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AN EXPLICIT GENETIC MODEL FOR
ECOLOGICAL CHARACTER DISPLACEMENT!

MICHAEL DOEBELI
Zoology Institute, University of Basel, Rheinsprung 9, 4051 Basel, Switzerland

Abstract. Realistic models for ecological character displacement should incorporate
population genetics. In Slatkin’s pioneering model (Slatkin 1980), the genetics of the quan-
titative character determining the competitive interactions are modeled by assuming that
the character is normally distributed in each generation. Only the mean and the variance
of the character distributions change over time. With symmetric ecological assumptions
for the two competing species, and with normally distributed resources that are equally
used by both species, this model did not yield significant displacement. This has led to the
belief that ecological asymmetries or constraints on resource use, €.g., by constraining the
phenotypic variances, are necessary for character displacement. I argue that the reason for
the negative result in Slatkin’s original model is that the genetics are modeled too rigidly.
With a more flexible genetic model, obtained by explicitly modeling many loci with additive
effects, character displacement occurs as a rule even for symmetric ecological assumptions
and without constraints on the phenotype distributions. The model can also be used in other
contexts than competition for resources. For example, character displacement in a host—
parasite system can lead to parasite specialization. The results suggest that more detailed
genetic models yield a finer resolution of the interaction between population genetics and
ecological dynamics. Explicit genetics lead to more insights than the usual quantitative
genetic assumption of normal character distribution.

Key words: apparent competition; character displacement; multilocus genetics; population dy-

‘ namics; quantitative genetics.

INTRODUCTION species is symmetrical, and there are no constraints on
the utilization of the resources. However, this null-
model does not yield significant character displacement
(Slatkin 1980, Taper and Case 1985). Substantial dis-
placement only results when ecological asymmetries in
the carrying capacity curves of the species or in the
competition functions are introduced (Slatkin 1980,
Milligan 1985, Taper and Case 1992a), or when re-
source use is constrained, e.g., by constraining the phe-
notypic variance in the species (Slatkin 1980, Taper
and Case 1992a), or by introducing explicit resource
dynamics (Taper and Case 1985). Although asymme-
tries and constraints are common in natural systems
(Taper and Case 1992b), analyzing character displace-
ment under symmetrical and unconstrained conditions
is also important, for example when studying adaptive
radiation from ancestral lineages into otherwise empty
phenotype space (e.g., Schluter and McPhail 1993,
Schluter 1994). Moreover, studying this scenario with
its few assumptions can reveal mechanisms preventing
or enhancing character displacement that are otherwise
masked by additional assumptions, and may thus give
new insights for other scenarios as well. In this paper
I show that the null-result for Slatkin’s null-model de-
rives from the way the quantitative genetics are mod-
eled, rather than from the lack of asymmetries or con-
straints. Thus, while character displacement is more
! Manuscript received 24 October 1994; revised 1 June likely under such conditions, they are not necessary

1995; accepted 8 June 1995; final version received 10 July for displacement to occur.
1995. Slatkin (1980) modeled the genetics by assuming

If the strength of competition between individuals is
determined by a quantitative character, selection could
lead to a permanent difference in the distributions of
the character in two competing species. Such ecological
character displacement is an intuitively appealing ex-
planation for phenotypic differences among related
sympatric species. However, it is controversial how of-
ten observed patterns are due to ecological character
displacement, and much theoretical work has been de-
voted to the study of the conditions under which it can
occur (e.g., Bulmer 1974, Crozier 1974, Lawlor and
Maynard Smith 1976, Roughgarden 1976, Slatkin
1980, Matessi and Jayakar 1981, Case 1982, Lundberg
and Stenseth 1985, Milligan 1985, Rummel and Rough-
garden 1985, Taper and Case 1985, Abrams 1986,
19874, b, 1990, Brown and Vincent 1987, Gotelli and
Bossert 1991, Taper and Case 19924, Vincent et al.
1993). These efforts have been reviewed by Taper and
Case (1992a). They argued that, among the models they
compared, the most realistic is the quantitative genetic
model of Slatkin (1980), because it incorporates pop-
ulation genetics and contains the fewest constraining
assumptions. It can be considered as a null-model: the
competing species are assumed to have the same car-
rying capacity curves, competition in and between the
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that random mating results in normal character distri-
butions in each generation. This is very common in
quantitative genetic theory, but it seems to be too rigid
an assumption for studying ecological dynamics (Doe-
beli 1995b). It obscures important details of the dy-
namics of single phenotypes. I propose a more flexible
quantitative genetic model that keeps track of the fre-
quencies of single phenotypes. This explicit modeling
of the genetics leads to character displacement even in
the null-model, i.e., without ecological asymmetries
and without constraints on the phenotype distributions.
Therefore, conclusions from models for character dis-
placement depend not only on the ecological features
of the models, but also on the genetic assumptions. In
particular, more detailed genetic models make displace-
ment more likely. The reason seems to be that these
models describe more subtly how competition shapes
character distributions, so that inherent tendencies for
divergence manifest themselves more clearly. Thus
ecological character displacement might be more com-
mon than previously believed.

