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The evolutionary advantage of controlled chaos

MICHAEL DOEBELI

Zoologisches Institut der Universitit, Rheinsprung 9, CH-4051 Basel, Swiizerland

SUMMARY

In a chaotic system, many different patterns of motion are simultaneously present. Very small changes
in the initial conditions can greatly alter the system’s trajectory. Here a one-dimensional difference
equation is used to explain how these properties can be exploited to control the chaotic dynamics of a
population. Applying small perturbations according to a simple rule drives the density of the population
to a stable state. Moreover, the population can inflict these perturbations on itself: it can exert self control.
Under some circumstances, such a mechanism confers an evolutionary advantage. A mutant exerting self
control can invade an uncontrolled but otherwise equal resident population. Invasion of the mutant
stabilizes the previously fluctuating population density. The system considered here is a subject to a form
of K selection. Even if the mutant’s K value is less than that of the resident, self control can still make
invasion possible, but in that case invasion does not stabilize the system. It may instead lead to

intermittent chaos.

1. INTRODUCTION

Simple ecological models can exhibit very complex
dynamical behaviour. This was discovered by May
(1974, 1976), and initiated a debate about the
possibility of chaos in real ecosystems. Probably the
most influential study in this respect was done by
Hassell ¢t al. 1976. They estimated the parameters of a
one-dimensional difference equation for 24 insect
populations and found that all but two of these
populations had a stable equilibrium. This led to the
more or less widespread belief that chaos is scarce in
natural populations.

One of the prominent features of chaos is a very
sensitive dependence of the dynamical behaviour on
initial conditions, leading in practice to unpredict-
ability. But even if natural systems do behave un-
predictably, it was argued by Berryman & Millstein
(1989) that this is due to stochasticity in the en-
vironment rather than to determine chaos. There have
been attempts to explain the apparent scarcity of chaos
by group selection arguments (Thomas et al. 1980;
Berryman & Millstein 1989). These authors suggest
that chaotic fluctuations cause population crashes after
which the population is threatened by extinction
in a stochastic environment. Some authors have studied
what sort of dynamic behaviour is favoured by
individual selection on demographic parameters (cf.
Muller & Ayala 1981; Hansen 1992; Ferriére &
Clobert 1992; Gatto 1993; Ferriére & Gatto 1993;
Doebeli 1994a). However, the results from these
studies are not clear cut, some suggesting that chaotic
dynamics are favoured by evolution (see Ferriére &
Clobert 1992; Ferriére & Gatto 1993). Schaffer & Kot
(19864) and Sugihara & May (1990) have given
examples of real systems exhibiting chaos. The time-
series analysis of measles outbreaks (Sugihara & May
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1990; Scaffer & Kot 19864) seems particularly
convincing. Nevertheless, chaos continues to have
a negative image among ecologists because of its
apparent untestability and randomness.

In this article I focus on a particularly interesting
property of chaotic systems, and show how it can be
put to use in an ecological and evolutionary context.
In an excellent review article, Shinbrot ¢t al. (1993)
showed how chaotic systems can be controlled by slight
perturbations to elicit almost any kind of regular
behaviour one might wish. Two basic features of chaos
make this procedure possible. One is the sensitive
dependence on initial conditions, already mentioned,
the other is the fact that many different dynamical
behaviours are simultaneously present in a chaotic
system, although most or all of them are unstable. For
example, in a one-dimensional discrete system (such as
the logistic equation) that exhibits chaotic motion, an
infinite number of initial conditions lead to (unstable)
periodic motion (see Schuster 1984, chapter 3).
Moreover, cycles of any desired length usually occur.
One can now exploit sensitivity to initial conditions to
steer the system’s trajectory close to one of these
periodic orbits (whichever seems desirable). By slight
perturbations, the system is then kept close to this cycle
and in effect behaves as if the cycle were stable. The
same procedure can subsequently be used to jump to
another kind of behaviour, e.g. to another cycle. This
is in striking contrast to the situation where a system
really does have a stable cycle. In such an instance, to
jump to another cycle of, say, different period usually
means to change the system altogether.

