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8. PAIRED-SAMPLE INFERENCE

Two-sample vs. Paired-sample Designs

As mentioned in a previous lab, there are two ways of comparing means of two treatments. In the
two-sample design, independent observations are assigned to one or the other treatment. The two
random samples of individuals are therefore from separate populations, and our goal is to
compare the means of these two populations, µ1 and µ2. In the “split plot” or paired-sample
design, both treatments are applied to each independent unit (e.g., patient, or field plots) in the
random sample. As before, we are interested in comparing population means of two treatments
but the two measurements made on the same patient (or in each field plot) are no longer
independent.

The difference between these two approaches is crucial, and affects the statistical method used to
test for treatment effects. When a paired design is used, the two measurements made on each
individual at the end of the experiment must be reduced to a single number: the change, or
difference d, between the two measurements. We then use the familiar one-sample methods to
estimate the mean difference µd and/or test hypotheses about the mean difference.  Paired-sample
inference is a straightforward extension of one-sample methods learned in a previous lab
exercise.  Methods for dealing with two-sample experiments were covered in the previous lab
exercise.

Confidence Interval for a Mean Difference

The confidence interval for the mean difference µd between paired measurements is obtained in
the same way as that for a single population mean.  We simply treat our sample of differences for
what it is: a random sample from a single population.  Thus, for paired data the 95% confidence
interval for the mean difference is:

where µd is the parameter for the mean difference between measurements, d  is the sample mean
difference, ds  is the standard error of the sample mean difference, ν is the degrees of freedom (n
- 1).  As before, this interval assumes that the data are from a normally distributed population.  If
the data are not from a normal population then the computer confidence interval is approximate,
and is expected to be accurate only when n is large (by the Central Limit Theorem).

Hypothesis Testing for a Difference

The paired-sample t-test is appropriate for testing  Ho: µd = 0  vs. Ha: µd ≠ 0 (and corresponding
one-tailed hypotheses) when the population of differences d has a normal distribution. Standard
methods should therefore be applied to the random sample of d values to test the validity of this
assumption. The one-sample t-statistic is our measure of discrepancy between the sample mean
d and the value of µd stated in the null hypothesis:
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If d has a normal distribution, then t has a t-distribution n−1 degrees of freedom, where n is the
sample size (number of independent observations).

What if d does not have a normal distribution in the population?  If n is large then the
distribution of d is nevertheless approximately normal (by the Central Limit Theorem) and we
may still use the paired-sample t-test as above. If d is not normally distributed and sample size is
not large, then the best approach is to use a non-parametric test (also called rank test) instead.
These methods assume only that the data are a random sample from a continuous distribution,
but this distribution need not be normal.

The Wilcoxon signed rank test (also called the Wilcoxon paired-sample test) is the most
powerful non-parametric analogue of the paired t-test. Its power is about 95% of that of a paired
t-test under ideal conditions. See your textbook for a worked example of this test.  Briefly, the
test is carried out as follows.  First, the absolute values of the differences d are ranked. Two sums
are then computed. The first sum, T+, is the sum of the ranks corresponding to positive values of
d. The second sum, T−,  is the sum of the ranks corresponding to negative values of d.  With a
two-tailed test of  “Ho: no difference between treatments; Ha: a difference between treatments
exists”, the null hypothesis is rejected if the smaller of the two sums is less than or equal to the
critical value (in Zar the critical values are provided in Appendix Table B12).  Notice that the
statement of the null and alternative hypotheses do not refer to the mean, µd.  This is
because, strictly speaking, the Wilcoxon signed rank test is not a comparison of means.  Rather,
it compares the rank sums T+ and T−,  which, under the null hypothesis, should be roughly equal.

The sign test is even simpler than the Wilcoxon signed rank test, and is really just an application
of the familiar binomial test. We record whether the differences d are positive or negative. Under
the null hypothesis of no difference, the number of positive d-values should be roughly equal to
the number of negative d-values. Let p be the proportion of differences that are positive. Under
the null hypothesis of no difference, Ho: p = 0.5, whereas Ha: p ≠ 0.5 under the alternative
hypothesis. This test is really only used as a last resort because it less powerful even than the
Wilcoxon signed rank test, and is much less powerful than the paired t-test.

Using the Program

To carry out the paired sample t-test or its non-parametric analogue you will need to enter both
measurements for each individual in separate columns on the same row. Then create a new
variable computed as the difference between the paired measurements. Then proceed as in the
earlier lab exercise on one-sample tests.