THE QUANTITATIVE GENETIC MODEL

Following Slatkin (1980), my starting point was the
models for the dynamics of populations with discrete
generations:

Ny = Nf(N). Y]
Here N, is the density of the population at time ¢, and
A(N) is the fitness function. Exploitative competition
for resources is modeled implicitly by assuming that
the fitness depends on the density: the higher N, the
lower f(N). Slatkin (1980) used the logistic fitness func-
tion

f(N)=1+r——IrEN. )

Here 1 + ris the intrinsic growth rate of the population,
and K is its equilibrium density, i.e., its carrying ca-
pacity. Although often used, the logistic function has
the drawback of negative fitness values for high den-
sities. This is not a problem in the homogenous and
deterministic setting given by Eq. 2, because such high
densities are never attained if the parameter r is chosen
appropriately. However, in phenotypically variable
populations like those considered below, negative fit-
ness values can occur even for biologically reasonable
choices of r if the system does not have stable equi-
librium dynamics. This happens because the densities
of the single phenotypes in the population add up to
the total density that determines the fitness, and this
total density can fluctuate to values that are too high.
Therefore, for some of the results I used the following
alternative for the fitness function:

A

1 + (aN)*’ @)

JN) =

This function was considered by Bellows (1981) to be
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the most generally applicable one-dimensional com-
petition model. The parameter A is the intrinsic growth
rate of the population. Depending on the assumptions
about the competitive process that leads to density de-
pendence, the parameter b reflects different types of
competitive interaction (e.g., Hassell 1975, Schoener
1976). The parameter a determines the carrying ca-
pacity of the population (Doebeli 1995a). A low a im-
plies a high carrying capacity and vice versa. Below I
will use Eq. 2 to compare my results with those of
Slatkin (1980) when the ecological dynamics exhibit a
stable equilibrium, and I will use Eq. 2’ to show how
character displacement occurs with complex dynamics.
As was pointed out by Milligan (1985), exploitative
competition is not the only interpretation consistent
with fitness functions that have the same general prop-
erties as Eqgs. 2 and 2'. Thus the results obtained here
generalize to other situations in which frequency- and
density-dependent selection occurs. I come back to this
point in the discussion, where I indicate how the model
developed here can lead to character displacement in
a host—parasite system.

Models 2 and 2’ were first extended to describe a
phenotypically variable population in which the phe-
notypes are determined by a quantitative character z.
Then the extent of competition between two individuals
depends on their relative character value: competition
is more intense between individuals with similar phe-
notypes. For simplicity I assumed that the character z
takes on values in the interval [0,c], where ¢ is a pos-
itive integer. This facilitates introducing genetics (c
will be the number of loci), and it does not imply any
loss of generality, since an appropriate rescaling always
leads to such a situation. At the beginning of generation
t, pA2) is the frequency of the phenotype with character
value z. Selection due to competition acts on the dis-
tribution p,(z) before random mating in each generation.
It is determined by the phenotypic fitness functions f,,
z € [0,c]. These functions now depend on the total
density of the population, N, as well as on the phe-
notypic distribution p,. Following Slatkin (1980), they
have the form

r ‘ ! ’ ’
fz(Nt’ pt) =14+r- EZ—)-N,J; pt(z )OL(Z, Z )dZ (3)

for the logistic model, and

A

F N, p) = (3"

. b
1+ {a(z)Nr f pz)a(z Z')dZ’}
0

for the alternative model. The function a(z, z') mea-
sures the strength of competition between individuals
of phenotypes z and 7', so that the weighted sum

N, f pAz oz, 2')dz’ 4)
0
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is the density experienced by an individual of pheno-
type z in a population with total density N, and phe-
notype distribution p, Like Slatkin (1980), I used a
symmetric form for a(z, z'):

&)

a(z, z') = exp(-—-————_(Z — ZI)Z)

’ 202 ‘
The parameter ¢,? determines the niche width. Al-
though commonly used, this function has the caveat of
implying density-independent competition coefficients.
It has been argued that density-dependent competition
coefficients are more realistic (Abrams 1980), but I
have not explored this further complication.

The functions K(z) and a(z) in Eqgs. 3 and 3’ deter-
mine the carrying capacities for the different pheno-
types. Again following Slatkin (1980), I assumed that

they are of the form

K@) = agexp| ———— (©)
k
and .
2
c
:-5)
, a(@) = agexp\ ——— |, ©")
k
respectively.

This implies that the carrying capacity of the pheno-
types declines in a Gaussian form towards the edges
of the character interval [0,c]. Thus extreme pheno-
types have less resources. The choice of a symmetric
a(z,z') and of Gaussian K(z) corresponds to Slatkin’s
null-model that did not yield character displacement.
He showed that displacement is more likely with in-
creasingly asymmetric a(z,z') and non-Gaussian K(z)
(Slatkin 1980). Although such asymmetries may be
common in nature, I want to show here that they are
not necessary for character displacement. When the
genetics are described explicitly, displacement occurs
even with Slatkin’s original symmetric assumptions.