Here I show how this process can work in a
population modelled by one-dimensional difference
equation exhibiting chaos. As a model I use the well-
known Ricker equation (Ricker 1954). In this model
the dynamical behaviour is determined by the intrinsic
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growth rate of the species. I will show how a population
whose ‘normal’ growth rate codes for chaos can
nevertheless remain at its equilibrium density by
slightly adjusting its growth rate to the circumstances
each year. This adjustment consists of increasing the
growth rate in years of high density effects and
decreasing it in years of lower density. Then I argue
that a population exhibiting such a control mechanism
has an evolutionary advantage: Invasion of a mutant
phenotype that uses the control can force a population
with complex dynamics to an equilibrium state (figure

1).

2. CONTROLLING CHAOS IN THE RICKER
MODEL

In this article I use the Ricker equation to describe
a population with non-overlapping generations, in
which density regulation operates before reproduction.
In this case the equation has the form

Newy = F(N,) = Ay N exp (—¢N)). (1)

The density of the population in generation ¢is N,, and
A, is the intrinsic growth rate of the species. The
parameter ¢ > 0 and determines, together with A, the
equilibrium density N*, for which F(N*) = N*, hence
N* =1n(A,)/¢. The dynamics of equation (1) around
the equilibrium are determined by the derivative of ¥
at this point: (dF/dN)/(N*)=1—In(A,). As A,
increases, the system displays the familiar period-
doubling bifurcation pattern leading to chaos (for a
thorough discussion of this phenomenon see May &
Oster (1976)). Chaos first occurs at a value of A, of
approximately ¢*7. In the sequel I assume that A, has
a value coding for chaos. I explain how one can control
the system so that it stays at its equilibrium density
cven though this point is unstable.

Let us assume that the parameter A, is adjustable in
each generation. Accordingly, we write F'( N, A) instead
of F(N) as in equation (1) to stress the dependence of
the system on the intrinsic growth rate. Suppose
further that the system is close to the equilibrium
density N* at some time ¢, i.e. that |N,— N*| is small.
Then, for parameter values close to A, one can
approximate the dynamics of system (1) by the
linearized problem around the point (N*,A,):

Nipy—= Ny = (OF/ON) (N*, Ag) - (N, — N*) + (0F/0A)
(N, 20) (A, =Ag),  (2)

where A, is the adjusted value in generation ¢ To
determine this value, one applies the linear control law

(A =2Ag) = —¢(N,— N*¥), (3)
where ¢ is a constant. Substituting (3) into (2) yields
Ny — N* =[(0F/ON) (N*,A,) —c* (0F/0A)

(N, 2)] (N, — N¥). (4)

Thus N, will stay close to N*, and will asymptotically
approach it if the modulus of [(QF/ON) (N*,
Ag) — ¢ (OF/OA) (N*,A,)] is smaller than 1. Evaluating
the partial derivatives in equation (4) leads to the
following condition on the control constant ¢:

I1—=1In(Ag) =¢[In(A,)/gA0]l < 1. (5)
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The optimal control constant ¢, i.e. the control for
which the approach to N* 1is fastest, is given
by 1—In(A,) —c¢[In(Ay)/qA,] = 0, hence ¢, ={[1—
In(Aq)JgA,}/[In(A,)]. In practice, for a given control ¢
satisfying condition (5), one has to specify when to
apply the perturbation to the system, i.e. one has to
specify what it means for N, to be close to N*¥. Because
the system is chaotic, given any ¢ > 0 there is a time ¢
for which |N,— N*| <e¢, no matter how small ¢ is.
Thus, whatever small value of € we choose, the system’s
chaotic behaviour will bring its trajectory to lie in an
e-region of N* at some point in time, after which the
system gets trapped in this region by the control
mechanism. It might take a long time but eventually
the system behaves as if N* were a stable equilibrium.
It follows from equation (3) that, if the control is
applied, the perturbed parameter A, is given by

A, = Ag—¢(N,— N*). (6)

