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Diagnosing senescence: inferring evolutionary causes
from phenotypic patterns can be misleading

ALBERT BLARER, MICHAEL DOEBELI anp STEPHEN C. STEARNS
Institute of Zoology, Untversity of Basel, Rheinsprung 9, CH-4051 Basel, Switzerland

SUMMARY

Based on the predictions of two theories for the evolution of senescence, the ‘antagonistic pleiotropy’ and
the “mutation accumulation’ theory, an age-specific increase in mortality and a decrease in fecundity are
widely used criteria to diagnose senescence in natural and laboratory populations. In this study we
question the reliability of these criteria. Using a simple model we show that similar phenotypic patterns
result from optimal life histories without senescence. With a tradeoff between reproduction and period
survival, optimal life histories produce patterns of increasing mortality and decreasing fecundity as
organisms age, even if the tradeoff does not deteriorate with age, so that we are not forced to invoke
genetic effects such as antagonistic pleiotropy or accumulation of deleterious mutations to explain such
patterns. Furthermore, if optimal life history theory is applied to senescent organisms, phenotypic patterns
can result that are usually not associated with senescence. We conclude that the reliability of a diagnosis
of senescence based on phenotypic patterns and the comprehension of the phenomenon senescence
depends critically on understanding to what extent tradeoffs are determined by the effects of segregating

genes.

1. INTRODUCTION

Senescence can be defined as the persistent decline of
viability caused by physiological deterioration as
organisms age. There are two accepted theories for the
evolution of such deteriorations: ‘antagonistic pleio-
tropy’ and ‘mutation accumulation’ (Medawar 1952;
Williams 1957). Both theories imply the evolution of
characteristic patterns of phenotypic variation in fitness
components, i.e. reproduction and survival, as organ-
isms age. The predictions of the evolutionary theories
are straightforward, and senescence appears to be a
phenotypically obvious phenomenon (Rose 1991): the
mortality rates of senescing organisms should increase,
and their reproductive rates should decrease with age.

This clarity has led to the widespread belief that by
logical conversion, patterns of phenotypic variation
throughout the life of an organism can be used to infer
that senescence has evolved. Thus patterns of age-
specific mortality and fecundity, lifespan and various
combinations of these traits are widely used to detect
senescence in natural and laboratory populations
(Comfort 1979; Rose & Charlesworth 1980, 19814, b;
Luckinbill et al. 1984 ; Rose 1984 ; Service et al. 1988;
Promislow 1991 ; Austad 1992, 1993 ; Chippindale et al.
1994; Gaillard et al. 1994). In particular, antagonistic
pleiotropy or accumulation of deleterious mutations
are often inferred from an age-specific increase in
instantaneous mortality, or from a decrease in in-
stantaneous birth rates, or both. In this note we point
out that this practice should be used with caution. We
show that optimal life histories under fixed physio-
logical constraints that do not change during the life of
an organism can account for the same phenotypic

Proc. R. Soc. Lond. B (1995) 262, 305-312
Printed in Great Britain

patterns that are usually associated with senescence,
and genetic effects such as antagonistic pleiotropy or
the accumulation of mutations are not necessary for
their explanation. Thus the problem with using
phenotypic criteria to diagnose senescence lies in the
equivocal relation between evolutionary outcomes, i.e.
the phenotypic patterns, and their causes. Patterns of
age-dependent birth and death rates may have evolved
for several different reasons. They do not indicate
unambiguously the selective forces responsible for their
evolution.

For example, Medawar demonstrated such an
ambiguity for lifespan, which at first sight seems to be
a very obvious diagnostic criterion for senescence.
Consider two species with different, but constant, age-
independent mortality rates. Neither organism has
senescent mortality, but the organism with the higher
mortality has a lower expected lifespan: the expected
lifespan is the inverse of the (constant) mortality rate
(Hirsch 1980). This simple example shows that a
decrease in lifespan is not necessarily associated with
senescent mortality, and that inferring causes from
phenotypic patterns can be tricky. For example, the
shorter lifespan of mammals when compared with
birds has often been ascribed to senescent effects
(Comfort 1979; Prothero & Jiirgens 1987; Hoekstra
1993; Partridge & Barton 1993). However, that birds
live longer than mammals of the same size might just
be because flying is a less risky life style than living on
the ground, and it does not necessarily imply stronger
senescence in mammals.