Let g(z) denote the distribution of the phenotypes
after selection. Then

W, @)

q(z) =

where

W, = f PLFN,, pldz ®
[

is the mean fitness of the population at time 7 The
frequency g/z) is the frequency of gametes that phe-
notype z contributes to the gamete pool. The basic ques-
tion is, how does the distribution g,(z) determine the
distribution p,,,(z)? In principle, this question can be
answered if all the genotype frequencies are known. In

MICHAEL DOEBELI

Ecology, Vol. 77, No. 2

practice, this is not feasible if there is a large number
of loci. The classical quantitative genetic method is to
assume that the distribution p,, () is normal, with mean
and variance calculated from the mean and variance of
the distribution g,(z). In contrast, I used the following
procedure.

I assumed the simplest genetic model, in which the
character z is determined additively by ¢ haploid loci
(recall that I assumed the upper boundary c of the char-
acter interval to be an integer). Each locus has two
alleles whose effects are 0 and 1, respectively. Thus
the haploid individuals are described by a string of 0’s
and 1’s of length ¢, corresponding to which allele is
present at each locus, and I assumed that the phenotype
of an individual is given by the number of 1’s in its
genetic string: if it has the 1-allele at z loci and the O-
allele at the remaining c—z loci, its phenotype is z. This
means that there is no environmental variance in the
phenotype. There were three reasons for this assump-
tion.

First, my goal was to see the effect of explicitly
modeling the genetics with as few confounding factors
as possible. Second, it follows from the definition of
the fitness function of the phenotypes that the results
obtained without environmental variance will remain
qualitatively the same if a small amount of environ-
mental variance is introduced. This was confirmed with
a few numerical simulations. Small environmental var-
iances were used in the models of Slatkin (1980) and
Taper and Case (1985), on which the present model is
based. Last, and least, there is no conceptual difficulty
in introducing environmental variance in the model,
but it slows down the computer simulations substan-
tially.

Phenotypes thus ranged from 0, displayed by indi-
viduals having the 0-allele at each locus, to ¢, which
corresponds to having the 1-allele everywhere. To see
the effect of mating, I had to determine the phenotypic
distribution of the offspring, given the phenotypes of
the parents. To do this, I assumed that the allele of an
offspring at a particular locus has probability 1/2 to
come from either parent. This corresponds to assuming
Mendelian segregation and free recombination between
loci.

Suppose that the phenotypes of the parents are i and
J, so that one parent has i 1’s and ¢—i 0’s in the genome,
while the other has j 1’s and ¢—j 0’s. The number of
loci at which both parents have the 1-allele is defined
as the overlap /. From the / overlap loci, the offspring
inherits the 1-allele. Also, there are i + j — 2/ loci at
which one parent has the 1-allele and the other one has
the O-allele. By assumption, the offspring has either
one of the alleles with probability 1/2 at these loci. At
the remaining loci both parents have the 0-allele, hence
so does the offspring. It follows that the phenotype of
the offspring lies in the interval

(Li+j -1, ©)
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and that the phenotype distribution in this interval is
binomial. Therefore, if p} denotes the phenotype fre-
quency distribution of offspring having parents with
phenotypes i and j and with overlap /, we have

i+ (1)
z—1 2

10
forze [[,i+j— 1] (10)

pi) =
0 otherwise.

To determine the frequency distribution p;; for the off-
spring phenotype of parents i and j, we have to take
the sum of the distributions determined by the overlaps,
weighted by the probability that a particular overlap
occurs:

p;= > Pr(overlap = I)-p!. 11

all overlaps
Eq. 11 means that the phenotype distribution p,, of the
offspring is a weighted sum of nested binomial distri-
butions. The weights are easily calculated: for phe-
notypes i = j, the probability to have overlap [ is

)

Here /lies in the interval of all possible overlaps [/,;../],
where [, is the minimal possible overlap (since i =
J, j is the maximal possible overlap). It is easy to see
that [, is equal to the larger of the numbers i + j —
c and 0. To save computer time, one can approximate
the correct distribution Eq. 11 by using only the out-
ermost of the nested distributions in Eq. 11. That is,
one can assume that the overlap is always minimal and
use the approximation

Pr(overlap = [) = (12)

p, = pi™. (13)

This approximation assigns slightly higher probabilities
to extreme offspring phenotypes, and slightly lower
probabilities to common phenotypes. The approximation
makes the numerical simulations faster by a factor of
more than four. Thus, the dynamic behavior of the mod-
els can be explored much more efficiently when using
Eq. 13 instead of Eq. 11, especially when the number
of loci is large. A few simulations with the exact formula
Eq. 11 showed that approximation 13 yields qualita-
tively correct results. An indication of how good the
approximation is, is given below in Fig. 1.

Given the frequency of gametes ¢,(z) coming from
phenotypes with character z, we can now determine the
distribution p,,,(z). It is given as the sum of the off-
spring distributions p,, weighted by the frequency of
matings between parents of phenotypes i and j, i.e., by
the factor g,(i)q,(j). Thus

GENETICS AND CHARACTER DISPLACEMENT

513
i@ = 2 4Da(Dp ). (14)
LJ
Together with the recursion equation
Ny, = NW, (15)

where W, is the mean fitness Eq. 8, Egs. 7, 11, and 14
determine the dynamics of this quantitative genetic
model. I emphasize that this model is ecologically the
exact analogue of the basic model in Slatkin (1980).
What is different here is the genetics, i.e., the way the
phenotype distribution p,,, is determined from the ga-
mete distribution g,(z). To reiterate, Slatkin assumed
that p,,,(z) is normal, with the mean and variance de-
termined from g¢,(z), while I used Eqs. 11 and 14 to
describe the transition from g,(z) to p,,,(z). Eq. 11 was
derived under the assumption of free recombination
between haploid loci. In principle, analogous equations
could be derived for more complicated genetic as-
sumptions such as diploidy and linkage, but I have not
explored these possibilities. In the next section I report
the results obtained for the competition between two
species whose phenotypic fitness functions depend on
the joint distributions of the phenotypes in both species,
and whose genetics are described by the model pre-
sented here.