Because we can choose the e-region from above to be as
small as we want, we see that, in principle, extremely
small perturbations are enough to stabilize the system,
although the smaller we allow them to be the longer it
might take until the system gets trapped. Note that,
because A, codes for chaos, we have (1 —InA,) <—1
(as 1 —InA, is the derivative of F' at N*). It follows
that, if ¢ > 0, then condition (5) can never be met.
Thus the control ¢ must be negative. We now conclude
from equation (6) that the perturbed parameter A, is
greater than Ay if and only if N, > N*. Thus the growth
rate should be increased in years of high density and
decreased in years of low density. This is intuitively
clear, because density dependence acts before re-
production: a high density causes a big subsequent
drop in the population, and the few remaining
individuals should increase their fecundity to decrease
density fluctuations.

In principle, the control mechanism might be
applied to stabilize a population by adding or removing
offspring. However, there is an inherent difference
between this ecological system and physical or chemical
systems, for which the control perturbations are
necessarily applied by some agent outside the system.
Namely, the population might have evolved to apply
the control mechanism itself by regulating its growth
rate according to its density, that is, the population
might exert self control. Of course, the control
mechanism described above does not make much sense
for a population controlling itself. Why should the
adjustment only take place if the difference between
the actual density and N* is small? To make the self
control mechanism more realistic, the following rule
could be applied. First, a control constant ¢ satisfying
condition (5) should be used. Then the growth rate
should be adjusted each year according to equation
(6), independently of the value of | N,— N*|, but subject
to the constraint that it cannot vary more than, say,
109, from the nominal A,, hence is subject to 0.9, <
Ay < 1.1A,. It is easy to verify numerically that such a
procedure works equally well: the population density
gets stabilized at N*. (Note that the speed of
convergence to N* depends again on the constraint on
the adjusted parameter A,.)
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Figure 1. Invasion leading to stability. For the first 100
generations the resident follows the Ricker model (see
equation (1)) with A; = ¢** and ¢ = 5. The motion is chaotic.
After 100 generations a few mutants are introduced that have
the same parameters in the basic Ricker model, but that exert
self control. The dynamics of the whole system are described
by the following rules. Let N,= N, ,+ N, , be the total
density of the population at time ¢, where N, , is the resident’s
and N, , is the mutant’s density. Then N, ., = AN,
exp(—gNy), Ny, = A N, exp(—¢N,), where A, =2, if
N, < N*, and A, = Ay—¢(N,— N*) if N, > N*. (N* is the
equilibrium density, and the control constant ¢ is set such
that the modulus of the multiplying factor in equation (4)
equals 0.5.) We also impose the constraint thatif A, > 1.1-A,
then A, = 1.1 A,, i.e. that the growth rate cannot be increased
by more than 109, of the nominal value A,. (a) After an
initial phase of gradual average increase, the self-controlled
mutant dominates the system and its density becomes stable.
At the same time, (b) the total density is stabilized at N*,
while (¢) the density of the resident is stabilized at a very
low value. The densities (y-axis) are shown in successive
generations (x-axis). The behaviour shown is typical. In all
simulations, a similar process was observed as long as the
fecundity A, coded for chaos, and as long as the control ¢ was
chosen such that it satisfied equation (5).
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Figure 2. The same parameter values and the same rules for
the dynamics of the system as for figure 1 are applied, except
that the ¢ value for the invading self-controlled mutant is set
at 5.025. This implies that the invader has a smaller
equilibrium density than the resident. Invasion results in
intermittent chaos as described in the text. During the
periods of almost constant total population density (a), the
density of the self-controlled phenotype gradually decreases
(b), while (¢) the density of the uncontrolled phenotype
increases. The figures show the densities (y-axis) in successive
generations (x-axis). Again the observed behaviour is typical
as long as the ¢ value of the invader is close enough to (but
higher than) the ¢ value of the resident. The fluctuations
during the intermittent outbursts all have comparable size,
and the length of the laminar phases of nearly constant total
density have a probability distribution whose mean can be
approximately calculated from the parameters of the system.
For a thorough treatment of intermittency, we refer the
reader to Schuster (1984), chapter 4.