In the following we focus only on phenotypic
patterns of mortality and fecundity. We build a simple
model for optimal life histories and use a few examples

© 1995 The Royal Society
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to make the following point: patterns of phenotypic
variation that are usually thought to be caused by
antagonistic pleiotropy or mutation accumulation can
simply arise from optimal life histories in a physio-
logical environment that does not change with age.

2. MODEL AND RESULTS

We assume that an organism lives in a population of
constant size and use its lifetime reproductive success
R, to measure its fitness. R, Is defined as the sum of
reproductive success, measured once each year by the
quantity /,*m,, from birth to death at age w:

Ry= X[, 'm,. (1)
=1

Here m, denotes the organism’s fecundity in age class x,

and /, is the probability that the organism survives

from birth to obtain reproductive success m, in year x.

The survival probability /, is defined recursively by

L=Jp;- (2)

Here J is the juvenile survival, i.e. the survival
probability from birth to the beginning of the year in
which maturity is reached. In our model J is a
parameter, and because it occurs in all summands of
the right hand side of equation (1), we can set J =1
without loss of generality when studying optimality
problems. The p,,x = 1,..., w, are the probabilities to
survive year x and to receive the reproductive success
m, of that year, provided the organism has survived to
the beginning of that year x. In general, the survival
probability /, and the fecundity m, do not evolve
independently of each other but are connected by
tradeoffs. Tradeoffs can be defined as the linkages
between two or more traits that constrain their
simultaneous evolution (Stearns 1992). Here we as-
sume that the reproductive effort of an organism has
costs in form of reduced period survival. We denote by
¢, the reproductive effort in year x and scale it so that
0 < ¢, < 1. The relation between reproductive effort e,
and fecundity m, is

,w (3)
where the proportionality factor ¢, may or may not
vary with age (see below). We assume that the tradeoff
between reproductive effort ¢, and period survival p, is
linear (figure la):

The parameters a, and b, are constants that may
change with age and define the form of the tradeoff.
Because 0 < ¢, < 1, and because p, is a probability, we
must have 0 < a, < 1. The parameter a, determines
the period survival in the absence of reproductive
effort, which can be smaller than 1 because of extrinsic
sources of mortality such as predator pressure or
because of intrinsic costs incurred from previous life
history decisions. The slope 4, determines the strength
of the tradeoff. 4, is positive, but to avoid negative
values of p, for large reproductive efforts we assume b,
< a,.

In general, the optimality problem can be formu-
lated as follows. A reproductive strategy is a set of

=1, 1 ppx=2,...,0 and

m,=c,e
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numbers {e,,...,¢,} that determine reproductive effort
in each year. Given a strategy, equation (3) is used to
calculate the fecundities m,,x = 1,..., », and formulas
(4) and (2) are used to calculate the survival
probabilities /,,x = 1,...,w. Then the fitness of the
given strategy can be calculated using equation (1).
The task is to find the reproductive strategy with
maximal fitness.

One feature of this model deserves a closer de-
scription. The definition of the survival probabilities [,
we use in equation (2) differs from the standard
definition used in life history theory (Charlesworth
1994). In our definition (2), the period survival p, of
the year x is included in the corresponding /,. In terms
of reproductive costs, this means that the fitness payofl’
in a particular year is only received after the costs of the
reproductive effort in that year have been paid. By
contrast, according to the standard definition re-
productive costs are paid in the subsequent year, and
the reproductive effort ¢, in year x trades off with the
period survival p,,,. The difference between these two
alternatives is discussed more fully in Doebeli & Blarer,
unpublished data. Here it suflices to note that both
models can be biologically plausible. For example, in
species with extended parental care, e.g. many birds,
the model used here is probably more realistic, because
the payoff in form of fledged offspring is only received
after having been exposed to higher mortality risk from
parental care. The alternative model may be more
realistic in species without parental care, in which the
costs of reproduction are paid in form of having to
recuperate after the payoff has been received. All the
results discussed below can be obtained with the
alternative model, but this requires a more complicated
form of the tradeoff curve. We used the model that
would vyield these results with the simplest possible
tradeoff, a straight line.