RESULTS

To model competition between two species I as-
sumed that both species have the same range of possible
phenotypes given by the quantitative character z € [0,c],
and that both have the same ecological parameters. Thus
each species is limited by the same resources, and in-
dividuals of each species utilize these resources in the
same way, which means that the functions K(z) and re-
spectively, a(z), Eqs. 6 and 6, which determine the car-
rying capacity of phenotype z, are the same in both
species. Moreover, the competitive impact of the indi-
viduals on each other does not depend on belonging to
the same or different species. This implies that the ef-
fective density that an individual of phenotype z expe-
riences under competition at a given time ¢ is

Nt (2) = Ny, f P12z ') dZ’
0

+ Nz,:f P22z, 2') dZ'. (16)
0

Here N,, are the total densities of the two species at
time ¢, and p,, are the phenotype distributions in the
two species, where i = 1, 2. Formula 16 holds for
individuals of phenotype z regardless of which species
they belong to. It follows that the phenotypic fitness
functions in both species are

JotN1o Nop Pros D20

r .
=1+r- %Ne«,,(Z) =12 Aamn

for the logistic model, and
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i1 Nops Pro D2

A

"1+ k@Na@r 712

a7
for the alternative model. After selection given by these
functions, random mating in each species determines
the phenotypic distributions p,,,,, i = 1, 2, according
to the model described in the previous section. The
total densities N,,,, are given by

N, = N W,, (18)

where W,, is the mean fitness of species i, which is
given by an equation analogous to Eq. 8.

The basic density-dependent models given by Egs.
1 and 2 or 2’ can exhibit very complicated dynamics
(May and Oster 1976). Although phenotypic variability
given by the quantitative character has a stabilizing
effect (Doebeli 1995b), the system can still have com-
plicated dynamics. But first I considered the case where
the two populations exhibit stable equilibrium dynam-
ics. This was always the case in Slatkin (1980), and to
make the comparison with his results I used the logistic
Eqgs. 2 and 17, respectively, for this scenario. Results
similar to the ones reported here can be obtained for
the alternative model (Eq. 17). At the equilibrium, the
.character distributions in the two species have means
Z, and Z, and variances o,? and 0,2 By definition, sig-
nificant character displacement is said to occur if the
difference between the means is greater than the av-
eraged standard deviation (Taper and Case 1985), i.e.,
if

(Z_l _ Z2|

> 1.
lo, + a,)2

19)
This inequality was never satisfied in Slatkin’s model.
In the present model, however, it holds as a rule. Two
typical situations are shown in Fig. 1, where the means
and variances of the character distributions in the two
species are plotted as a function of time. Taper and
Case (1985) reanalyzed Slatkin’s model and noted that
some displacement occurs for certain parameter values,
although never enough for Inequality 19 to hold. A
critical parameter is the ratio o,%/0 2, where o, is the
variance of the resource utilization curve Eq. 6, and
o, determines the niche width in Eq. 5. Intuitively, one
would expect that a larger niche, i.e., a smaller o,, and
a higher o, hence a higher 0,%c.2 would facilitate
displacement, because there is room for more niches
along the resource axis. Indeed, Taper and Case (1985)
showed that some displacement occurs as ¢,%/c,? in-
creases above 2. This trend was confirmed in the pres-
ent model, but significant displacement as defined by
Inequality 19 occurred even for ¢,%/c,2? that are much
smaller than 2 (Fig. la). The displacement was larger
for larger values of o,%/c 2 (Fig. 1b).

At the equilibrium, the character distributions were
approximately normal (Figs. 1c and d). This shows that
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it is not normality per se that prevented displacement
in Slatkin’s model, but how normal phenotype distri-
butions were achieved. In Slatkin’s model, normality
was an assumption. Here the corresponding assumption
was a binomial offspring distribution, Eq. 10. Nor-
mality of the phenotype distributions emerged as a con-
sequence both of this assumption and of the ecological
dynamics of the single phenotypes. In contrast, Slat-
kin’s model is more rigid in allowing only the total
density of the population and the mean and the variance
of the phenotype distributions to change over time. In
terms of genetics, what prevents character displace-
ment in his model are the variances: they evolve to
values that are too high to allow divergence of the
phenotypic means. However, displacement can occur
if the variances are constrained by assuming them fixed
at a value that is much lower than the one they would
attain if they were free to evolve (Slatkin 1980, Taper
and Case 1992a). Small variances imply a small de-
nominator in Inequality 19, but, more importantly, they
allow the phenotypic means to diverge further than with
unconstrained variances, because constraints lead to
underutilized resources and consequently to more niche
space (Milligan 1985). That constraints on the variance
of the phenotype distributions can be important for
ecological character displacement has been pointed out
repeatedly (Slatkin 1980, Matessi and Jayakar 1981,
Milligan 1985).

