting that complex
dynamics are rare in natural populations (Hassell et al. 1976;
Thomas et al. 1980; Mueller and Ayala 1981; Philippi et al.
1987). Even though some of these data have been reanalyzed
with new methods that lead to different conclusions (Turchin
and Taylor 1992), the traditional view is still that of a stable
world in which fluctuations are mainly caused by environ-
mental stochasticity (e.g., Berryman and Millstein 1989).
Thomas et al. (1980) suggested that group selection could
lead to simple dynamics by eliminating highly fluctuating
populations through stochastic effects after population crash-
es. But chaotic dynamics do not necessarily lead to very low
population densities (Hastings and Powell 1991), and more
detailed studies on the evolution of stability parameters in
models based on individual selection have yielded ambiguous
results (Heckel and Roughgarden 1980; Turelli and Petry
1980; Mueller and Ayala 1981; Hansen 1992; Ferriere and
Clobert 1992; Gatto 1993; Ferriere and Gatto 1993; Doebeli
1993, 1995c).

One approach to the question of what types of population
dynamics should prevail is to look for general mechanisms
that favor one type over another. The comparison between
metapopulation dynamics and the dynamics of the constituent
local populations is one example of this (Gilpin and Hanski
1991), and it has been shown that dispersal between local
populations can greatly simplify the dynamics (McCallum
1992; Hassell et al. 1992; Hastings 1993; Stone 1993; Doe-
beli 1995a; but see Bascompte and Solé 1994). These studies
suggest that mixing and asynchrony of interactions lead to
simpler dynamics. Since segregation and recombination in-
duce mixing, they can be expected to have stabilizing effects.
Indeed, we have shown in Doebeli and Koella (1994) that
segregation at a fitness locus simplifies population dynamics,
and we conjectured that this effect should be larger with more
phenotypic variability. It is shown here that this is true if the
phenotypic variability is given by a quantitative character
that is determined additively by many loci: the more variable
a population, the more stable its dynamics (Fig. 4). Overall,
the results indicate that quantitative variation and sexual re-
production both simplify population dynamics. That quan-
titative variability can have stabilizing effects on ecological
dynamics has been noted by Frank, who also studied host-
parasite systems with quantitative characters (Frank 1993,
1994). However, the stabilizing effect occurred in models in

—

the asexuals to extinction for growth rates = 30. What the figures
show is the effect of the parasitic tangled bank described in the
text. When all 31 phenotypes are present in the asexual population
(7a), the average proportion of sexuals is quite low. It increases
(7b) when the eight outer phenotypes are missing in the asexual
population (i.e., the phenotypes 0, 1, 2, 3 and 27, 28, 29, 30). Note
that the sexuals start to impose their two-cycle on the dynamics of
the system. When the 22 outer phenotypes are missing (i.e., the
asexual population contains only the phenotypes 11, ..., 19), the
sexuals drive the asexuals to extinction (7c): the impact of apparent
competition on the asexuals becomes too large. All threshold den-
sities were 1 for the figures.



544

which the character determined the degree of resistance to
one parasite, rather than susceptibility to different types of
parasites (Frank 1994). Also, there was no genetics in the
form of recombination or segregation in these models. Nev-
ertheless, it is encouraging that different forms of quantitative
variation seem to have similar general effects.

The models I used for sexual populations describe one sex
only, which corresponds to assuming that the dynamics of
the population are driven by that sex, independently of the
abundance of the other sex. Caswell and Weeks (1986) have
shown that two-sex models can have much larger fluctuations,
and that their dynamics can be more complicated than those
of one-sex models. It is an open question how much of the
stabilizing effect of sex would remain if the models used here
were extended to include two sexes.