This tradeofT'is the essential feature in our optimality
approach. The reproductive tradeofl measures the
costs of reproductive investments in the form of reduced
survival probabilities. Critical to our argument is the
assumption that a tradeoff contains effects other than
those caused by antagonistic pleiotropy, i.e. that
reproduction and survival trade off within a clone
because of mechanisms common to all members of the
clone. What causes the tradeoff is important for a
reliable diagnosis of senescence. There are at least two
ways of interpreting why a tradeoff arises. First, there
may be extrinsic causes. Consider an organism that
suffers a greater probability of dying because of a
larger predation risk during its reproductive period. If
this extrinsic mortality increases with larger invest-
ments to reproduction, for example, if mobility changes
during pregnancy, then the extrinsic source of mor-
tality alone may explain the tradeoff in figure la.
Second, there may be intrinsic, physiological causes for
a tradeoff: an organism’s physiology may deteriorate
because of increasing reproductive investments, leading
to higher mortality.

However, this deterioration need not be thought of
as senescent. To see this, consider an organism with a
constant tradeoff throughout its life. In our model, this
means that the parameters a, and 4, in equation (4) do



not change with age: in every breeding season, the
organism faces the same costs of reproduction for the
same amount of reproductive effort. The physiology of
the organism as described by the tradeoff does not
change with age, and there is no senescence. The
organism may choose a reproductive strategy of
‘increased reproductive efforts ¢, with increasing age’
simply because such a strategy implies a higher total
fitness R,. With such a strategy, the organism will have
a higher mortality late in life, and its physiological
state deteriorates, because the higher reproductive
investments imply higher physiological costs. However
this physiological deterioration is not caused by
senescent effects such as antagonistic pleiotropy or
mutation accumulation. It is simply a consequence of
the life history strategy chosen. The organisms could
restrain their reproductive investment early in life to
have a higher survival probability to late stages, or
they could choose to keep reproductive effort constant
throughout life and so prevent a physiological de-
terioration. If this is not the best strategy because
increasing effort with age also increases fitness, the
organism is not senescent but has a phenotypic pattern
of mortality that resembles the pattern of an organism
in which antagonistic pleiotropy or mutation ac-
cumulation are acting.

Optimal life history strategies can produce such
patterns in the absence of senescence. To show that, we
start with the simplest possible model, in which we
assume that the tradeoff does not change with age, i.e.
that the parameters a, and &, in equation (4) are the
same for all ¥ (figure 1a), and that the proportionality
factor ¢, =1 for all x in equation (3), hence that
reproductive effort ¢, and fecundity m, are identical.
We also assume that the organism lives for a fixed
number of years, say w = 10. Using simulated annea-
ling (see below), the optimal reproductive strategy can
be obtained (figure 154). An organism with this
strategy increases its reproductive effort with age, and
consequently incurs a higher risk of mortality with age.

This increase in age-specific mortality is not sen-
escent because the tradeoff does not change during life.
But if physiology does not change with age, then the
future of the organism looks always the same. Shouldn’t
we expect a constant reproductive strategy in this case?
In fact, the increase in mortality with age here is
caused by a particular detail. The assumption of a
finite lifespan w constrains the organism’s life history,
and from the viewpoint of the organism the future must
change at age w. As a consequence its reproductive
effort and instantaneous mortality increase towards the
end of the life to optimize its fitness. Thus the increase
in mortality is caused by the additional assumption
that the organism dies after ten years.

Such assumptions of finite lifespans that interfere
with the patterns of mortality and fecundity are
inconvenient in the context of senescence. To get
around this difficulty, we relaxed the strong assumption
of a finite lifespan in the following way. The organism
may potentially live for an infinite number of years.
However, we assume that from a particular year
onwards, which we call w, the reproductive effort ¢, is
constant, and so is the reproductive tradeoff given in
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equation (4). This leads to a constant period survival p,
for all age classes x larger than w. The rationale behind
this assumption is that the period survival p, can be
expected to decrease with age, but it is bounded from
below by the value 0. Therefore, it must become
approximately constant at some point. With this
assumption we can rewrite the fitness equation (1) in
the following form (see Appendix):

w—1 l(,, . mw
we[ St °
This simply means that the last summand in equation
(1), l,m,, is replaced by [, m,/[1 —p,(e,)] to account for
residual reproductive success during the period in the
organism’s life in which all the life history parameters
have become constant.

If we apply this new fitness definition (5) to the
simple model described previously, the optimal re-
productive strategy is constant, as it should be (figure
l¢). Thus, what we expected intuitively and what is
biologically plausible is obtained with the new model
(5). Using the fitness definition (5), an optimal
reprodutive strategy still consists of a set of numbers {¢,,

., ¢,}, but w does not denote lifespan anymore, but the
moment when reproductive efforts become constant.
This is the correct model for our purposes, and we will
now use it to investigate what the optimal reproductive
strategies are under various conditions. Before we
address these questions, however, we describe briefly
the optimization technique used in this study.