In the explicit genetic model presented here, how-
ever, no additional assumptions constraining the phe-
notypic variance were needed for displacement. The
variances typically evolved to values that were low
enough for significant displacement to occur. Like nor-
mality of the phenotype distributions, the evolution of
the variances to relatively low values was an emergent
property of the system, determined by the explicit ge-
netics and the ecological dynamics resulting from se-
lection through competition for resources. The evolu-
tion of the variance can be seen in Figs. 1b and 2. (In
Fig. la, plotting started after 50 generations, after
which the variance was already very close to the equi-
librium value.)

The explicit genetic model and Slatkin’s model with
fixed variances can be compared as follows. For a given
set of parameters o, 0, etc., one can determine the
equilibrium value to which the variances evolve in the
explicit model. One can then build the version of Slat-
kin’s original model corresponding to the given param-
eters, and fix the variance at the value obtained from
the explicit model. From this it can be seen that if
displacement occurred in the explicit model, it also
occurs in Slatkin’s model (where it would not occur if
the variance were free to evolve). Moreover, the vari-
ance obtained from the explicit model typically lies
well below the upper limit of values that still yield
displacement in Slatkin’s model (recall that only fixed
variances below a certain limit lead to displacement in
this model). Thus the two approaches can be reconciled
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Fi1G. 1. In parts a and b, the means and standard deviations of the character distributions in two competing species are

shown as a function of time for two different values of ¢,%/c,2 The systems have globally stable equilibria, in which the
species have evolved to different niches in phenotype space. The niche separation is symmetric because of the symmetric
ecological assumptions. Because at the equilibrium both species have the same standard deviation, it is shown for only one
species. The logistic fitness functions (Eq. 17) were used. In all panels, the dotted lines represent results obtained with the
exact formula (Eq. 11) in the genetic model, while the continuous lines show results obtained with Approximation 13. In
part a, the value of the critical parameter 0,%/0,? (see Results) is well below 2, yet the condition (Inequality 19) for significant
displacement is satisfied at the equilibrium. Displacement increases and occurs more rapidly for larger ¢, %/c 2 (part b). For
the lower value of 0,0, displacement is larger and occurs faster with the exact genetic model than with the approximation.
For the higher value of 0,%/0,? the difference between the two models is very small. In parts ¢ and d, the character distributions
in the two populations are shown at the equilibria corresponding to parts a and b. The distributions are approximately normal,
and for both values of ¢,%/0,? the exact model yields a slightly lower variance. The parameter values for the figures were:
number of loci ¢ = 30; r = 1.6, K, = 1000 in the basic fitness function (Eq. 2) (K, determines the maximal carrying capacity
in Eq. 6, see The quantitative genetic model); o> = 59.3 in Eq. 6, and 0,2 = 40 in Eq. 5 for parts a and ¢, hence ¢,%/c,? =
1.48; 0> = 122.7 and ¢,2 = 30 for parts b and d, hence ¢,%0,2 = 4.09. The initial character distributions for the simulation
runs were obtained by applying one bout of mating according to the genetic model to a uniform distribution. In part a,
plotting started after 50 generations.

2). In this state, the fitness is not constant as a function
of the character value. Rather, it has two minima, cor-

with additional assumptions in the classical quantita-
tive genetic model. The basic difference remains that

displacement occurs in the explicit genetic model with-
out constraints on the phenotypic variances.

In this model, phenotypic variation is constantly pro-
duced by mating, for even if two parents have the same
phenotype, the offspring can have a range of pheno-
types, because the parent phenotypes are determined
by 1-alleles at different loci. The non-zero equilibrium
value of the variance is determined by frequency-de-
pendent selection, which is operating because the fit-
ness of a phenotype decreases if more individuals of
the same phenotype are present. The effect of frequency
dependence can be illustrated by plotting the fitness of
the different phenotypes in the equilibrium state (Fig.

responding to the two peaks of the equilibrium char-
acter distributions in the two species: fitness is <1 for
the most common phenotypes due to frequency depen-
dence. Fitness has two maxima at the edges of the
character interval: even though there are fewer avail-
able resources, fitness is >1 for extreme phenotypes
because they are rare. There is also an intermediate
local fitness maxima, which lies exactly in the middle
of the character interval because of the symmetry in
the model. Mean fitness is 1, but in each generation
frequency-dependent selection tends to flatten the char-
acter distributions and hence to increase the phenotypic
variance. Random mating then restores the original dis-
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* FI1G. 2. Phenotypic fitnesses, and character distributions

before and after selection, in the equilibrium state. (A) Due
to frequency dependence, the fitness has two minima at the
peaks of the character distributions in the two species. The
fitness has an intermediate local maximum and two maxima
at the edges of the character interval. Mean fitness is 1. The
dotted line is drawn for reference. (B) The continuous curves
show the phenotypic distributions in the two species at the
beginning of each generation in the equilibrium state. The
dotted lines show the distributions after selection, but before
mating. Selection flattens the distributions and hence increas-
es their variance. When mating is applied to the dotted dis-
tributions, the continuous distributions are restored. The exact
genetic model (Eq. 11) was used for the figure. The parameter
values were: number of loci ¢ = 30; r = 1.6, K, = 1000, 0,2
= 150, and 0,2 = 20.