In the uncontrolled Ricker model, the density of the
population is smaller than the equilibrium density N*
in most generations because, once it gets above N*, it
is usually brought back to quite low values by the
density effect, and it only gradually builds up again.
Thus, in the self-controlled Ricker system just de-
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scribed, the nominal value A, would have little
biological meaning because the actual fecundity of the
species at any one time very rarely lies near A,. To give
more meaning to A, as the ‘usual’ fecundity the self-
control mechanism can be changed to react only to
densities that are higher than N*. The fecundity A, is
then adjusted according to equation (6) only if N,—
N* > 0, the adjustment being subject to the same
constraint as before. Again it is easy to verify
numerically that this mechanism is also able to stabilize
the density at N*. Now the fecundity is equal to A,
most of the time, and occasionally it is higher. In
conclusion, a population whose ‘normal’ fecundity
codes for chaos can nevertheless stabilize itself at its
equilibrium density. It can do so if its members are able
to detect years in which there is a large density eflect.
In such years the survivors of competition should
increase their reproductive output. This might seem
biologically unrealistic because competition depletes
resources. Nevertheless, it is conceivable that the few
individuals surviving strong competition can increase
their fecundity if the fecundity depends on factors that
are not influenced by competition for resources. More
complicated models have to be analysed to see the
details of such a situation.

3. THE ADVANTAGE OF SELF CONTROL

I now compare in an evolutionary context a
population using the self-control mechanism described
at the end of the last section with an uncontrolled
population. I first want to make a few remarks
concerning selection on the parameters in the un-
controlled Ricker model. Let us write the model in the
form N, , = w(N,) N, where w(N) = Ajexp(—¢N) is
the fitness function. This function depends on the
environment, which is given by the density of the
population. Suppose there is a mutant phenotype N;
with fitness function w,(N) = A,exp(—g¢; N) trying to
invade the resident population. The invasion will be
successful if the fitness of the mutant is, on average,
greater than 1 when N, is rare. If N, is rare, the
environment of the invader consists almost entirely of
the resident population. In this situation, the ap-
propriate criterion for invasion is (Metz et al. 1992):

-1
lim (1/7) ¥ Inw,(N,) >0, (7)
T >0 t=0
where N, is the time series of the resident population.
(This is really just saying that w,(N,) should be greater
than 1 on average.) To calculate the left-hand side of
(7), first observe that the corresponding quantity for
the resident population has to be 0, because the
resident persists through time, i.e. it neither grows
nor declines on average. Consequently lim,_ . (1/7)
2 nw(N,) =0, which, upon substituting the ex-
pression for w(N), yields

-1
lim (1/T) X N, = (InA,)/g. ®)
T >0 t=0
This simply means that the average density is just the
equilibrium density N*. (Note that this is not obvious
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a priori.) Using equation (8) to evaluate (7) now yields
the condition

(InA;/q;) > (InAo/q). (9)

That is, the mutant can invade if its equilibrium
density is greater than that of the resident. This is a
form of K selection. In fact, it is easy to see that
condition (9) is the condition not only for invasion but
also for competitive dominance: if condition (9) is
satisfied, the invading mutant will drive the resident to
extinction (for the precise argument see Gatto (1993),
Appendix A). Thus, the parameters of the Ricker
model undergo K selection, and evolution will maxi-
mise the equilibrium density subject to biological
feasibility.

Suppose now that there is a resident population
exhibiting chaotic dynamics (i.e. Ay 2 ¢*7), and that a
mutant tries to invade which has the same parameters
in the basic Ricker model, but exerts the self control
mechanism described at the end of the last section.
That is, the mutant increases its fecundity in years in
which the total density of the population (i.e. the
mutant’s plus the resident’s) is higher than the
equilibrium N*. It does so subject to constraints as
mentioned in section 2. The result of the invasion
attempt is depicted in figure 1. Invasion is possible and
transforms the previously erratically fluctuating popu-
lation into a population whose density is stabilized at
N*. In this state the resident is still present, i.e. it is not
driven to extinction by the invader. However, the
density of the invader is much higher.