(a) The optimization technique

Optimal strategies can be found by using various
methods; however analytical solutions become un-
wieldy if @ becomes large (say w > 4), and numerical
methods are then easier to use. The classical numerical
technique for evolutionary optimization problems is
dynamic programming (Bellmann 1957). We used a
different approach that is based on simulated an-
nealing (Kirkpatrick e al. 1983). Annealing techniques
consist of a clever search for maxima in the landscape
defined by the fitness function R, on the space of all
possible strategies. One generally walks uphill in this
landscape, but to avoid getting trapped atlocal optima,
downward movements of a certain size are also
allowed. The allowed size of these downhill moves
diminishes in the course of the simulation, so that the
algorithm converges to the simple hill climbing rule.
The idea is that this only happens after one has reached
the vicinity of the global maximum, which can then be
reached by just walking uphill. A simple version of this
algorithm was invented by Dueck & Scheuer (1990),
who showed that it works well for difficult optimization
problems easy to implement.

In the present context, one starts with a randomly
chosen strategy {¢,, ..., ¢,} and calculates its fitness Ry,
One then creates a new strategy by changing slightly
one of the efforts ¢, of the old strategy. We used
uniformly distributed random numbers to decide
which component of the old strategy should change
and by what amount. One then compares the fitness of
the new strategy, R;®", with the fitness of the old one,
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Figure 1. (@) Tradeoff between reproductive effort and period survival. Increased reproductive effort results in a lower
period survival. For the figure we put e = 0.9 and 4 = 0.5 in equation (4). This tradeoff was used to obtain the results
in figs 146-d. In the corresponding models, the tradeoff was the same in each year. Thus the tradeoff structure did not
deteriorate with age, and there was no senescence. (b) The optimal life history of an organism living a fixed amount
of w = 10 years. In each year, the reproductive tradeoff is that of figure 1a, and the fitness definition (1) was used
with ¢, = 1 for all x in equation (3). The optimal life history consists of increasing reproductive efforts with age.
However, this is an artefact of the assumption of certain death at age w = 10. The mortality shown in the figures is
defined as the negative logarithm of period survival —Inp,. In all panels, filled circles indicate fecundity and hollow
squares indicate mortality. (¢) The optimal life history using the fitness definition (5) instead of (1). Because the
tradeoff does not change with age, and because the organism’s lifespan is potentially infinite, its future looks always
the same, hence the optimal reproductive effort is the same throughout life. (d) Using the fitness function (5) and
assuming size-dependent fecundity (equation 7), an optimal life history with increasing age-specific fecundity and
mortality results. The growth rate £ = 0.9 in equation (6) was chosen so that the organism has almost reached the
limiting size s, at age w = 10. After age w = 10 reproductive efforts, body size and hence fecundity and mortality

become constant. There is no senescence, but mortality increases as the organism grows.

R If R = R — T, where the threshold value 7 >
0 is the allowed size of downhill moves, then the new
strategy replaces the old strategy. This procedure is
repeated many times, but in the course of the
simulation the threshold 7" becomes smaller and
smaller and converges to zero. The algorithm stops if
no new strategies have been accepted for a long time,
which indicates that the fitness of the current strategy
is optimal. For the sake of brevity we omit further
technical details, which can be found in Dueck &
Scheuer (1990), Dueck (1993) and Blarer & Doebeli
(1995), where the technique was applied to life history
theory. All results presented below were obtained by
using this simple method.
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Toillustrate our main point that inferring senescence
from phenotypic patterns can be tricky, we now use
two models based on formula (5). In both models there
is no senescence, yet common practice would infer
senescence from the phenotypic patterns that are
produced by the optimal life history strategies.