tributions that were present at the beginning of the
generation. Thus, at the equilibrium, phenotype distri-
butions are constant when censused at the same stage
in different generations, but within generations the dis-
tribution after selection, given by g/(z) in Eq. 7, is dif-
ferent from the distribution before selection, p,(z). Ran-
dom mating exactly compensates the selective forces,
so that p,,,(z) = p(2). An example of this is shown in
Fig. 2. In Fig. 2a, the fitness is plotted as a function
of the character value in the equilibrium state, and in
Fig. 2b the equilibrium character distributions are
shown before (continuous line) and after (dotted line)
selection in a single generation. The difference between
the two distributions illustrates the effect of frequency-
dependent selection, which decreases the frequency of
common phenotypes and increases the frequency of
rare ones.
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Frequency dependence is one of several mechanisms
thought to play a role in the maintenance of phenotypic
and genetic variability (Barton and Turelli 1989). Other
such mechanisms are mutation—selection balance, het-
erosis, and pleiotropy (Barton and Turelli 1989, Bulmer
1989), which do not occur in the model studied here.
In general, the evolution of genetic variances and co-
variances is a complicated problem (Turelli 1988, Tur-
elli and Barton 1990). In many quantitative genetic
models, this problem is decoupled from the evolution
of phenotypic means, because genetic covariances are
parameters in these models that do not themselves
evolve (Turelli 1988). One approach to couple these
problems is to study explicit genetic models, in which
the evolution of both the means and the variances
emerges from the dynamics of the interactions between
single genotypes or phenotypes. The present model
constitutes a very simple example of this approach. It
shows how frequency-dependent selection on single
phenotypes, together with a simple algorithm for the
effect of mating on phenotypic distributions, deter-
mines non-zero equilibrium variances. How competi-
tion for a resource between individuals of a single spe-
cies can maintain phenotypic variance has been dis-
cussed by Slatkin (1979). If the present model is ap-
plied to a single species, the variance that is maintained
at equilibrium is larger than when two species are com-
peting with each other, which again illustrates the effect
of frequency dependence. Competition between two
species reduces the equilibrium variance because the
niches get smaller. However, it can reduce the variances
to zero only if it is intense enough for the species’
phenotypic means to evolve to the extreme values 0
and ¢, which does not happen for reasonable choices
of the parameters, because the extreme phenotypes are
selected against due to their low carrying capacities.

The amount of variation that was maintained at equi-
librium depended on the parameters o, and o,, and on
the ratio 0*/d,2. On the one hand, a larger range of
available resources, expressed by a higher o,, and a
smaller o, (i.e., less, intense competition) both tended
to increase the variance of the character distributions
at equilibrium. On the other hand, larger values of ¢,%/
0,2 tended to decrease the variance, because character
displacement was enhanced, which moved the species’
phenotypic means to more extreme values. Now o0,%/
0,2 is increased by both larger o, and smaller o,, and
these opposing trends determined the equilibrium vari-
ance. Its value did not depend on the initial densities
and character distributions assumed at the beginning
of the simulations. This reflects another difference to
Slatkin’s model. While there was neutral stability with
many different stable equilibria in his model, the nu-
merical simulations indicated that there were only two
globally stable equilibria in the systems studied here,
corresponding to the interchangeability of the two spe-
cies.

The results also did not depend qualitatively on using
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Approximation 13 instead of the exact formula (Eq.
11) for the genetic model. Other numerical simulations
confirmed what is shown in Fig. 1: if anything, dis-
placement was larger in the exact model. This justifies
the use of the approximation, at least in the present
context. That the variances of the phenotype distri-
butions were slightly smaller when using the exact
model was expected, since the approximation implies
a spreading of the offspring distribution.

Character displacement also occurred as a rule when
the system exhibited more complicated dynamics. To
study these cases, I used Eq. 2’ instead of the logistic
function (Eq. 2) as the basic model. With fluctuating
population sizes, the logistic fitness (Eq. 17) can attain
negative values, which happens when the densities of
the single phenotypes add up to effective population
sizes (Eq. 16) that are too high. This does not occur
for expression 17’, which makes this model better suit-
ed for studying character displacement when the eco-
logical dynamics are complicated. Such complex dy-
namics lead to non-equilibrium dynamics also for the
character distributions in the two species. They were
not constant over time, and their means and variances
fluctuated. However, the size of the fluctuations was
usually much smaller than the average difference be-
tween the means, and this average difference was again
larger than the average variance in either species. Even
though the variances were not constant, they were on
average low enough to allow divergence of the phe-
notypic means: the characters were displaced. This is
shown in Fig. 3, for a system with chaotic dynamics.
Significant displacement occurred for a wide range of
parameters. Only two factors tended to prevent it. First,
it did not occur for small values of ¢,%/0,2. Second, if
the ecological dynamics exhibited very large fluctua-
tions, then the fluctuations in the means of the character
distributions also became large and of similar size to
the average difference between the means, so that no
permanent displacement was discernible.