Problems

1. Before proceeding with further research into the mechanisms regulating
erythrocyte pH in toads (Bufo marinus), scientists compared two methods
of measuring intracellular pH to determine whether or not the methods give
the same results.  Arterial blood (0.8 ml) was collected from a random
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sample of 37 toads.  Each sample was equally divided and erythrocyte pH in each aliquot was
determined either by a freeze-thaw (FT) method or a method involving C14-labelled
5,5-dimethyl-2, 4-oxazolidinedione (DMO). The data are stored in the file toads.jmp on the
shared drive.  Each row corresponds to a different toad.

a) Test whether the two methods of measuring erythrocyte pH give the same results on
average, using the most powerful test available. Show all steps.

b) What assumption is required in (a)? Visually examine the data for departures for this
assumption.  Is your assumption met? Explain.

c) Carry out a test of your assumption given in (b).  Do the results of the test match your
visual interpretation?  Recommend a strategy for testing differences between the two
methods on the basis of your results.

d) Calculate the 95% confidence interval for the difference between means. Based on your
evaluation in (b) and (c), is the interval likely to be accurate?  Explain.

2. Scientists studying the effect of slash burning examined the diversity
of spiders in clear-cut areas of coastal forests.  The number of species
of spiders was measured at 27 sites of equal size (1.4 ha).  The sites
were then burned. Four years later the number of spider species at each
site was measured again.  The results are stored in the file spider.jmp
on the shared drive.

a) When examining changes in spider diversity between the period before burning and four
years after burning, is a one-tail test or a two-tail test most appropriate?

b) Was there a significant change in number of species of spiders between the two sampling
periods?  Explain how you chose your method for testing.

c) Suggest an improved experimental design to determine the effects of burning on diversity
of spiders in clear-cuts.

d) Comment on the advantages and disadvantages of a paired sampling design such as the
one used here over a two-sample design in which the experimenter simply compare
spider diversity in burned plots with those in other plots not burned?

e) Compute the 95% confidence interval for the change in number of species.  Is this
interval likely to be accurate? Explain.

3. In insect species whose females mate with multiple males
(polyandrous), male seminal fluid contains toxins that
increase the proportion of fertilizations a male obtains
relative to other males mating with the same female.
However, these toxins reduce the survival of females.
Experiments have shown that over multiple generations
females evolve defenses to prevailing male toxins, but that males forever evolve new toxins.
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The result is a long-term “arms race” between the sexes.  Researchers have postulated that
this process in polyandrous insect species should speed the rate at which sterility barriers
evolve between different populations of that species, increasing the rate at which new species
are formed. In contrast, sterility barriers should evolve more slowly in insect species whose
females mate only once (monandrous), since no arms race between the sexes occurs, yielding
a lower rate at which new species are formed. To test this idea, Arnqvist et al. (2000, Proc.
Natl. Acad. Sci. 97:10460–10464) compared the total numbers of species in 25 pairs of insect
taxa.  Each pair consisted of two closely related “clades” (a clade is a group of species all of
which share a common ancestor). One of the clades of each pair contained only polyandrous
species, whereas all of the species in the other clade of the pair were monandrous. The
number of species in each pair of clades is provided in the file conflict & speciation.jmp.
These data were taken directly from Table 1 in Arnqvist et al. (2000).

a) Using these data, test whether the number of species in polyandrous clades is
significantly different from the number in monandrous clades. Use a two-tailed test.
Justify your choice of method by testing appropriate assumptions.

b) Repeat the exercise in (a) using the log number of species in clades instead.  How did this
affect the best procedure for testing the hypotheses?  Does your conclusion differ? [We
will be investigating the use of data transformations like the logarithm more thoroughly
in a later lab exercise.]

c) Carry out a test of the same hypotheses using the sign test (a.k.a., the binomial test) in
JMP IN.  How do your results compare with those from the previous tests?

d) Were the authors justified in concluding that polyandrous taxa of insect species have
more species than related monandrous taxa?

4. The human species is polymorphic for the ACE gene (angiotensin-converting
enzyme, functioning in human skeletal muscle). Two alleles (alternative states
of the gene) are present. The “I” allele carries an insertion of 287 base pairs not
present in the “D” allele. This longer “I” allele leads to lower enzyme activity
and enhanced endurance under intense exercise training. In a recent study,
researchers measured training-related changes in the mechanical efficiency of
human skeletal muscle (energy used per unit power output) in “II” and “DD”
type individuals. Thirty “II” type individuals were randomly sampled from a
population of young Caucasion male army recruits. Thirty “DD” type
individuals were sampled from the same population. Measurements of
mechanical efficiency of skeletal muscles were made on all 60 individuals
before and after an 11-week programme of aerobic physical training. Neither the subjects nor the
staff knew the genotypes of the 60 individuals (i.e., the study was ‘double blind’). The change in
mechanical efficiency for the 60 males are provided in the data file ace.jmp.

a) With these data, test whether change in mechanical efficiency of muscle was different
between the “II” and “DD” groups of males.

b) What are your assumptions in (a)?  Test these assumptions.
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