(b) Model 1: size-dependent fecundity

In this model we assume that fecundity m, is size-
dependent, and that the growth of an organism is
determined by reproductive effort. Growth is slow if
reproductive effort is high. More precisely, we assume
that the time devoted to growth in year x is
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Figure 2. (a) Reproductive tradeoff that deteriorates with age. The deterioration is determined by the body size of
the organism, for example, due to size-dependent predation. Each body size s, corresponds to a particular intercept
a, of the tradeoff curve. The extremal body sizes 5, = 0 and s = 1, respectively, determine the boundary values
Qpax = 0.9 and a,;, = 0.5 of the tradeoff structure. As the organism grows intermediate tradeoff curves occur
(not all of them are shown), each with a constant slope # = 0.5 and with decreasing intercepts a, given by
Ay = Qo — (Gppe — Gin) * S, (0) The optimal reproductive strategy under the tradeoff structure in (a). Reproductive
efforts decrease with age (fecundity and reproductive effort are equal, i.e. ¢, = 1 for all x in equation (3)). Because
of the deterioration of the tradeoff the organism grows into risk. Despite decreasing reproductive efforts, its mortality
increases with age. With a growth rate £ = 0.4 in equation (6) the organism has almost reached the asymptotic size
s, at age w = 10. The mortality shown is the negative logarithm of period survival —Inp,. Filled circles represent
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fecundity and hollow squares represent mortality.

proportional to 1 —e,, where e, is reproductive effort.
We also assume that the growth dynamic is given by
the Bertalanfly equation

Jx=sw-[lwexp(~k'§1(l—ei))]. (6)

Here s, is size at reproduction in year x, and s is the
asymptotic size (Roff 1992). The term k-%7 (1 —¢,)
incorporates the growth rate of the organism and the
time devoted to growth up to year «.

Growth within a particular year is always assumed
to precede reproduction. To make fecundity size-
dependent, we assume that the proportionality factor
¢, in m, = ¢,"¢,, equation (3), is an allometric measure
of body size (we chose a fish-like allometric exponent of

3):

m, = [5,]%"€,. (7)

Strictly speaking, the fitness equation (5) is an
approximation in this scenario, because the fecundity
m, might still increase after age w even with a constant
reproductive effort, because the organism grows
asymptotically towards the maximal body size s,.
Nevertheless, we make use of the fitness measure (5)
because in the scenarios considered, the constant
asymptotic size s, is almost reached at age w, and the
error is small. In the model, the reproductive tradeoff
does not change with age. A reproductive effort e,
implies the same period survival p, = a—b-¢, in each
year. The corresponding fecundity m, is given by (6)
and (7), and these data are used to calculate the fitness
of a given reproductive strategy {e;,...,¢,}-

Figure 1d shows the result of the optimization,
representing the patterns of fecundity and mortality

Proc. R. Soc. Lond. B (1995)

resulting from the optimal life history for two particular
values a and & that define the reproductive tradeoft,
equation (4). Both the instantaneous mortality and the
fecundity increase with age. These increases are a
consequence of the increasing reproductive efforts that
represent the optimal reproductive strategy when
fecundity is size-dependent.

(¢) Model 2: size-dependent mortality

In the optimal life history in model 1, both mortality
and fecundity increase with age. One might therefore
argue that a reliable criterion for senescence would be
an increase in mortality with a concomitant decrease in
fecundity. The second model shows that this criterion
is also in general not reliable. Here we again assume
that organisms grow according to the Bertalanfly
equation. However, size does not influence fecundity.
Instead, we envisage a scenario in which size deter-
mines the intercept a, of the tradeoff (4) by assuming
that a greater size implies a lower a,, i.e. that larger
organisms experience higher extrinsic mortality rates.
For example, this could occur with size-dependent
predation pressures. On the other hand, the slope of
the tradeoff (4), which expresses physiological con-
straints, does not change with age, so that there is no
senescence. For simplicity, we assume that growth is
independent of reproductive effort and occurs at a
constant rate. To obtain the size s, in year x we use
equation (6) with the sum in the exponent replaced by
the age x. We further assume that the parameter a, in
the tradeoff equation (4) is determined by body size s,
in year x according to

a,=a

max (amax - amin) o (8>
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Thus, assuming an asymptotic size s, = 1, the inter-
cepts of the reproductive tradeoff lie between a,,,, and
amin- The slope b, of the tradeoff is constant, b, = 4 for
all x. Finally, we assume that fecundity is equal to
reproductive effort, i.e. that ¢, = 1 for all x in equation
(3).

The growth dynamics result in a set of parallel
tradeoff curves that move closer and closer as the
limiting size s, is approached (figure 2a). Given this
deteriorating tradeoff structure, the optimal repro-
ductive strategy consists of a reproductive effort, or
equivalently fecundity, that decreases with age. Never-
theless, mortality increases with age. Figure 24 shows
the age-specific pattern of fecundity and mortality that
results from this scenario. As in the first model, there is
no need to invoke genetic effects from antagonistic
pleiotropy or mutation accumulation to interpret the
changing tradeoff structure or the resulting phenotypic
patterns. Here size-dependent mortality, which may be
the result of extrinsic causes such as predation, is
responsible for a pattern usually thought to be caused
by senescence.