With the present model one can also study the effect
of the number of loci on character displacement. To do
this, I assumed a given maximal carrying capacity a,
in Eq. 6, and a given fraction of a, as the carrying
capacity for the extreme phenotypes 0 and c. This
means that 0,2 waslarger when there were more loci.
To make the comparison with different numbers of loci
for fixed values of the critical parameter 0,20 2, I also
assumed that the niche width o, was larger when there
were more loci. This compensated for the larger range
of available resources. The general effect of increasing
the number of loci was then to decrease the value of
o*/o,? for which character displacement first occurred.
In particular, when the number of loci was large
enough, displacement occurred even if 0. %0 .2 < 1, i.e.,
even if the niche width was larger than the range of
available resources. In general, the higher flexibility
gained from a larger number of loci made displacement
more likely. This conforms with the general theme of
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Fi1G. 3. Mean and standard deviations of the character

distributions for two populations that do not exhibit equilib-
rium dynamics. Here the fitness functions had the alternative
form (Eq. 17), and Approximation 13 was used in the genetic
model. Again, the standard deviation o is shown only for one
species, since it has similar dynamics in both species. The
ecological dynamics are chaotic, and the means and variances
of the character distributions fluctuate. The size of the fluc-
tuations is smaller than the average difference between the
means. This average difference is much larger than the av-
erage standard deviation, which shows that character dis-
placement has occurred. Note the intermittent outbursts of
erratic fluctuations of the means that interrupt longer periods
of more regular dynamics. The parameter values for the figure
were: number of loci ¢ = 30; A = 15, b = 4.18, @, = 0.1 in
the basic fitness function (Eq. 2'); ¢,2 = 42.6 in Eq. 6', and
o2 = 16 in Eq. 5.

this paper: less rigid and more detailed genetic models
facilitate character displacement.

DiscussioN

Character displacement under
exploitative competition

The ecological assumptions in the model presented
here are the same as in Slatkin’s (1980) basic model:
two species are limited by a common resource; resource
utilization depends on a quantitative character and is
the same in both species; the extent of competition
between two individuals either of the same or of dif-
ferent species depends on their relative character value,
and competition is symmetric, given by the function
a(zz'), Eq. 5; finally, the resource utilization curve (Eq.
6) is assumed to be Gaussian. The models only differ
in the way the genetics of the quantitative character
are modeled, i.e., in the way mating determines the
phenotypic distribution in the next generation, given
the phenotypic distribution after selection due to com-
petition has occurred. Slatkin assumed that the distri-
bution after mating is normal with the mean and vari-
ance determined from the distribution after selection,
but before mating. In contrast, I modeled the genetics
of many loci with additive effects explicitly. Significant
character displacement does not occur in Slatkin’s mod-
el, while it is the rule rather than the exception in the
model presented here. This suggests that modeling the
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genetics in more detail can lead to very different pre-
dictions under the same ecological assumptions.

The central step in the genetic model is to determine
the phenotypic distribution of the offspring given the
phenotypes of the parents. This was done here for a
very simple genetic scenario, letting the character value
be determined by the number of 1-alleles, regardless
of their position in the genome. In principle, the tran-
sition from the parent phenotypes to the offspring dis-
tribution can also be done under more complicated ge-
netic assumptions, e.g., with diploidy or linkage, but
the description of the model would be more compli-
cated. I do not know to what extent the results would
be different, but I suspect that displacement would still
be very likely. The basic feature of this model is the
greater flexibility obtained from explicitly describing
the frequencies of single phenotypes. This allows more
subtlety in the way phenotype distributions are molded
by competition. That greater flexibility facilitates char-
acter displacement is confirmed by the observation that
increasing the number of loci that determine the quan-
titative character makes displacement more likely.

A list of examples of character. divergence in nature
is given in Taper and Case (1985: Table 1). Slatkin’s
basic model can only explain these patterns if addi-
tional genetic or ecological assumptions are made. For
example, displacement occurs in his model if resource
use is constrained, either by explicitly modeling the
resource dynamics (Taper and Case 1985), or by con-
straining the phenotypic variance in the competing spe-
cies (Slatkin 1980). Thus, variances that are fixed at a
value that is sufficiently lower than the one to which
they would evolve without constraints can lead to di-
vergence of the phenotypic means and to character dis-
placement. Such constraints are often thought to be
necessary for ecological character displacement. (Slat-
kin 1980, Matessi and Jayakar 1981, Milligan 1985),
but they are not needed in the explicit genetic model
presented here, in which the variances typically evolve
to values that are consistent with displacement.

Another possibility to explain displacement with
Slatkin’s model is to assume asymmetries in the effects
of competition, or in the way resources are used by the
competing species (Slatkin 1980, Milligan 1985, Taper
and Case 1992a). Such ecological conditions are likely
to be satisfied often in natural systems, and indeed
could probably be argued in most examples given in
Taper and Case (1985). Nevertheless, studying the sym-
metric case with unconstrained resource use may also
be important. For example, for adaptive radiation from
a common ancestor into otherwise empty phenotype
space, symmetric and unconstrained conditions are at
least initially realistic. Therefore, it may be necessary
to assume these conditions in order to explain adaptive
radiation with ecological character displacement
(Schluter and McPhail 1993, Schluter 1994). Moreover,
finding the mechanisms that enhance or prevent dis-
placement may be easier in this case, because there are
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fewer confounding factors. I do not claim that ecolog-
ical asymmetries and constraints are rare in nature, but
that they are not a necessary condition for ecological
character displacement. Theoretically, none of the ex-
tensions mentioned above is needed. Instead, modeling
the genetics of the quantitative character explicitly is
enough.