If group selection favors simple dynamics, it should also
favor sex, which has a stabilizing effect. But the reduction
in fitness variance should also imply an advantage of sex
based on individual selection (Gillespie 1977). This was the
basis of Hamilton’s (1980) theory for the evolution of sex in
host-parasite systems, but his conclusions were partly refuted
by May and Anderson (1983), who used the epidemiological
and density-dependent fitness function (22) instead of Ham-
ilton’s phenomenological and frequency-dependent fitness.
However, with this model May and Anderson (1983) only
studied populations with two phenotypes, and we conjectured
in Doebeli and Koella (1994) that the advantage of sex should
be restored with greater phenotypic variability. This is con-
firmed here (Fig. 7). Moreover, the theory is not restricted
to host-parasite systems, as the reduction of fitness variance
also favors sex in the competition model (Fig. 5).

If the fitness of a phenotype depends on the density of
phenotypes that are similar to it, sex can be advantageous by
spreading out the phenotype distribution. Thus, if a sexual
population is competing against an asexual population that
contains only part of the sexual phenotypes, it can avoid
competition by producing phenotypes that are not present
among the asexuals. This is the tangled bank theory for the
evolution of sex (Bell 1982), and it works in both models
considered here (Figs. 5, 7). Koella (1988) came to similar
conclusions using Slatkin’s competition model. However, he
only considered the case when the asexual population consists
of a single phenotype.

Traditionally, a tangled bank is the consequence of com-
petition for resources. The present results show that it can
also occur in host-parasite interactions when the parasites are
phenotype-specific. Then the fitness of a phenotype is reduced
if the same phenotype is also present in another population,
which leads to an apparent competition for phenotype space.
This is analogous to the competition for enemy free space
in insect host communities that was described by Holt and
Lawton (1993). Under this apparent competition, the asexuals
are at a disadvantage because they breed true. A possible
consequence of this parasitic tangled bank is to prevent in-
vasion of an asexual phenotype into a sexual population: if
the corresponding sexual phenotype is abundant, the fitness
of the asexual phenotype is low despite its initial rarity. How-
ard and Lively (1994) studied invasion of asexuals into a
sexual population and concluded that for intermediate to low
degrees of parasitism, the advantage of sex due to evading
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parasites by producing rare phenotypes is not enough to pre-
vent invasion, because the asexuals are initially also rare and
therefore not heavily parasitized. It is straightforward to de-
fine the analogues of the parameters used by Howard and
Lively (1994) for the present model by taking time averages.
Then a different picture emerges: the parasitic tangled bank
prevents invasion of asexual phenotypes even for very low
degrees of parasitism, and no appeal to the mutation accu-
mulation theory is necessary as in Howard and Lively’s
(1994) model.

The models I used here are conceptually based on Slatkin’s
(1980) quantitative genetic model for population dynamics.
In his model, the genetics are described implicitly by assum-
ing a normal character distribution at the beginning of each
generation. Selection then acts on the mean and the variance
of this distribution. One consequence of this is a drastic re-
duction in the dynamic complexity of the system: it always
has a stable equilibrium (Slatkin 1980). Similar observations
have been made by Saloniemi (1993) for a Lotka-Volterra
predator-prey system. Modeling quantitative genetics with
normal character distributions broke the neutral stability of
the original model without genetics, and either lead to ex-
tinction of both species or to coexistence with a stable equi-
librium. Thus, even though Abrams (1992) gave an example
where quantitative genetic models with normal character dis-
tributions produced population cycles, it seems that normality
is in general too rigorous an assumption if the whole range
of population dynamic behavior is the focus of interest. An
alternative approach is to model the genetics of a quantitative
character explicitly. This makes the models less rigid and
has consequences even when the dynamics remain simple
and the total density reaches an equilibrium, at which the
genetic structure can still have nonequilibrium dynamics
(Fig. 3). This indicates that modeling the genetics of a quan-
titative character in more detail reveals insights about the
character’s impact on population dynamics not gained under
the usual assumption of normal character distributions. It will
be interesting to see the effect of explicit genetics in other
population dynamic models, for example in models for eco-
logical character displacement, or in predator-prey systems
that are based on quantitative characters.
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