3. DISCUSSION

Many researchers use an age-specific increase in
mortality and/or an age-specific decrease in fecundity
as a criterion to diagnose senescence. The Gompertz
analysis, which measures the exponential increase in
age-specific mortality rates, and measures such as the
‘mean rate to double the mortality’ are widespread in
the literature and represent the state of the art for
diagnosing senescence (for example, see Finch et al.
1990; Johnson 1990; Promislow 1991). However,
inferring senescence from age-specific patterns of
mortality and fecundity is a risky business. We have
shown that optimal life histories which are constrained
by tradeofls result in phenotypic patterns of mortality
and fecundity that are usually thought to diagnose
senescent effects such as antagonistic pleiotropy or
mutation accumulation.

The interpretation of such patterns in the context of
senescence depends critically on the causes of a
particular tradeoff. Here, we proposed two common
and biologically plausible interpretations of tradeoff’
structures that do not involve any senescent effects. In
the first model we used a tradeoff curve that may
represent a physiological constraint on the repro-
ductive performance of an organism (figure 1a). If this
tradeoff does not change as the organism gets older, the
physiology does not deteriorate with age, which means
that there is no senescence. Nevertheless, optimal life
history predicts an age-specific increase in mortality
caused by increasing reproductive effort with age
(figure 1d). On the other hand, there may be purely
extrinsic reasons for tradeofls and their age-specific
changes, for example size-specific predation risks. In
the second model we assumed a size-dependent
mortality independent of the yearly reproductive
efforts. As the organism grows from year to year, its
mortality rate increases, and the tradeoff deteriorates
(figure 24). Here, the optimality approach predicts an
increase in age-specific mortality and a simultaneous
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decrease in fecundity because of diminishing repro-
ductive efforts as the organism ages (figure 24). Thus,
even the phenotypic pattern usually believed to
diagnose senescence more stringently can be the result
of optimal life history strategies and need not involve
senescent effects. In none of the cases we discussed it
was necessary to invoke the theories of mutation
accumulation or antagonistic pleiotropy to explain the
tradeoff structure and the resulting phenotypic pat-
terns.

One might wonder what a tradeoff structure might
look like if mutations accumulate with increasing age
and if genes exhibit antagonistic pleiotropy effects.
Given senescence we expect that a tradeofl describing
physiological constraints will deteriorate with age.
Assuming a linear tradeoff curve as defined in equation
(4), both genetic effects could induce such a de-
terioration by progressively steepening the slopes of the
curve, i.e. increasing 4, in equation (4), with increasing
age of the organism. Such deteriorating tradeoff
structures can be analysed as above, and typically the
result is indeed a decrease in fecundity with age.
However, this decrease may overcompensate the
deterioration in the tradeoff, so that even with
senescence the optimal life history can lead to a
decrease in mortality with age (figure 3). Not only
need organisms whose mortality increases with age be
non-senescent, but senescent organisms may have a
decreasing mortality as they grow old. This clearly
shows that to infer senescence reliably from phenotypic
patterns, these patterns have to be viewed through the
filter of optimal life history theory.

Recently, Partridge & Barton (1994) proposed the
use of reproductive success, i.e. the product of age-
specific survival and fecundity /,-m,, to measure
senescence. They suggest that the comparison of two
life histories with respect to their age-specific re-
productive success would reveal more rapid senescence
in one life history if the difference in /,* m, is positive up
to some age and then becomes negative for the rest of
life. Unfortunately, even this pattern does not reflect
senescence unambiguously. To see this, consider the
first model where the tradeoff structure is constant
throughout life (figure 1a). We compare the [ -m,-
curves resulting from two optimized life histories that
differ only in their rate of growth £ and the intercept a
of the tradeoff curve that may change for extrinsic
reasons only (cf. model 2). The curves resulting from
the optimization model intersect once (figure 4), but as
in model 1 neither of the two life histories contains any
senescent effects.