Two of the weaknesses of the type of models studied
here are the assumptions of a fixed-carrying-capacity
curve and of density-independent competition coeffi-
cients (Abrams 1980, Taper and Case 1992b). It would
be interesting to see how explicit genetics affect more
general models in which these assumptions are relaxed.
Extrapolating from the present results, one would ex-
pect that explicit genetic models facilitate character
displacement in these situations as well. Thus, to the
extent that such models are more realistic than those
assuming normal character distributions, one could ex-
pect that ecological character displacement plays a
more important role in structuring communities than
previously believed. This is supported by recent ex-
perimental evidence showing that competition pro-
motes adaptive radiation (Schluter 1994).

An example of character displacement
under apparent competition

The use of the genetic model described here is not
restricted to competition for resources. In principle, it
can be applied whenever interactions in a population
with discrete generations are determined by a quanti-
tative character. I briefly outline its use in a host—par-
asite system that was introduced by May and Anderson
(1983). Their model describes a host population whose
density is regulated by parasites that spread in each
generation of the host before reproductive age is
reached, thereby killing a fraction I(N) of the host pop-
ulation N. Therefore, if X > 1 is the intrinsic growth
rate of the host in the absence of parasites, the fitness
function in a phenotypically homogeneous host pop-
ulation is

AN) = N1 = I(N)]. (20)

May and Anderson (1983) derived the density-depen-
dent fraction /() from epidemiological considerations
as the solution of the equation

I
1-1= exp(—N—N>.
T

Ny is the threshold density of the host: if N < Ny, the
only solution to Eq. 21 is 0, i.e., the parasite cannot
spread. May (1985) showed that a host population with
fitness given by Eq. 20 exhibits chaotic dynamics for
all growth rates N > 1, regardless of the size of the
threshold density N;.

Guided by the gene-for-gene principle for host—par-
asite interactions (Hamilton 1980), one can extend this
model to a host population in which the interaction
with the parasites is determined by a character that is

2y
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Fi1G. 4. The distributions of a host character that deter-
mine the interaction with parasites are shown at the beginning
(part a) and at the end (part b) of character displacement due
to competition for phenotype space between two host pop-
ulations. The intrinsic growth rate \ is 1.7 in both populations,
and the threshold density is 1 (see Discussion). The number
of loci is 30, and Approximation 13 was used in the genetic
model. The system exhibits stable equilibrium dynamics. That
the populations evolve to different niches in phenotype space
means that they evolve susceptibilities to different types of
parasites, and could be a mechanism for parasite specializa-
tion. Note that the homogeneous host population given by
Eq. 20 has chaotic dynamics for the same growth rate \. This
indicates that quantitative genetics can have a stabilizing ef-
fect on population dynamics.

quantitative in the sense that it is additively determined
by many haploid loci according to the model described
in The quantitative genetic model. The character takes
on discrete integer values in the interval [0,c], and the
corresponding phenotypes are susceptible to a unique
parasite. There are as many parasite types as there are
host phenotypes, and a particular parasite can attack a
phenotype if the latter has the right number of 1-alleles,
regardless of where these alleles occur in the genome.
Thus the host—parasite interaction is based on additive
matching. The fitness function of each host phenotype
is of the form of Eq. 20. It depends only on that phen-
otype’s density, because the parasite attack on a par-
ticular phenotype does not depend on the densities of
other phenotypes. After selection due to the parasites,
random mating leads to a reshuffling of phenotypes
according to the quantitative genetic model.

If two host populations coexist, and if the parasites
attack them equally, then the fitness of a phenotype in
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one population decreases if the same phenotype is also
present in the other population. This leads to apparent
competition for phenotype space, which could lead to
character displacement: the two populations could
evolve to separate niches in phenotype space. Indeed,
this is what happened (Fig. 4). The phenotype distri-
butions in the two populations diverged. Since suscep-
tibility to parasites is determined by the phenotype, this
means that the populations evolve susceptibilities to
different types of parasites. Thus character displace-
ment due to apparent competition for phenotype space
could explain the tendency for each species to have its
own parasite (S. Stearns, personal communication).
That apparent competition for parasite free space could
be an important factor for the structure of host species
communities has been suggested by Holt and Lawton
(1993).

This example extends Milligan’s (1985) remark that
character displacement could result whenever negative
fitness interactions occur, not just when competition is
exploitative. It also shows that the genetic model pre-
sented in this paper can be used in many different con-
texts. Moreover, one can use the model to study other
problems such as the influence of phenotypic vari-
ability and quantitative genetics on population dynam-
ics (Doebeli 1995b). The flexibility gained from ex-
plicit genetics allows a finer resolution of the inter-
action between population genetics and ecological dy-
namics. This can lead to different results than the usual
quantitative genetic assumption of normal character
distributions.
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