The self control mechanism of the mutant implies
that its average fecundity is slightly higher than that of
the resident. This selective advantage adds a new
aspect to the invasion criterion given by equation (9),
requiring that the mutant’s equilibrium density be
higher than that of the resident. Having the same
equilibrium density is enough for a self-controlled
mutant. The control mechanism itself enables invasion
and leads to simple dynamics for the whole population.
In fact, for some choices of the parameters, invasion of
a self-controlled mutant is even possible if its equili-
brium density is smaller than that of the resident.
However, in such a situation, invasion does not lead to
stability. Instead, a very interesting behaviour occurs
which is called intermittent chaos. In this type of
complex motion the total density of the population
stays close to the equilibrium density of the self-
controlled phenotype for long periods, with inter-
mittent outbursts of erratic density fluctuations. This
is shown in figure 2. The stable periods are charac-
terized by dominance of the controlled phenotype,
its control mechanism stabilizing the total density. But
at the same time the density of this phenotype is
gradually decreasing, while the density of the uncon-
trolled phenotype increases, until its chaotic dynamics
dominate the system for a short intermittent period.
After this period the density of the controlled pheno-
type is back at high values and the process starts
again. For population dynamics this kind of behaviour
has been reported by Vandermeer (1993) in a
continuous time model, and by Doebeli (19944) in a
discrete time model different to the one used here.
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4. DISCUSSION

As the name suggests, chaotic systems are generally
thought of as being unpredictable and unmanageable.
Shinbrot et al. (1993) advocate quite a different view.
They showed how very small perturbations can be
used in the presence of chaos to elicit almost any kind
of regular behaviour. This is in striking contrast to non-
chaotic systems. Applying these ideas to ecology, it is
conceivable that a system manager can stabilize
fluctuating population densities with subtle inter-
ventions if he knows which parameter to alter. By
means of an admittedly unrealistically simple differ-
ence model, I have shown here that such a parameter
could be the growth rate of a species. Adding a few
offspring in years of high competition, and removing a
few in years of low competition, stabilizes even highly
chaotic Ricker systems.

Apart from perturbations being applied from the
outside, a population may evolve so that its behaviour
controls its own dynamics. The population would then
have to adjust demographic parameters according to
clues from the environment. In the Ricker model the
relevant component of the environment is the density
of the population. To trap it at equilibrium it is
sufficient for the population to increase its reproductive
output by small amounts in years of high density
effects. The possibility of such self control mechanisms
casts some doubts on methods of estimating parameters
to prove chaotic motion, for the mean fecundity of a
controlled population is almost the same as that of an
uncontrolled population exhibiting chaos.

A prominent question in population dynamics is
what kind of dynamical behaviour should result from
natural selection? In the absence of controls the Ricker
model is subject to a form of K selection: evolution
tends to maximize the equilibrium density of the
population. Higher equilibrium densities can be
achieved under both simple and complex dynamics,
i.e. for both low and high intrinsic growth rates.
Therefore selection does not favour a particular kind of
dynamics in this model. Assuming then that there is a
growth rate implying chaos and an equilibrium density
maximized subject to biological constraints, the self-
control mechanism described above can invade the
population and stabilize its density (figure 1). Although
the self-controlled mutant has the same equilibrium
density, its average growth rate is slightly higher than
that of the resident because of the control mechanism.
Thus such a mechanism enables the system to evolve
from complex to simple dynamics although evolution
due to K selection has ceased. In fact, the mechanism
can even reverse the direction of selection under certain
conditions. It is possible that a self-controlled mutant
can invade a resident with a slightly higher equilibrium
density. Such an invasion results in intermittent chaos
(figure 2): for most of the time the total density is near
the equilibrium, except for intermittent periods during
which it fluctuates irregularly. This form of ‘almost
stable’ chaos would be indistinguishable from a stable
equilibrium if density measurements were made in the
long phases of nearly constant population size.
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