A reliable diagnosis of senescence requires detailed
knowledge of the different mechanisms that affect age-
specific mortality and fecundity, and of possible
tradeoffs, their causes and dynamics. Data on age-
specific mortality and fecundity in laboratory or
natural population do not in general allow us to
distinguish between the different causes moulding
them, and tradeoffs are notoriously difficult to measure
(Stearns 1989). This suggests that it will be hard to find
a reliable diagnosis of senescence based on phenotypic
patterns. Implicit in our assumptions was that tradeoffs
are produced by a mixture of causes, some resulting
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Figure 3. (a) Possible tradeoff structure of a senescent organism. In contrast to figure 24, body size is now assumed
to affect the physiology of the organisms by determining the slopes 4, of the tradeoff curve, i.e. the strength of the
tradeoff. Larger sizes lead to larger slopes. For example, one can imagine that antagonistic pleiotropy has favoured
a good physiology at small sizes early in life at the cost of a deterioration of the physiological constraints late in life.
The result is a senescent deterioration of the tradeoff, where older and hence larger organisms pay more for equal
amounts of reproductive effort. The slopes of the tradeoff range from 4, =0.2 to b, = 0.9 and are given by
by = bin+ (0ax— bmin) S, As in the previous model, the size s, in year x is given by replacing the sum in the exponent
of equation (6) by the age x. The intercept of the tradeoff remains constant at a, = 0.9 for all x. (b) The optimal life
history for the senescent tradeoff structure shown in figure 3a. As expected, reproductive effort, which is equal to
fecundity (i.e. ¢, = 1 for all x in equation (3)) decreases with age. However, at the same time mortality also decreases
with age. This shows that senescent organisms need not necessarily exhibit phenotypic patterns that are typically
associated with senescence. The growth rate £ is set equal to 0.45 so that the organism has almost reached its limiting
size s, at age w = 10 years. The mortality is the negative logarithm of period survival —Inp,. Filled circles represent
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fecundity and hollow squares represent mortality.
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yearly reproductive success

0.0
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Figure 4. The reproductive success [, - m, of two optimized life
histories based on model 1. The life histories only differ in
their rate of bodily growth £ and the intercept a of the
constant tradeoff shown in figure la. For life history 1 the
growth rate £ equals 0.85, and the intercept of the tradeoff is
set to @ =0.91. In life history 2 the organism grows faster
with £ = 2.0 and the intercept a = 0.881 was adjusted to get
nearly the same fitness values R, in both life histories (they
differ by an order of 107®). Both life histories are non-
senescent. However, the lines connecting the yearly re-
productive success intersect exactly once. This questions the
generality of the view of Partridge & Barton (1994) that a
single intercept of the [, -m, — curves indicates senescence in
one of the two life histories. Filled circles represent life history
1 and hollow circles represent life history 2.
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from antagonistically pleiotropic genes currently segreg-
ating in the population, others caused by physiological
linkages fixed in the population and common to all its
members. We think that only genetic studies can
reliably uncover the genetic effects that cause sen-
escence. The issue raised by this analysis is then as
follows: can a method be found to partition tradeoffs
into fixed, physiological effects and segregating genetic
effects? At this point we do not know for any tradeoff
whether it is properly defined as 19, physiologically
fixed and 999, genetically variable or 999, physiol-
ogically fixed and 19, genetically variable. If we knew
the answer, we would think more clearly about what
we broadly label ‘senescence’.

We thank Rolf Hoekstra, Jan Kozlowski and Anatoly
Teriokhin for many helpful discussions. This work was
supported in part by a grant of the Swiss National Science
Foundation to S.C.S.

APPENDIX

Consider an organism with a potentially infinite
lifespan. Its lifetime reproductive success R, is an
infinite sum:

If we assume that after a particular age w its fecundity
is constant and equal to m,, R, can be split into two
sums:

w—1 0 l
ROZ le'mz—i_mmllu El_y
=1 Z=w "0



312 A. Blarer and others Diagnosing senescence

If we further assume that the tradeoff given in equation
(4) and the reproductive effort do not change after age
w, then the period survivals also become constant after
age o, i.e. p, =p,, for x = w. Using the definition of
survival probabilities given in equation (2) we can then
express [, /[, as:

lx_ z—w
/ _pm .

w

Thus the fitness R, is:

w—1 0
— . . T—w
RO - z lz m1+ m, Zu) E w
z=1 z=w

The geometric series X2 % is equal to 1/1—p,, so

=w

that the equation for the fitness becomes equation (5):

o] mu)'l(u

=1 ]
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